Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: CO2 adsorption and separation.

Dissertationen zum Thema „CO2 adsorption and separation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "CO2 adsorption and separation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Abbassi, Maria. „Selective CO Adsorption Separation from CO2 via Cu-modified Adsorbents“. Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42151.

Der volle Inhalt der Quelle
Annotation:
CO2 capture and conversion appears to be a prominent solution to mitigate greenhouse gas emissions (GHG) and global warming issue. Among different CO2 conversion approaches, CO2 hydrogenation via reverse water gas shift (RWGS) reaction is one of the most promising technology to convert CO2 to CO. Subsequently, CO is transformed to value added chemicals or liquid fuels. To improve the overall CO2 conversion for RWGS reaction, product separation and recycling is being proposed. In this research, adsorption separation technology has been explored to selectively separate CO from CO2 in RWGS using pressure swing adsorption (PSA) process. To investigate the adsorption capacity and selectivity of CO, different porous materials have been identified for CO separation. In this research, activated carbons, ordered mesoporous silica, and metal organic framework materials were studied. Equilibrium isotherms of CO and CO2 were measured in a gravimetric system at a temperature of 25 °C for pressures up to 20 bar. Preliminary adsorption isotherm results had shown an insufficient CO uptake and low selectivity level compared to CO2, thus not justifying their application for CO separation. Herein, to improve the CO adsorption capacity and selectivity, Cu-based adsorbents were developed using copper (II) chloride (CuCl2) as a precursor to synthesize six different adsorbents. The adsorbents were prepared using two different synthesis methods; the modified polyol method for reduction and nanoparticle deposition of Cu (I) ions, and thermal monolayer auto-dispersion method. Furthermore, different copper (II) loadings were investigated to determine the monolayer dispersion capacity of CuCl2 on the support. The modified adsorbents by copper salt exhibited significantly high CO uptake with large CO/CO2 selectivity, reversing the results obtained before adsorbent modification. Thus, Cubased adsorbents are promising materials for CO separation and recovery from a gaseous mixture containing CO2.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wilson, Sean. „Adsorption Separation of CO2 in Low Concentrations for Applications in Direct Air Capture and Excimer Gas Separation“. Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40561.

Der volle Inhalt der Quelle
Annotation:
The overall objective of this thesis is to evaluate the fundamentals of current low concentration CO2 separation technologies and to provide an alternate method using adsorption technology with existing as well as new adsorbents. Two different applications for the adsorption of CO2 are explored; Direct Air Capture (DAC) and excimer gas purification. The investigation of aerogels as possible adsorbent for these applications was also explored. The first application, DAC of CO2 using adsorbents, addresses climate change by reducing the amount of atmospheric CO2 levels that are directly correlated to global warming. Because of DAC being carbon negative, this field has gained significant attention in the literature. DAC as a CO2 reduction strategy was approached in two ways: 1. Chapter 2 investigates capturing and concentrating CO2 from 0.04% in the air to 95% to be able to sequester it into the ground. This research began by doing an adsorbent selection using pure gas gravimetric measurements on seven different commercially available type X zeolites that were determined to have potential for this separation. Breakthrough experiments were then carried out with the most promising zeolite by perturbing the bed with compressed ambient air. In the process studied, a basic four step temperature vacuum swing adsorption (TVSA) cycle was investigated comprising the following steps: pressurization, adsorption, blowdown, and desorption. Four different regeneration temperatures were tested along with four different gas space velocities. With this cycle configuration, CO2 was concentrated to 95% from 0.04% with total capture fractions as high as 81%. This study highlighted methods to reduce the energy consumption per ton of CO2 captured in the system as well as the potential of using low Si/Al ratio faujasite structured zeolites in DAC of CO2 for greenhouse gas reduction. 2. Chapter 3 expands on the research of Chapter 2 by capturing CO2 from 0.04% in the air and concentrating it to high purity CO2 levels where the cost for operating the process will be reimbursed through the value of the produced CO2. The goal of this research was to increase the CO2 to as high as possible because the purer the CO2, the more valuable it is. This research started by conducting an in-depth investigation into the pure gas adsorption of CO2, N2, O2, and Ar on the most promising zeolite from Chapter 2. The data was then fitted to the TD-Toth model which allowed for the evaluation of the TVSA cycle and showed the potential of reducing the pressure and/or elevating the temperature during the blowdown step in order to produce high purity CO2. To confirm this, the TVSA cycle was run on a fixed bed breakthrough experiment where high purity CO2 was produced between a concentration of 99.5% and 99.96% by lowering the blowdown pressure. By controlling the blowdown temperature, the concentration of the product was increased from 99.8% to 99.95%, however with a significant loss of CO2. This effect of N2, O2, and Ar desorbing during the blowdown step with CO2 desorbing during the evacuation step is shown graphically by measuring the concentration and flow rate of the exiting gas species. The results from this study show the potential for producing a valuable product of high purity CO2 from atmospheric concentrations. The second application in this thesis that is explored in Chapter 4 is the purification of trace impurities of CO2, CF4, COF2, and O2 from F2, Kr, and Ne for applications in excimer lasers. Due to the incompatibility of many adsorbents to F2 and HF, aluminas and polymeric adsorbents were selected as potentially compatible materials. To increase the compatibility of these adsorbents, the use of a cryo-cooler was determined to be feasible to precool the feed stream before separation, which increases the adsorption capacity and compatibility of the material to F2 and HF. To determine the adsorption potential in the low concentration of these adsorbents, the concentration pulse chromatographic technique was chosen to determine the Henry’s Law constants of CO2, CF4, and O2. This data was then plotted on the van’t Hoff plot and extrapolated to colder temperatures to determine the benefit of using a cryo-cooler. From this study, it was determined that HayeSep Q was the best polymeric adsorbent with significant adsorption of CO2 at temperatures below -50˚C while being the best performing CF4 adsorbent. AA-300 was the best performing alumina in this study while having significant adsorption of CF4 at temperatures below -135˚C. However, from a compatibility standpoint, both of these materials need to be tested to determine their robustness in the presence of F2 and HF at room and reduced temperatures. Chapters 5 & 6 in this thesis explore the fundamentals of adsorption on aerogels as a prelude to using aerogels as possible adsorbents for DAC of CO2. This investigation into aerogels looks at silica aerogels and carbon aerogels, which are both industrially produced and explores their adsorption with relation to like materials such as silica gel and activated carbons. Both of these Chapters utilize experimentally determined adsorption isotherms of CO2, N2, O2, and Ar as well as characterization to determine adsorption trends in the materials. Some major conclusions for silica aerogels were that common surface modifications to make the material more resilient against water adsorption impacts the adsorption of CO2 significantly with roughly 4 fold difference in adsorption capacity. For carbon aerogels some major conclusions were that the adsorption was increasingly dominated by the heterogeneous nature of the surface at lower pressures and increasingly dominated by the pore size at the higher pressures. Both chapters discuss the adsorption of air along with ideas such as the influence of gas thermal conductivity in the pores with respects to adsorption. L'objectif général de cette thèse est d'évaluer les principes fondamentaux des technologies actuelles de séparation du CO2 à faible concentration et de fournir une méthode alternative utilisant la technologie d’adsorption avec des adsorbants actuels ainsi que d'en découvrir de nouveaux. Deux applications différentes pour l'adsorption du CO2 ont été explorées; la capture directe dans l’air ambient (CAD) et la purification des gaz excimères, ainsi que la recherche d'aérogels comme adsorbant possible pour ces applications. La première application, le CAD du CO2 utilisant des adsorbants, pourrait répondre aux changements climatiques puisque les niveaux de CO2 atmosphérique sont directement corrélés au réchauffement climatique. Dernièrement, le CAD a fait l'objet d'une attention particulière en tant que stratégie de réduction du CO2, par conséquent, deux voies différentes ont été explorées dans cette thèse: 1. Le chapitre 2 étudie la capture et la concentration du CO2 de 0,04% dans l'air à 95% afin de pouvoir l’enfermer dans la terre. Pour ce faire, une sélection d'adsorbant a été effectué en utilisant des mesures gravimétriques à gaz pur sur sept zéolithes de type X disponibles dans le commerce qui ont été déterminés comme ayant un potentiel pour cette séparation. Des expériences révolutionnaires ont ensuite été réalisées avec la zéolite la plus prometteuse en perturbant le lit avec de l'air ambiant comprimé. Dans le processus étudié, un cycle basique à quatre étapes d’adsorption modulée en température et pression (AMTP) a été étudié, comprenant les étapes suivantes: pressurisation, adsorption, purge et désorption. Quatre températures de régénération différentes ont été testées ainsi que quatre vitesses spatiales de gaz différents. Avec cette configuration de cycle, le CO2 était concentré à 95% de 0,04% avec des fractions de capture totales aussi élevées que 81%. Cette étude a mis en évidence des méthodes pour réduire la consommation d'énergie par tonne de CO2 captée dans le système ainsi que le potentiel d'utilisation de zéolithes structurées à base de faujasite à faible rapport Si/Al dans le CAD du CO2 pour la réduction des gaz à effet de serre. 2. Le chapitre 3 approfondit les recherches du chapitre 2 en capturant le CO2 de 0,04% dans l'air et en le concentrant à des niveaux de très haute pureté où le processus sera remboursé par la valeur du CO2 produit. L'objectif de cette partie était d'augmenter la pureté du CO2 le plus possible car plus le CO2 est pur, plus il est précieux. Une enquête approfondie sur l'adsorption de gaz pur de CO2, N2, O2 et Ar sur la zéolite la plus prometteuse du chapitre 2. Les données ont ensuite été ajustées au modèle TD-Toth qui a permis d'évaluer le cycle AMTP et a montré le potentiel de réduire la pression et/ou d'élever la température pendant l'étape de purge afin de produire du CO2 de haute pureté. Pour confirmer cela, le cycle AMTP a été fait par le biais d’une expérience dans un lit fixe où du CO2 de haute pureté a été produit entre une concentration de 99,5% et 99,96% en abaissant la pression de purge. En contrôlant la température de purge, la concentration du produit est passée de 99,8% à 99,95%, mais avec une perte importante de CO2. Cet effet de la désorption de N2, O2 et Ar pendant l'étape de purge avec la désorption du CO2 pendant l'étape d'évacuation est illustré graphiquement en mesurant la concentration et le débit des espèces de gaz sortant. Les résultats de cette étude montrent le potentiel de production d'un produit précieux de CO2 de haute pureté à partir des concentrations atmosphériques. La deuxième application de cette thèse qui est explorée au Chapitre 4 est la purification des traces d'impuretés de CO2, CF4, COF2 et O2 de F2, Kr et Ne pour des applications dans les lasers à excimère. En raison de l'incompatibilité de nombreux adsorbants avec le F2 et le HF, les alumines et les adsorbants polymères ont été sélectionnés comme matériaux potentiellement compatibles. Pour augmenter la compatibilité de ces adsorbants, l'utilisation d'un cryoréfrigérant a été jugée possible pour pré-refroidir le flux d'alimentation avant la séparation, ce qui augmente la capacité d'adsorption et la compatibilité du matériau en F2 et HF. Pour déterminer le potentiel d'adsorption dans la faible concentration de ces adsorbants, la technique de chromatographie pulsée de concentration a été choisie pour déterminer les constantes de la loi de Henry de CO2, CF4 et O2. Ces données ont ensuite été tracées sur le graphique van’t Hoff et extrapolées à des températures plus froides pour déterminer les avantages de l’utilisation d’un cryoréfrigérant. À partir de cette étude, il a été déterminé que HayeSep Q était le meilleur adsorbant polymère avec une adsorption significative de CO2 à des températures inférieures à -50 ° C tout en étant l'adsorbant CF4 le plus performant. L'AA-300 était l'alumine la plus performante de cette étude tout en ayant une adsorption significative de CF4 à des températures inférieures à -135 °C. Cependant, du point de vue de la compatibilité, ces deux matériaux doivent être testés pour déterminer leur robustesse en présence de F2 et de HF à température ambiante et réduite. Les chapitres 5 et 6 explorent les principes fondamentaux de l'adsorption sur les aérogels en prélude à l'utilisation d'aérogels comme adsorbants possibles pour le CAD du CO2. Cette enquête sur les aérogels examine les aérogels de silice et les aérogels de carbone, qui sont tous les deux fabriqués industriellement et explore leur adsorption par rapport à des matériaux similaires tels que le gel de silice et les charbons actifs. Ces deux chapitres utilisent des isothermes d'adsorption déterminés expérimentalement de CO2, N2, O2 et Ar ainsi que la caractérisation pour déterminer les tendances d'adsorption dans les matériaux. Certaines conclusions majeures pour les aérogels de silice étaient que les modifications de surface courantes pour rendre le matériau plus résistant à l'adsorption d'eau ont un impact significatif sur l'adsorption de CO2 avec une différence d'environ 4 fois dans la capacité d'adsorption. Pour les aérogels de carbone, certaines conclusions majeures étaient que l'adsorption était de plus en plus dominée par la nature hétérogène de la surface à des pressions plus faibles et de plus en plus dominée par la taille des pores aux pressions plus élevées. Les deux chapitres discutent de l'adsorption d'air ainsi que des idées telles que l'influence de la conductivité thermique du gaz dans les pores en ce qui concerne l'adsorption.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bendt, Stephan [Verfasser]. „Multiscale modelling of adsorption by MOFs - CO2-separation from flue gas and Olefin/Paraffin-separation as examples / Stephan Bendt“. Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2020. http://d-nb.info/1224270843/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Peixoto, Hugo Rocha. „Modeling of CO2 separation in post-combustion processes by PSA“. Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14096.

Der volle Inhalt der Quelle
Annotation:
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
Adsorption processes involving carbon dioxide (CO2) capture and sequestration have been objects of different studies. A typical problem is the separation of CO2 from fuel gases emitted in power plants in order to mitigate the global warming effects. Recently, Pressure Swing Adsorption (PSA) technology is being applied to this separation. However, design and analysis of adsorption processes are a difficult task due to the large number of parameters involved. This work studies the dynamics of this separation in activated carbons C141 and WV 1050 through commercial software Aspen Adsorption (AspenTechÂ). First, we evaluated the ability of the software reproducing experimental fixed bed data in C141 reported on literature, considering the mixture 10% of helium (carrier gas), 15% dioxide carbon and 75% nitrogen, molar basis. The results showed satisfactory resemblance to the literature. From a scale-up of the analyzed system, it was sized a PSA apparatus at 298 K operating with two columns and four steps: adsorption, depressurization, purge and repressurization (Skarstrom cycle). High-pressure step was at 3.0 bar and regeneration at 1.1 bar. Fuel gas mixture simulated was composed only of CO2 and N2; the molar fraction of the first component at the feed stream was 15%. The product stream in C141 showed purity and recovery of carbon dioxide from approximately 23% and 60% on a molar basis, respectively. The productivity was 0.72 t CO2 kg-1 year-1. Through the study of design variables such as column diameter and length, feed and purge flow rate, feed composition and step times, the product purity exceeded 30 % and the recovery bordered 75%, with maximum productivity of 1.02 t CO2 kg-1 year-1 for some process settings. The process yields in WV 1050 were 26.5 % purity, 47 % recovery and 0.53 t CO2 kg-1 year-1.
Processos de adsorÃÃo envolvendo a captura e o sequestro de diÃxido de carbono (CO2) vÃm sendo objetos de diferentes estudos. Um dos problemas tÃpicos analisados à a separaÃÃo do CO2 a partir dos gases de queima emitidos em plantas energÃticas com o intuito de mitigar os efeitos do aquecimento global. Recentemente, a tecnologia Pressure Swing Adsorption (PSA) està sendo aplicada para este tipo de separaÃÃo. Entretanto, o projeto e a anÃlise de processos de adsorÃÃo sÃo uma tarefa difÃcil devido à grande quantidade de parÃmetros envolvidos. Este trabalho estuda a dinÃmica dessa separaÃÃo nos carbonos ativados C141 e WV 1050 atravÃs do software comercial Aspen Adsorption da AspenTechÂ. Inicialmente, foi avaliada a capacidade do software no que diz respeito à reproduÃÃo de dados experimentais de leito fixo reportados na literatura, que consideram a mistura como sendo, em base molar, 10 % de hÃlio (gÃs de inerte), 15 % de diÃxido de carbono e 75 % de nitrogÃnio. Os resultados obtidos apresentaram semelhanÃa satisfatÃria aos da literatura para o sÃlido C141. A partir de um scale-up desse sistema analisado, foi dimensionada uma PSA a 298 K de duas colunas e quatro passos: adsorÃÃo, despressurizaÃÃo, purga e repressurizaÃÃo (ciclo Skarstrom). A etapa de maior pressÃo ocorre a 3,0 bar e a regeneraÃÃo a 1,1 bar. Considerou-se que o gÃs de queima à composto apenas por CO2 e N2, sendo a fraÃÃo molar de alimentaÃÃo do componente de interesse de 15%. Para C141, a corrente de produto apresentou pureza e recuperaÃÃo de diÃxido de carbono de aproximadamente 23 % e 60 % em base molar, respectivamente, com produtividade de 0,72 t CO2 kg-1 ano-1. AtravÃs do estudo de variÃveis de projeto como diÃmetro e comprimento da coluna, vazÃo de alimentaÃÃo e de purga, composiÃÃo de alimentaÃÃo e tempos das etapas do ciclo, a pureza do produto ultrapassou os 30 %, a recuperaÃÃo se aproximou de 75 % e a produtividade mÃxima foi de 1,02 t CO2 kg-1 ano-1 para algumas configuraÃÃes do processo. Os rendimentos para o adsorvente WV 1050 foram: pureza de 26,5 %, recuperaÃÃo de 47 % e produtividade de 0,53 t CO2 kg-1 ano-1.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Abdollahi, Farhang. „Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) Reaction“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23993.

Der volle Inhalt der Quelle
Annotation:
In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic fuel production. If the CO2 for this process can be captured from high emitting industries it can be a very good alternative for reduced fossil fuel consumption and GHG emission mitigation. CO as an active gas could be used in Fischer-Tropsch process to produce conventional fuels. Literature review and process simulation were carried out in order to determine the best operating conditions for reverse water gas shift (RWGS) reaction. Increasing CO2 conversion to CO requires CO2/CO separation downstream of the reactor and recycling unreacted CO2 and H2 back into the reactor. Adsorption as a viable and cost effective process for gas separation was chosen for the CO2/CO separation. This was started by a series of adsorbent screening experiments to select the best adsorbent for the application. Screening study was performed by comparing pure gas isotherms for CO2 and CO at different temperatures and pressures. Then experimental isotherm data were modeled by the Temperature-Dependent Toth isotherm model which provided satisfactory fits for these isotherms. Henry law’s constant, isosteric heat of adsorption and binary mixture prediction were determined as well as selectivity for each adsorbent. Finally, the expected working capacity was calculated in order to find the best candidate in terms of adsorption and desorption. Zeolite NaY was selected as the best candidate for CO2/CO separation in adsorption process for this project. In the last step breakthrough experiments were performed to evaluate operating condition and adsorption capacity for real multi component mixture of CO2, CO, H2 in both cases of saturated with water and dry gas basis. In multi components experiments zeolite NaY has shown very good performance to separate CO2/CO at low adsorption pressure and ambient temperature. Also desorption experiment was carried out in order to evaluate the working capacity of the adsorbent for using in industrial scale and eventually temperature swing adsorption (TSA) process worked very well for the regeneration step. Integrated adsorption system downstream of RWGS reactor can enhance the conversion of CO2 to CO in this process significantly resulting to provide synthetic gas for synthetic fuel production as well as GHG emission mitigation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wilson, Sean M. W. „Adsorption Separation of CO2 from CO in Syngas: Improving the Conversion of the Reverse Water Gas Shift Reaction“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33169.

Der volle Inhalt der Quelle
Annotation:
In this research project, adsorption is considered for the separation of CO2 from CO for applications such as industrial syngas production and in particular to improve the conversion of the Reverse Water Gas Shift (RWGS) process. The use of adsorption technology for these applications requires an adsorbent that can effectively separate out CO2 from a gas mixture containing CO2, CO, and H2. However, adsorption of H2 is insignificant when compared to both CO2 and CO, with only CO2 and CO being the adsorbed species. The adsorption of CO2 and CO was investigated in this work for four major types of industrial adsorbents which include: activated aluminas, activated carbons, silica gels, and zeolites. Zeolites, with their ability to be fine tuned many parameters which may affect adsorption, were investigated in terms of the effect of the cations present, SiO2/Al2O3 ratios, and structure to determine how to optimize adsorption of CO2 while decreasing adsorption of CO. This will help to determine a promising adsorbent for this separation with focus on maximizing the selective adsorption of CO2 over CO. To investigate this separation three scientific experimental methods were used; gravimetric adsorption isotherm analysis, volumetric adsorption isotherm analysis, and packed bed adsorption desorption breakthrough analysis. Gravimetric and volumetric methods allow for testing the adsorbent with the individual species of CO2 and CO. This investigation will let us determine the pure component adsorption capacity, heats of adsorption, regenerability, and basic selectivity. Packed bed adsorption breakthrough experimentation was then carried out on promising adsorbents for the CO2 separation from a mixture of CO2, CO, and H2. These experiments used a gas mixture that would be comparable to that produced from the RWGS reaction to determine the multicomponent gas mixture behaviour for adsorption. Temperature swing adsorption (TSA) with a purge gas stream of H2 was then used to regenerate the adsorbent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Garcia, Edder. „CO2 adsorption from synthesis gas mixtures : understanding selectivity and capacity of new adsorbents“. Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10195.

Der volle Inhalt der Quelle
Annotation:
Le développement de nouveaux adsorbants écologiques et efficaces pour la séparation du CO2 nécessite un lien quantitatif entre les propriétés des adsorbants et ses propriétés d'adsorption. Dans ce travail, nous développons une méthodologie qui prend en compte explicitement les propriétés des adsorbants, tels que le diamètre de pore, la densité, la forme de pore et la composition chimique. L'objectif est d'établir des corrélations quantitatives entre les paramètres mentionnés ci-dessus et les forces qui gouvernent la physisorption dans les milieux poreux, c'est à dire les interactions van der Waals et les interactions électrostatiques. Ainsi, les propriétés optimales des adsorbants pour la séparation du CO2 sont identifiées. En parallèle à ces études théoriques, une série d'adsorbants potentiellement intéressants pour la séparation du CO2 par PSA ont été testées expérimentalement. Une étude systématique de l'influence du centre métallique sur les séparations de mélanges CO2/CH4 et CO2/CH4/CO a été réalisée sur MOFs présentant sites coordinativement insaturés. Dans le cas des zéolithes, l'effet de la composition chimie (rapport Si / Al) sur les propriétés de séparation a été étudiés. Les capacités cycliques et des sélectivités ont été déterminées par des expériences de perçage. Les matériaux présentant un bon compromis entre la sélectivité et la capacité de travailler dans les conditions typiques de PSA ont été identifiés. Finalement, une comparaison entre la prédiction du modèle d'adsorption et les expériences a été faite
The design of new environmentally friendly and efficient adsorbents for CO2 separation requires a quantitative link between the adsorbent properties and adsorption capabilities. In this work we develop a methodology, which explicitly takes into account the adsorbent properties, such as the pore diameter, density, pore shape and chemical composition. The objective is to establish quantitative correlations between the above-mentioned parameters and the forces that govern physisorption in porous media, i.e. van der Waals forces and electrostatic interactions. Thus, the optimal properties of the adsorbent for CO2 separation are identified. In parallel to these theoretical studies, a series of potentially interesting adsorbents for CO2 separation by PSA were tested experimentally. A systematic study of the influence of the metal center on the separations of CO2/CH4 and CO2/CH4/CO mixtures was carried out on MOFs presenting coordinatively unsaturated sites. In the case of zeolites, the effect of the framework composition (Si/Al ratio) on the separation properties was studied. The cyclic capacities and selectivities were determined by breakthrough experiments. Materials presenting a good compromise between selectivity and working capacity under typical PSA conditions were identified. Finally, a comparison between the prediction of the adsorption model and the breakthrough experiments is carried out
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lozinska, Magdalena Malgorzata. „Investigation of inorganic porous solids as adsorbents for the separation of carbon dioxide from flue gas“. Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3964.

Der volle Inhalt der Quelle
Annotation:
Porous inorganic solids including mesoporous silicas, zeolites and silicoalumnio-phosphates have been investigated as adsorbents for carbon dioxide, particularly in relation to uptake from flue gases at 0.1 bar and ca. 298 K, but also at higher pressures. The mesoporous silicas SBA-1 and SBA-2, with mesocages separated by narrower windows, have been prepared, calcined at various temperatures and also nitrided with ammonia at high temperature. Nitridation has resulted in framework nitrogen incorporation, but this gave only small increases in the uptake of CO₂ of these mesoporous silicas, which are very low (< 0.2 mmol g⁻¹) at flue gas conditions (0.1 bar, 298 K). A series of cationic forms of the small pore zeolites, chabazite, ZK-5 and Rho, have been prepared by exhaustive cation exchange (and pre-calcination of the as-prepared form of Rho). In addition, a series of ultrastabilised zeolite Rho samples has been prepared to investigate the influence of extra-framework aluminium species on CO₂ uptake. For comparison, the silicoaluminophosphate versions of ZK-5 (SAPO STA-14) and Rho (SAPO(RHO)) have been prepared. Adsorption on Li-, Na-, K- and Ca-forms of chabazite (Si/Al = 3.0) has been related to the crystal structures of their dehydrated forms, as determined by Rietveld refinement against powder X-ray diffraction data (PXRD). For Na- and K-chabazite the structure has been measured in situ by PXRD during CO₂ adsorption. Li-chabazite has the highest uptake from all chabazite cationic forms (4.3 mmol g⁻¹). PXRD of K-chabazite reveals cation migration from eight-membered ring sites to six-membered ring sites upon CO₂ adsorption. Na-chabazite shows partial transformation from rhombohedral to monoclinic symmetry upon prolonged evacuation at high temperature, with resultant non-Type I CO₂ adsorption behaviour. Li-, Na- and K-forms of ZK-5 (Si/Al = 4.16) show high CO₂ uptakes at 0.1 bar and 298 K (Li-ZK-5, 4.7 mmol g⁻¹, which is the highest of the solids measured here). Like all H-forms, H-ZK-5 shows weaker uptake. None of the ZK-5 forms show high selectivity for CO₂ over small hydrocarbons, because cations do not block eight-membered ring windows and the structures do not distort upon dehydration. Uptake of CO₂ on univalent cation forms of zeolite Rho has been studied at low (up to 1 bar) and high (up to 10 bar) pressures. All cationic forms (but not H-Rho) show distortion (Im3̅m to I4̅3m) upon dehydration. Forms of zeolite Rho in which cations occupy window sites in the eight-membered rings between α-cages show hysteresis in their CO₂ isotherms, the magnitude of which (Na⁺,NH₄⁺ < K⁺ < Cs⁺) correlates with the tendency of cations to occupy double eight-membered ring sites rather than single eight-membered ring sites. Additionally, reversible CO₂ uptake using the Zero Length Column method on fully and partially cation exchanged samples has been measured. In situ synchrotron PXRD of CO₂ adsorption on Na-Rho indicates Na cations remain in window sites on the time average, indicating CO₂ uptake must occur by a 'trapdoor mechanism' by which Na cations move away from the windows to allow CO₂ to adsorb. In addition, in situ PXRD reveals the adsorption sites of CO₂ bound cations. Adsorption of small hydrocarbons does not occur on Rho, even at high pressure, indicating that adsorption is selective, and depends on the degree of interaction with the adsorbate rather than simply on the molecular size. Na-Rho is therefore a selective adsorbent for CO₂ over CH₄ with selectivities of 150–25 at 1–9 bar and 298 K, predicted from the single component isotherms, and an uptake of 3.07 mmol g⁻¹ at 0.1 bar. High ‘selectivities' are also observed over K-, Cs- and Ca-forms, examples of a novel type of adsorption selectivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mohamed, Mona Hanafy. „Organic-Inorganic Hybrid Materials Based on Oxyanion Linkers for Selective Adsorption of Polarizable Gases“. Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5811.

Der volle Inhalt der Quelle
Annotation:
The separation of industrially important gases into pure supplies that can be used for many practical applications is based mainly on energy intensive methods such as the cryogenic distillation which is costly and energy intensive. Therefore other routes have been introduced to industrial separation of gases such as the selective adsorption using porous solid materials. Zeolites and activated carbon are the most widely used recyclable energy-efficient porous solid materials for industrial gas separations, however the low uptake and selectivity hurdles their commercialization in some separation applications. Metal organic frameworks (MOFs) have been extensively studied as solid porous materials in term of gas separations nevertheless the future of MOFs for practical gas separations is considered to be vague and stringent due to their low stability, low capacity and selectivity especially at low partial pressures of the adsorbed gas, the competitive adsorption of the contaminants such as H2O, NOX and SOX, high cost of the organic ligands, besides the challenges of the formulation of MOFs which is very important in the MOFs marketing. In this context we present new porous materials based on inorganic linkers as well as the organic molecules, Organic-Inorganic Hybrid Materials, which were found to conquer the current challenges for the exploitation of MOFs in practical gas separation such as separation of trace and low CO2 concentrations and Xe separation from Xe/Kr mixtures. The work presented herein encompasses the development of novel 48.67 topology metal organic material (MOM) platform of formula [M(bp)2(M'O4)] (M= Co or Ni; bpe= bipyridine-type linkers; M'= W, Mo or Cr) that have been assigned RCSR code mmo based upon pillaring of [M(bp)2] square grids by angular WO42-, MoO42- or CrO42- pillars. Such pillars are unexplored in MOMs. They represent ideal platforms to test the effect of pore size and chemistry upon gas sorption behavior since they are readily fine-tuned and can be varied at their 3-positions (metal, organic linker and the inorganic pillar) without changing the overall structure. Such an approach allows for systematic control of pore size to optimize interactions between the framework and the adsorbent in order to enhance selectivity and/or gas uptake. Interestingly, these nets showed a high chemical stability in air, water, boiling water and in a wide range of pH which is certainly a desirable property in industry and commercialization of MOMs. [Ni(bpe)2(MoO4)] (bpe= 1,2-bis(4-pyridyl) ethane), MOOFOUR-1-Ni, and its chromate analog, CROFOUR-1-Ni, exhibit remarkable CO2 affinity and selectivity, especially at low loading. This behavior can be attributed to exceptionally high isosteric heats of adsorption (Qst) of CO2 in MOOFOUR-1-Ni and CROFOUR-1-Ni of ~56 and ~50 kJ/mol, respectively, at zero loading. These results were validated by modeling which indicate that the electrostatics of such inorganic anions towards CO2 affords favourable attractions to CO2 that are comparable to the effect of unsaturated metal centres. The use of WO42- instead of CrO42- or MoO42- as an angular pillar in mmo topology nets has afforded two isostructural porous nets of formula [M(bpe)2WO4] (M = Co or Ni, bpe=1,2-(4-pyridyl)ethene). The Ni variant, WOFOUR-1-Ni, is highly selective towards CO2 thanks to its exceptionally high isosteric heat of adsorption (Qst) of -65.5 kJ/mol at zero loading. The fine-tunability and the inherent modularity of this platform allow us exquisite design and control over the pore chemistry through the incorporation of different functionalities inside the channels of the networks which was then demonstrated as valuable strategy in terms of carbon dioxide capture at condition relevant to the direct CO2 capture from air. The exploitation of 4,4'-azopyridine in the design and synthesis of CROFOUR-2-Ni, an isostructure of CROFOUR-1-Ni, affords a paradigm shift in the CO2 adsorption properties as exemplified by the enhanced CO2 isosteric heat of adsorption at moderate and high loading in CROFOUR-2-Ni and the superior CO2 selectivity even for trace and low CO2 concentration. The two isostructures, CROFOUR-1-Ni and CROFOUR-2-Ni have been also investigated in term of Xe adsorption and separation from Xe/Kr mixtures. The two structures were found to exhibit the remarkable Xe affinity and selectivity which, together with high stability, good recyclability, low regeneration energy and low cost of the two materials could not only diminish the cost of the Xe and Kr production but also can potentially afford a high purity of the separated gases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Keshavarzi, Neda. „Structuring porous adsorbents and composites for gas separation and odor removal“. Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-109179.

Der volle Inhalt der Quelle
Annotation:
Porous zeolite, carbon and aluminophosphate powders have been colloidally assembled and post-processed in the form of monoliths, flexible free standing films and coatings for gas separation and odor removal. Zeolite 13X monoliths with macroporosites up to 50 vol% and a high CO2 uptake were prepared by colloidal processing and sacrificial templating. The durability of silicalite-I supports produced in a binder-free form by pulsed current processing (PCP) were compared with silicalite-I supports produced using clay-binders and conventional thermal treatment. Long-term acid and alkali treatment of the silicalite-I substrates resulted in removal of the clay binder and broadened the size-distribution of the interparticle macropores. Furthermore, strong discs of hydrothermally treated beer waste (HTC-BW) were produced by PCP and the discs were activated by physical activation in CO2 at high temperatures. The activated carbon discs showed high strength up to 7.2 MPa while containing large volume of porosities at all length scales. PCP was further used to structure aluminomphosphate powders (AlPO4-17 and AlPO4-53) into strong functional monoliths. The aluminophosphate monoliths had strengths of 1 MPa, high CO2 uptake and were easy to regenerate. Zeolite Y, silicalite and ZSM5 were selected as potential zeolite adsorbents for removal of sulfur containing compound, e.g. ethyl mercaptan (EM) and propyl mercaptan (PM). A novel processing procedure was used to fabricate free-standing films and coatings of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite; 89 w/w% and 96 w/w%, respectively. Thin flexible free-standing films and coatings of zeolite-CNF on paperboards with thickness around 100 µm and 40 µm, respectively, were produced. Headspace solid phase microextraction (SPME) coupled to gas chromatography- mass spectroscopy (GC/MS) analysis showed that the zeolite-CNF films can efficiently remove considerable amount of odors below concentration levels that can be sensed by the human olfactory system.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Manuscript.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Silva, Mojica Ernesto. „Polymer-silica Hybrids for Separation of CO2 and Catalysis of Organic Reactions“. University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1398439043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Venet, Saphir. „Stockage du CO2 et séparation CO2/CH4 par des matériaux de silice à porosité et fonctionnalité contrôlées : étude expérimentale et modélisation de dynamique moléculaire“. Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3027/document.

Der volle Inhalt der Quelle
Annotation:
Ce travail vise à évaluer les performances de matériaux à base de silice et à rationaliser leur synthèse en fonction des propriétés d’adsorption recherchées (capacité et/ou sélectivité) en combinant des approches expérimentales et la modélisation de dynamique moléculaire. Ces matériaux devaient idéalement présenter une capacité d’adsorption CO2 mais également une sélectivité CO2 /CH4 élevées. Les différentes étapes de ce travail ont été :- la synthèse et la fonctionnalisation des matériaux de silice,- leur caractérisation texturale et chimique,- la détermination des capacités d’adsorption du CO2, de leur sélectivité CO2/CH 4 ,- les caractérisations par différentes techniques spectroscopiques et microscopiques des échantillons pour essayer de localiser l’adsorption du CO2 et mesurer sa mobilité,- l’identification microscopique par modélisation moléculaire des facteurs physico-chimiques influant sur l’adsorption préférentielle du CO2 et sa diffusivité dans le matériau hôte ainsi que sur le rôle du caractère hydrophile/hydrophobe du matériau de silice par le biais de sa fonctionnalisation.Ces objectifs ont nécessité la préparation de matériaux à surfaces spécifiques élevées par le biais d’un procédé sol-gel simple. Ces matériaux ont été modifiés afin d’obtenir un taux de fonctionnalisation par des groupements -CH3 suffisant pour modifier le caractère hydrophile du matériaux tout en conservant une surface spécifique suffisante. L’influence de la taille des pores a également été sondée.Les capacités d’adsorption des gaz sous pression ont été réalisées pour les gaz purs mais également sur des mélanges CO2/CH4 dans différentes proportions. La sélectivité CH 4 /CO 2 , souvent estimée à partir des isothermes des corps purs et/ou la méthode IAST, a dans ce cas été déterminée à partir de la mesure directe des isothermes des mélanges de gaz. Il est apparu que l’eau joue un rôle crucial sur les capacité et sélectivités d’adsorption. Ce paramètre est l’un de ceux qui a été étudié à travers les simulations de dynamiques moléculaires. L’influence de l’introduction de groupements hydrophobes a également été exploré.Les résultats obtenus par dynamique moléculaire sont dans l’ensemble en bon accord avec les données expérimentales. Ces deux approches parallèles expérience/théorie ont mis en évidence la sélectivité de l’un des matériaux pour des applications où l’effluent gazeux est peu chargé en CO 2
This work aims to evaluate the performance of silica-based materials and to rationalize their synthesis according to their desired adsorption properties (capacity and/or selectivity) by combining experimental approaches and the management of the molecular animal. These materials are ideally suited for CO2 adsorption capacity but also CO2/ CH4 selectivity. The different stages of this work were:- the synthesis and functionalization of the silica materials,- their textural and chemical characterization,- the determination of CO2 adsorption capacities, of their CO2/ CH4 selectivity.- the characterizations by various spectroscopic and microscopic techniques of tests to try to locate the adsorption of CO2 and to measure its mobility,- microscopic identification by the factor of physic-Factors influence the preferential adsorption of CO2 and its diffusivity in the role of hydrophilic / hydrophobic character in silica by functional.These objectives required the preparation of high specific surface materials through a simple sol-gel process. These materials have been modified in order to obtain a degree of functionalization with -CH3 groups sufficient to modify the hydrophilic nature of the material while maintaining a sufficient specific surface area. The influence of pore size was also probed.The adsorption capacities of the gases under pressure were carried out for pure gases but also on CO2/ CH4 mixtures in different proportions. The CH4/ CO2 selectivity, often estimated from the pure body isotherms and / or the IAST method, was in this case determined from the direct measurement of the isotherms of the gas mixtures. It has become apparent that water plays a crucial role in adsorption capacity and selectivity. This parameter is one of those studied through molecular dynamics simulations. The influence of the introduction of hydrophobic groups has also been explored.The results obtained by molecular dynamics are on the whole in good agreement with the experimental data. These two parallel experience / theory approaches have highlighted the selectivity of one of the materials for applications where the gaseous effluent is little loaded with CO2
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Inubushi, Yasutaka. „Studies on Porous Coordination Polymers for Methane Purification“. 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Scaglione, Nicolas. „Selective separation of gases by carboxylate phosphonium ionic liquids“. Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0030.

Der volle Inhalt der Quelle
Annotation:
La capture des gaz polluants tels que le dioxyde de carbone (CO2) et le dioxyde de soufre (SO2) reste un défi majeur dans les efforts visant à atténuer l'impact des activités humaines sur l'environnement. Nous proposons le développement de nouveaux matériaux absorbants à base de liquides ioniques (LIs) réactifs, avec un faible impact environnemental et un coût réduit. Les LIs, des sels dont la température de fusion est inférieure à 100°C, sont une classe de composés non volatils capables de dissoudre une grande variété de substances. La multitude de combinaisons de cations et d'anions permet de concevoir une large gamme de solvants ioniques aux propriétés modulables. Grâce à leurs propriétés uniques, telles qu'une faible inflammabilité, une volatilité négligeable, une conductivité élevée ainsi qu'une excellente stabilité thermique et électrochimique, les LIs sont des milieux prometteurs pour de nombreuses applications, et plus particulièrement, ils sont des candidats intéressants pour l'absorption de gaz polluants. Une nouvelle famille de LIs composés d'anions carboxylates et de cations phosphoniums pour la séparation sélective de CO2 et SO2 a été conçue et préparée. Leurs propriétés physico-chimiques et thermiques ainsi que leur structure microscopique ont été étudiées en détail à l'aide de méthodes expérimentales et computationnelles. Ils ont notamment démontré une stabilité thermique prometteuse et une large fenêtre liquide. Il a été possible de distinguer la structure microscopique des LIs en fonction des substituants des anions carboxylates. [P4,4,4,4][TetrazC1COO] est apparu comme un cas particulier avec des corrélations anion-anion singulières. L'absorption de CO2 et de SO2 a été mesurée en fonction de la température et de la pression partielle des gaz pour chacun des LIs. La sélectivité a été calculée à partir du rapport des ratios molaires de chaque gaz absorbé. Les propriétés thermodynamiques d’absorption ont été obtenues à partir des isothermes d'absorption à différentes températures et de simulations ab initio. La basicité de l'anion carboxylate est un facteur déterminant dans la capture de CO2, mais pas pour SO2. Le pKa dans l'eau de l'acide carboxylique correspondant à chaque anion carboxylate a une influence sur la réversibilité de la capture de SO2, et sur la capture sélective de SO2 par rapport à CO2. Des projets exploratoires ont été menés en parallèle afin d'envisager d'autres applications potentielles de ces LIs et leurs mélanges en électrochimie grâce à leur bonne stabilité électrochimique, mais aussi en tant que cristaux plastiques. Ces études ouvrent la voie à de futures recherches pour la compréhension des propriétés de ces LIs
The capture of polluting gases such as CO2 and SO2 presents a significant challenge in mitigating the environmental impact of human activities. To address this challenge, we propose the development of new materials based on reactive ionic liquids (ILs) as absorbents, with low environmental impact and cost-effectiveness. ILs are non-volatile compounds with a melting temperature below 100°C, capable of dissolving a wide range of substances due to their versatile cation-anion combinations. With unique properties like low flammability, high conductivity, and thermal stability, ILs hold promise for various applications, including gas absorption. The wide range of possible combinations of cations and anions allow for the design of a multitude of ionic solvents with tunable properties. A novel family of ILs comprising carboxylate anions and phosphonium cations for the selective separation of CO2 and SO2 has been developed and prepared. Through rigorous experimental and computational analyses, we investigated their physicochemical properties, thermal behavior, and microscopic structure. They notably displayed promising thermal stability and a large liquid window. It was possible to distinguish the microscopic structure of the ILs based on the substituents of the carboxylate anions. [P4,4,4,4][TetrazC1COO] appeared as an outlier with peculiar anion-anion correlations. Measurements of gas absorption as a function of temperature and partial pressure revealed the crucial role of carboxylate anion basicity in CO2 capture capacity, but not in SO2 capture. The pKa of corresponding carboxylic acids in water of each carboxylate anion was nonetheless determinant for the reversibility of SO2 capture, and crucial for achieving high selectivity over CO2. The related thermodynamics properties were carefully studied and interpreted based on the equilibrium constants and Henry's law constants, obtained from the absorption isotherm fittings, and ab initio simulations. Exploratory projects were carried out to consider other potential applications of these ILs and their mixtures in electrochemistry due to their high electrochemical stability, but also as plastic crystals. These studies pave the way for understanding the properties of these ILs, guiding future research in this field
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

DAVARPANAH, ELAHE. „Investigation and Modelling of Porous Solid Sorbents and Bio-based Ionic Solvents for the Separation of CO2 from Flue gas“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2841182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

MARUCCIA, ELISA. „Versatile, direct nanocasting strategy to N-rich ordered mesoporous carbons for selective post-combustion CO2 capture and energy storage“. Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2970994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Pacheco, Rodriguez Diana Marisol. „Aminosilane-functionalized cellulosic polymers for increased carbon dioxide sorption“. Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/42722.

Der volle Inhalt der Quelle
Annotation:
Improvement of the efficiency of carbon dioxide (CO2) separation from flue gases has been identified as a high-priority research area to reduce the total energy cost of carbon capture and sequestration technologies in coal-fired power plants. Efficient CO2 removal from flue gases by adsorption systems requires the design of novel sorbents capable of capturing, concentrating and recovering CO2 on a cost-effective basis. The preparation of a novel aminosilane-functionalized cellulosic polymer sorbent by grafting of aminosilanes showed promising performance for CO2 separation and capture. A strategy for the introduction of N-(2-aminoethyl)-3-aminoisobutyldimethylmethoxysilane functionalities into cellulose acetate backbone by anhydrous grafting is described in this study. The dry sorption capacity of the aminosilane-functionalized cellulosic polymer reached 27 cc (STP) CO2/ cc sorbent at 1 atm and 39 cc (STP) CO2/ cc sorbent at 5 atm and 308 K. Exposure to water vapor slightly increased the sorption capacity of the sorbent, suggesting its potential for rapid cyclic adsorption processes under humid feed conditions. In addition, a strategy for the preparation of a cellulose acetate-titanium(IV) oxide sorbent by the reaction of cellulose acetate with titanium tetrachloride is presented. The organic-metal hybrid sorbent presented a sorption capacity of 14 cc (STP) CO2/ cc sorbent at 1 atm and 49 cc (STP) CO2/ cc sorbent at 5 atm and 308 K. The novel CO2 sorbents were characterized in terms of chemical composition, density changes, molecular structure, thermal stability, and surface morphology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zhang, Kun. „Fumaric Acid Fermentation by Rhizopus oryzae with Integrated Separation Technologies“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354729467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Al, Atrach Jaouad. „Advanced design οf zeοlitic materials fοr the adsοrptiοn/separatiοn οf CΟ2, Ν2, and CΗ4 mοlecules“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC234.

Der volle Inhalt der Quelle
Annotation:
Ce travail de thèse porte sur l’optimisation des matériaux zéolithiques à petits pores dans le butd'améliorer leur capacité d'adsorption du CO2 et leur efficacité en séparation des gaz. Dans cecontexte, cette étude se concentre sur l'amélioration des performances des zéolithes à traversl'échange ionique, le contrôle de la taille des cristaux et la synthèse de nouveaux adsorbants. Deszéolithes de type Gismondine (GIS) échangées avec des cations Mg2+ ont été synthétiséesdémontrant une meilleure sélectivités pour CO2/N2 et CO2/CH4 grâce à un échange cationiquespartiel avec Mg2+, ce qui influencé la distorsion de la structure et renforcé à la capacité la sélectivité,mettant en avant leur potentiel pour des applications pratiques de capture du CO2. Une méthode desynthèse assistée par graines a été adaptée pour produire des zéolithes P (GIS) de taillenanométrique améliorant de façon notable la cinétique d’adsorption du CO2 en réduisant leslimitations de diffusion plus rapide, issue d’un mécanisme de diffusion intra-cristalline, a conduità des performances accrues dans la séparation dynamique des gaz, dépassant ainsi celle deszéolithes de taille micrométrique. Les zéolithes Levyne (LEV) sont également introduites danscette thèse comme de nouveaux candidats pour l’adsorption du CO2, où un contrôle rigoureux durapport Si/Al et l’usage des graines de taille nanométrique ont permis un ajustement précis dupropriétés d’adsorption. L’étude met en avant l’importance du rapport Si/Al dans l’optimisation dela sélectivité et de la capacité d’adsorption du CO2 ainsi que du comportementadsorption−désorption positionnant la zéolithe LEV comme un matériau prometteur pour laséparation du gaz. Ces résultats illustrent comment du techniques de synthèse adoptées, associéesà l’optimisation de l’échange cationique, au contrôle de la taille cristalline et l’ajustement durapport Si/Al, peuvent significativement améliorer les performances des zéolithes dans lestechnologies de capture du carbone et la séparation des gaz à haute efficacité énergétique
This thesis is dedicated to optimizing small-pore zeolite materials for efficient CO2 adsorption andgas separation. The work focuses on improving zeolite performance through cation exchange,crystal size control, and the synthesis of novel adsorbents. Mg-exchanged Gismondine (GIS)zeolites were synthesized, demonstrating enhanced CO2/N2 and CO2/CH4 selectivities due to partialcation exchange with Mg2+, which influenced the framework distortion and improved bothadsorption capacity and selectivity, underscoring their potential for practical carbon captureapplications. A seed-assisted synthesis method was also employed to develop nanosized zeolite P(GIS), which significantly improved CO2 adsorption kinetics by reducing diffusion limitations,with faster diffusion resulting from an intracrystalline diffusion mechanism. This superior diffusionwithin the nanosized zeolites led to enhanced performance in dynamic gas separation compared totheir micron-sized counterparts. The thesis also introduces Levyne (LEV) zeolites as novelcandidates for CO2 adsorption, where careful control of the Si/Al ratio and the use of nanosizedseeds allowed for precise tuning of adsorption properties. The study highlights the critical role ofthe Si/Al ratio in optimizing CO2 selectivity, uptake, and adsorption−desorption behaviour,establishing LEV as a promising material for gas separation. These findings demonstrate howtailored synthesis methods, cation exchange optimization, crystal size control, and Si/Al ratioadjustment can significantly enhance the performance of zeolite-based materials in carbon captureand energy-efficient gas separation technologies
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hao, Wenming. „Refining of hydrochars/ hydrothermally carbonized biomass into activated carbons and their applications“. Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-107672.

Der volle Inhalt der Quelle
Annotation:
Hydrothermally treated biomass could not only be used as a fuel or a fertilizer but it can also be refined into high-value products. Activated carbons are one of those. In the studies of this thesis, four different hydrothermally carbonized (HTC) biomasses, including horse manure, grass cuttings, beer waste and biosludge, have been successfully made into activated carbons. The activated carbon materials were in the forms of powdered activated carbons, powdered composites of activated carbon and iron oxide nano-crystals, and activated carbon discs. The HTC biomasses and the activated carbons were characterized and analyzed using several methods. The biomasses were carbonized to different extent during the hydrothermal treatment, which depended on the different natures of the biomasses. The HTC biomasses were activated into powdered activated carbons by both physical activation, using CO2, and by chemical activation, using H3PO4. Full factorial design matrices were applied to design experiments and study the influence of different parameters used during both physical and chemical activation. Activated carbons with embedded iron oxide nanoparticles were synthesized through hydrothermal carbonization followed by CO2 activation. These composites had high surface areas and showed a strong magnetism, and the powders could be separated from liquid phase by applying a magnetic field. Strong and dense activated carbon discs were also prepared from powdered HTC beer waste by pulsed current processing (PCP) and a subsequent CO2 activation procedure. The potential for carbon dioxide separation from nitrogen, and methylene blue adsorption in aqueous solution, were assessed for the powdered activated carbons produced from HTC biomasses. They showed good performance in both applications.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 1: In press.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Le, Guillouzer Clement. „Etude spectroscopique de membranes à matrice mixte polymère/MOF pour la séparation CO2/N2“. Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC242/document.

Der volle Inhalt der Quelle
Annotation:
Dans le cadre de la réduction des émissions de gaz à effet de serre, une des approches possibles consiste en l’utilisation de membranes pour séparer le CO2 de mélanges gazeux. Durant ce travail de thèse, la séparation CO2 / N2 dans des conditions de post-combustion a été étudiée pour des membranes à matrice mixte composées de matériaux organométalliques poreux, les MOF, insérés dans des polymères. Plus spécifiquement, la thèse porte sur la caractérisation de ces membranes à l’aide des spectroscopies vibrationnelles (IR et Raman). Différentes membranes polymériques et membranes à matrice mixte basées sur des polymères commerciaux comme le Matrimid ou le PEBAX ou des nouveaux polymères comme le PIM-1 ou 6FDA-DAM plus performants ont ainsi été étudiées. La spectroscopie Raman a d’abord été utilisée pour contrôler l’homogénéité des membranes et la bonne dispersion du MOF au sein du polymère à l’aide du Raman. Les interactions entre le polymère et le MOF ont également été étudiées à l’aide des spectroscopies IR in situ et Raman, notamment pour des composites modèles permettant de maximiser les interactions entre les deux composés. La deuxième partie du travail a été axée sur la caractérisation spectroscopique (IR operando) de ces membranes dans les conditions de post-combustion, simultanément à la mesure de leurs performances en séparation. Un système de mesures dédié a donc été spécialement développé. Cette méthodologie permet de comparer directement les données d’adsorption et de séparation des membranes. En développant une nouvelle approche couplant les aspects cinétiques et thermodynamiques de l’adsorption et de la perméation, les données expérimentales ont été modélisées afin de déterminer les paramètres d’adsorption et de diffusion des différentes membranes
In the frame of the abatement of greenhouse gases, one of the possible approaches concern the use of membranes to separate CO2 from gas mixtures. During this PhD work, CO2 / N2 separation in post-combustion conditions has been studied for Mixed Matrix Membranes constituted by porous organometallic materials, MOFs, inserted into polymers. More specifically, this work aims at the characterization of these membranes using vibrational spectroscopies (IR and Raman). Different membranes, purely polymeric or Mixed Matrix Membranes, based on commercial polymers such as Matrimid or PEBAX as well as new polymers such as PIM-1 or 6FDA-DAM have been studied. Raman spectroscopy was first used to control the homogeneity of the membranes and the good dispersion of the MOF within the polymer. The interactions between the polymer and the MOF were also studied using IR in situ and Raman spectroscopies, notably for composites allowing maximizing the interactions between the two components. The second part of the work focused on the characterization of these membranes under operating post-combustion conditions, simultaneously with the measurement of their separation performance. For this purpose, a specifically designed measurement system has been developed in order to be able to test the membranes using IR operando. This methodology allows the direct comparison of adsorption and separation data. By the development of a new approach coupling kinetic and thermodynamic aspects of adsorption and permeation, experimental data were modelled to determine adsorption and diffusion parameters of the various membranes
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Schloss, Jennifer M. „Infrared Spectroscopy of Trapped Gases in Metal-Organic Frameworks“. Oberlin College Honors Theses / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1308537119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Magisson, Aymeric. „Synthèse de nanοzeοlithes à petits pοres sélectifs“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC253.

Der volle Inhalt der Quelle
Annotation:
L'objectif principal de cette thèse de doctorat est le développement de zéolithes à petits poresde taille nanométriques, ciblant une sélectivité d'adsorption élevée pour le CO2. Les deuxpremiers chapitres présentent l'état de l'art actuel sur diverses caractéristiques et propriétés deszéolithes, leurs voies de synthèse et applications. Les procédures de synthèse réalisées dans cetravail de thèse et les techniques de caractérisation utilisées sont également présentées. Letroisième chapitre décrit le comportement d'adsorption du CO2 à faible pression partielle dansle réseau poreux de la chabazite nanométrique (CHA) synthétisée en présence de cationscalcium et baryum utilisés comme agents structurants. Le quatrième chapitre détaille lacristallisation des phases pures et échantillons imbriqués de chabazite (CHA)/phillipsite (PHI).Les performances des zéolithes obtenues sont évaluées en adsorption de dioxyde de carbone etd'azote. Enfin, le cinquième chapitre présente le développement d'une procédure de synthèseautonome pour des zéolithes nanométriques, et détaille les étapes suivies afin d’optimiser sesconditions opératoires. Cette synthèse réalisée par un robot se situe à l'interface entre la synthèseà grande échelle et l'expérimentation par criblage, offrant les moyens de reproduire facilementdes synthèses exigeantes
The main objective of this PhD thesis is the development of small-pore nanosized zeolitestargeting a high adsorption selectivity towards CO2. The first two chapters present the currentstate of the art on various features and properties of zeolites, their synthesis routes, andapplications. The syntheses procedures carried out in this work and the characterisationtechniques used are presented. The third chapter describes the low partial pressure adsorptionbehaviour of CO2 in the porous network of nanometric Chabazite (CHA) synthesised in thepresence of calcium and barium cations used as structure-directing agents. The fourth chapterdetails the crystallisation of pure phases and intergrown chabazite (CHA)/Phillipsite (PHI)zeolite samples. The performance of the obtained zeolites is evaluated in adsorption of carbondioxide and nitrogen. Finally, the fifth chapter presents the development of an autonomoussynthesis procedure for nanosized zeolites and details the steps involved in optimising itsoperating conditions. This synthesis carried out by robot stands at the interface between largescalesynthesis and screening experimentation, providing the means to easily reproducechallenging syntheses
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Nassara, Ramiel. „Adsorption separation of ethyleneethane“. Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27721.

Der volle Inhalt der Quelle
Annotation:
To offset rising energy costs, it is becoming a necessity to lower energy usage within industrial processes. Such can be said for the separation of olefin/paraffin mixtures. An example of such a mixture is ethylene/ethane. This highly energy intensive industrial separation employs cryogenic distillation to achieve a high purity product. Subsequently, the energy cost to run such a system is extremely high. Hybrid scenarios have been explored, with adsorption being a potential candidate. This work studied the potential of three adsorbents for the separation of ethylene/ethane: AgNO3/SiO2, CuCl/SiO 2, and CECA 13X. AgNO3/SiO2 and CuCl/SiO 2 were both prepared in the laboratory. Pure component constant volume experiments were conducted, along with binary mixture predictions for all three adsorbents at 3 different temperatures. The expected working capacities were also calculated for the three adsorbents. Finally, an economic analysis, without taking competitive adsorption in to factor, was conducted to give a rough idea of how much a potential PSA system would cost using the three adsorbents individually. CuCl/SiO2 yielded the most favorable results of the three adsorbents, but more studies were determined necessary on the optimization of the preparation of the adsorbent. AgNO3/SiO 2 was not completely ruled out, however. Both the adsorbents showed characteristics for a potential use within industry. CECA 13X was not considered a viable candidate for such a separation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Battrum, M. J. „Gas separation by adsorption“. Thesis, University of Bath, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376289.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Hart, J. „Separation of gases by adsorption“. Thesis, University of Bath, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Liow, J.-L. „Air separation by pressure swing adsorption“. Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373659.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ferreira, Cristina Isabel Fernandes. „CO2/CH4 separation with ionic liquids“. Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/3158.

Der volle Inhalt der Quelle
Annotation:
Mestrado em Engenharia Química
As alterações climáticas e as demais mudanças associadas aos gases de efeito de estufa, concretamente ao dióxido de carbono, têm vindo a suscitar cada vez mais interesse, proporcionando a descoberta e o desenvolvimento de técnicas e processos que promovam a mitigação deste gás na atmosfera. Os líquidos iónicos são uma classe de compostos que têm vindo a gerar um interesse crescente, desde a sua descoberta em 1914 até a actualidade. São sais, compostos por iões, líquidos à temperatura ambiente, e possuindo propriedades como baixa pressão de vapor, não inflamabilidade, larga janela eletroquímica, grande estabilidade química e térmica e o facto de serem líquidos numa faixa de temperatura extensa, têm contribuindo para o desenvolvimento de processos ambientalmente mais conscientes. A troca do catião ou do anião permite alterar significativamente as propriedades do líquido iónico e adaptá-lo ao fim pretendido. As áreas de aplicação dos LIs têm vindo a expandir, destacando-se neste trabalho a sua aplicação na purificação de correntes de misturas gasosas. A separação do dióxido de carbono de metano é de elevada relevância no que toca à purificação do gás natural. A presença de CO2 diminui o poder de combustão do gás natural, provoca problemas de corrosão nas tubagens e equipamentos e aquando a combustão do gás natural o CO2 é emitido contribuindo para a poluição atmosférica. Neste trabalho utilizaram-se dados de equilíbrio líquido vapor para sistemas de CO2 com líquidos iónicos e outros solventes não voláteis, analisando os desvios à idealidade apresentados por estes sistemas, tentando perceber desta forma, melhor o mecanismo que controla a solubilidade deste gás. Foram igualmente analisados os desvios à idealidade para sistemas de CH4 e líquidos iónicos. Estudou-se para diferentes LIs qual o composto preferencialmente absorvido, CO2 ou CH4, recorrendo ao cálculo da selectividade. Com o objectivo de analisar como algumas propriedades termodinâmicas dos líquidos iónicos afectam a solubilidade dos gases, estudou-se o efeito do volume molar e da tensão superficial destes solventes. ABSTRACT: Climate change and other changes related to greenhouse gases, specifically carbon dioxide, have been raising increasing concern, providing the discovery and development of techniques and processes that promote the mitigation of this gas in the atmosphere. Ionic liquids are a class of compounds that have been generating increasing interest since its discovery in 1914 until today. They are salts, composed of ions, that are liquid at room temperature, and having properties such as low vapor pressure, wide temperature ranges in the liquid state, non-flammability, wide electrochemical window, high chemical and thermal stability, have contributed to the development of more environmentally conscious processes. The exchange of the cation or anion can significantly change the properties of the ionic liquid and adapt it to a specific end in mind. Ionic liquids application areas have been expanding, focusing this work on its application in the purification of gas streams. The separation of carbon dioxide from methane is very important in the purification process of natural gas. The presence of CO2 reduces the heating value of natural gas, causes corrosion problems in pipes and equipment and is emited as an atmospheric poluent during natural gas combustion. In this work we used liquid vapor equilibrium data for CO2 systems with ionic liquids and other non-volatile solvents, analyzing the non-ideality of these systems, thus trying to understand better the mechanism that controls the solubility of this gas. The non-ideality for systems of CH4 and ionic liquids was also analyzed. The prefered sorption of CH4 and CO2 in different ionic liquids was studied, using the definition of solubility selectivity. In order to analyze how thermodynamic properties of ionic liquids influence the solubility of these gases, the effect of molar volume and surface tension of these solvents was analyzed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Surovtseva, Daria. „CO2 separation by cryogenic and hydrate“. Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/2501.

Der volle Inhalt der Quelle
Annotation:
According to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), fossil fuels are utilised to produce more than 80% of the world's energy and this is likely to remain unchanged in the nearest future, especially as industrialisation is pursued by such economic giants as China. Without substantial change in energy policies with primary focus on the development of sustainable technologies for power generation, mitigation of associated Green House Gas (GHG) emissions cannot be fully implemented, and will require continual improvement in order to achieve objectives set by the Kyoto protocol. Research and development in the field of Carbon Capture and Sequestration is therefore being thoroughly explored. In this work a new sustainable technology for CO2 capture from IGCC power stations is developed and discussed in detail. This technology is based on cryogenic condensation integrated with gas hydrate formation.With the massive global reduction in recoverable oil and the potential size in a few decades time, the accent started to shift towards the other available fossil fuels such as gas and coal. The amount of Natural Gas trapped in the form of solid hydrate sunk in the deep ocean and permafrost areas cannot be estimated precisely, however, the scientific community agrees that values in order of 1015 to 1017 cubic metres are realistic. This has caused overwhelming research into gas hydrates as storage media for different gases. Gas hydrates are highly organized crystalline structures with molecules of light gases encaged in a framework created by water molecules. They can form at any place where free water in intimate contact with hydrate forming gas is exposed to elevated pressures and low temperatures. The ability to store large quantity of gas per unit volume makes gas hydrates an attractive option for any application requiring gas preservation. One of such modern applications for gas hydrates has arisen from the global warming problem and addresses the potential capability to efficiently capture and safely store the CO2.Coal remains the main energy source in the world; for example, in Australia it is providing 40% of total energy and up to 80% of electricity (Cuevas-Cubria et al., 2010). The main advantages of coal over the other fossil energy resources are its abundance, its easy recoverability and lower cost. Massive pollution produced during burning of this fuel forced the creation of new technologies that allow for GHG reduction. Integrated Gasification Combined Cycle (IGCC) is the most favoured advanced option for energy recovery from a variety of sources, particularly coal, the so-called 'clean coal technology'. IGCC generates a high pressure shifted syngas stream composed essentially of Hydrogen and Carbon Dioxide. Historically, the CO2 was separated from rich sources (such as natural gas) via the Ryan-Holmes cryogenic condensation process. However, applied at the gas or oil refinery this method can consume up to 50% of the generated energy to bring the CO2 levels down to pipeline requirements which does not seem attractive in terms of cost of CO2 avoided. High temperatures utilised for coal gasification are also not favourable for the implementation of cryogenic condensation to an IGCC stream.On the other hand, high pressure and high CO2 content in the IGCC flue gas provide the ideal conditions for CO2 capture in the form of solid hydrates. This option has been investigated under the guidance of the US Department of Energy by a team of researchers (Los Alamos National Laboratory, Nexant, Inc., and SIMTECHE) since 1999 and at the Chinese Academy of Science. A few proof-of-concept reports can be found stating that the utilisation of the hydrate formation phenomenon for purification of gas streams is less energy intensive than any of the other existing CO2 capture methods. The ability to encapsulate significant amounts of gas in little space and relatively mild conditions of storage make the hydrates an extremely attractive option for easy handling of high rates of GHG emissions. However, this research is still on a laboratory scale.In this thesis a new method is developed for cost and energy efficient CO2 sequestration from IGCC sources based on a simple configuration. High feed pressure facilitates bulk removal of CO2 by cryogenic methods, and high energy recovery is achieved through process integration with hydrate formation. Liquid CO2 produced as a result of condensation carries most of the cold energy required for initial refrigeration, and the hydrate unit does not consume any substantial additional energy. Separated CO2 is characterised by high purity sufficient for utilisation in enhanced oil and gas recovery processes. The hydrate can be easily handled and stored. Although the focus is made on IGCC flue gas application, the method can be extended to other sources with high CO2 levels and supplied at high pressure.Additional value is brought to this research by extensive investigation of the phase behaviour of gas mixtures containing CO2. Particular attention is paid to the distinctive features of gas hydrates produced in different systems including mixtures with hydrocarbons and non-hydrocarbons in various concentrations and in the presence of chemicals dissolved in water. This knowledge will contribute to the future development in the field of hydrates and will be useful for both academic research and industrial application.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bogahawatta, Vimarsha. „CO2 Adsorption on Polyethylenimine-Impregnated Lamellar Silica“. Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41557.

Der volle Inhalt der Quelle
Annotation:
The increasingly stringent environmental regulations worldwide demand the use of efficient methods for air purification. Moreover, the alarming effect of greenhouse gases on the world climate requires the removal and sequestration of large quantities of anthropogenic carbon dioxide (CO2). This work is contributed towards the development of efficient, amine-containing, lamellar structured silica adsorbents for CO2 removal. Seven different materials were prepared by impregnation of various amounts of PEI, over as synthesized, or partially extracted or calcined lamellar silica. Materials were characterized by powder XRD and SEM. CO2 adsorption capacity was measured by thermogravimetry. The effects of PEI loading, temperature, CO2 partial pressure and surface alkyl chains were investigated. PEI seems to be dispersed better in a consistent surface alkyl chain network, leading to enhanced CO2 uptake. VB-13, the material with 50 wt% of PEI, recorded the highest CO2 uptake at 75 °C, in the presence of both 15% CO2/N2 and 100% CO2 with values of 3.02 and 3.50 mmol/g respectively. The optimum temperature for CO2 uptake was found to be 75 °C for samples with high PEI loading. Moreover, higher uptake was recorded in the presence of 100% CO2 versus 15% CO2/N2 for all temperatures. Another objective of this study was to investigate the effect of humidity on the CO2 adsorption process. In that case use of the column-breakthrough technique coupled with mass spectrometry to discriminate between CO2 and water was considered. Complete understanding of the technique and the different effects of moisture on CO2 adsorption over amine-containing materials, namely promotion of CO2 uptake and stabilization of the adsorbent, were achieved, based on a thorough scrutiny of the literature. Nonetheless, because of the Covid-19 pandemic and several technical issues, some experiments could not be undertaken.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Toreci, Isil. „Adsorption separation of methyl chloride from air“. Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26784.

Der volle Inhalt der Quelle
Annotation:
In this study methyl chloride was selected as the main adsorbate since it is one of the volatile organic compounds produced largely in industry. Nitrogen was the other adsorbate since air is composed of nitrogen by 79%. As adsorbents one in-house adsorbent; SBA-15 and three commercial adsorbents; HiSiv-3000 (ZSM-5 zeolite), activated carbon cloth, mesoporous activated carbon were used. Experiments of constant volume technique were performed in order to obtain adsorption isotherms of methyl chloride and nitrogen with the adsorbents mentioned above up to 1.6 arm in the temperature range of 21.5 and 80°C. Langmuir, Freundlich, Sips and Toth isotherm models were fitted to these isotherms. By using the Toth isotherm parameters adsorption isosteres were obtained. Henry's Law constants and heat of adsorption values were calculated. Expected working capacities for pressure swing adsorption (PSA), vacuum swing adsorption (VSA), temperature swing adsorption (TSA) were obtained and feasibility of these processes was discussed. The binary system behavior was also predicted for HiSiv-3000 and SBA-15 by using Extended Langmuir and Ideal Adsorbed Solution models. Methyl chloride adsorption breakthrough curves with HiSiv-3000 and SBA-15 for vacuum swing adsorption application was produced. The effects of modeling parameters such as temperature, inlet concentration, flow rate and bed length were investigated. It was concluded that mesocarbon is the best adsorbent to separate methyl chloride from air. Carbon cloth has the lowest heat of adsorption for methyl chloride. Prediction of binary system behavior showed that nitrogen adsorption is negligible. Mesocarbon shows the highest expected working capacities for PSA, VSA and TSA. VSA and TSA were found to be two promising processes for separation of methyl chloride from air. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Murray, John William. „Air separation by rapid pressure swing adsorption“. Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kastrisianki-Guyton, Emma. „Dispersion, adsorption properties and separation of nanoparticles“. Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.683906.

Der volle Inhalt der Quelle
Annotation:
Recent years have seen a surge in interest into the properties of new materials, and their application in electronic devices. This project has used techniques common for colloidal systems in order to gain insight into these systems. The work has mainly focussed on single-walled carbon nanotubes (SWCNTs), however silicon nanowires have also briefly been studied. Pluronic block copolymers are commonly used to stabilise SWCNTs in water, most commonly F127. Such dispersions were studied using small-angle neutron scattering (SANS) experiments performed at a range of solvent contrast systems. The data were successfully fitted to a relatively simple core-shell cylinder model. Data fitting was consistent with SWCNTs present in small bundles in dispersion, with an average radius of 10 A, surrounded by a water-swollen F127 layer of 61 A thickness, with a water content of 94% in the adsorbed layer. Increasing the temperature of F127 /SWCNT /D20 systems so that they were above the critical micellisation temperature (CMT) of the polymer was seen to have only a small impact on the polymer adsorption, with the adsorbed layer thickness increasing from ~55 to 65 A, and the adsorbed amount increasing by between 50 and 100% (from ~ 1 to 1.5 mg m- 2). Dispersions of SWCNTs in surfactant mixtures of SDS and sodium cholate (SC) are often used to separate SWCNTs by electronic type. SWCNTs were dispersed with SDS and studied using small-angle scattering techniques at various contrasts. Data were fitted to a core-shell cylinder model, and the fits were consistent with small SWCNT bundles of an average radius of 10 A, surrounded by an adsorbed layer of thickness 18 A. The adsorbed amount of SDS at the SWCNT surface was calculated to be 2.5 mg m-2 , however the adsorbed amount at the SDS headgroup/water interface was calculated to be 0.85 mg m- 2 , a value closer to previously reported values for the adsorption of SDS on carbon surfaces. Subsequently, SWCNTs dispersed with SC and mixtures of SDS and SC (1:4 and 3:2 volume ratios of SDS:SC) were studied with SANS, and the dimensions of the decorated SWCNTs were not seen to vary greatly between the different surfactants studied. Finally, the separation of nanoparticles has been investigated. The separation of SWCNTs based on their electronic properties using aqueous PEG/dextran twophase polymer systems was studied. Although absorbance spectra suggested that an electronic separation of SWCNTs had occurred, the process was found to be highly irreproducible. Additionally, variations in temperature were found to have little effect on partitioning and no separation by electronic type was seen when F127-dispersed SWCNTs rather than SC-stabilised SWCNTs were used, suggesting that, unlike F127, SC adsorbs differently to SWCNTs depending on their electronic type. Silicon nanowires (SiNWs) have also been briefly studied, and separating the nanowires by length was attempted using glass bead columns, however no significant separation by length was achieved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Al-Damkhi, Ali M. „Separation of n-paraffins by selective adsorption“. Thesis, Aston University, 1986. http://publications.aston.ac.uk/10192/.

Der volle Inhalt der Quelle
Annotation:
A study has been undertaken of the vapor-phase adsorptive separation of n-alkanes from Kuwait kerosene (Kuwait National Petroleum Company, heavy kerosene) using zeolite molecular sieves. Due to the shortage of information on the adsorption of multicomponent systems in the open literature, the present investigation was initiated to study the effect of feed flowrate, temperature, and zeolite particle size on the height of mass transfer zone (MTZ) and the dynamic capacity of the adsorbent for multicomponent n-alkanes adsorption on a fixed-bed of zeolite type-5A. The optimum operating conditions for separation of the n-alkanes has been identified so that the effluent would also be of marketable quality. The effect of multicycle adsorption-desorption stages on the dynamic behaviour of zeolite using steam as a desorbing agent has been studied and compared with n-pentane and n-hexane as desorbing agents. The separation process comprised one cycle of adsorption using a fixed-bed of zeolite type-5A. The bed was fed with vaporized kerosene until saturation had been achieved whereby the n-alkanes were adsorbed and the denormalized material eluted. The process of adsorption-desorption was carried out isobarically at one atmosphere. A mathematical model has been developed to predict the breakthrough time using the method of characteristics. The results were in a reasonable agreement with the experimental values. This model has also been utilized to develop the equilibrium isotherm. Optimum operating conditions were achieved at a feed flowrate of 33.33 x 10-9 m3/s, a temperature of 643 K, and a particle size of (1.0 - 2.0) x 10-3 m. This yielded an HMTZ value and a dynamic capacity of 0.206 m and 9.6S3 x 10-2 kg n-alkanes/kg of zeolite respectively. These data will serve as a basis for design of a commercial plant. The purity of liquid-paraffin product desorbed using steam was 83.24 wt%. The dynamic capacity was noticed to decrease sharply with the cycle number, without intermediate reactivation of zeolite, while it was kept unchanged by intermediate reactivation. Normal hexane was found to be the best desorbing agent, the efficiency of which was mounted to 88.2%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Westman, Snorre Foss. „Power plant with CO2 capture based on adsorption“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18504.

Der volle Inhalt der Quelle
Annotation:
A dynamic one-dimensional homogeneous model for a packed bed sorption-enhanced water-gas shift (SEWGS) reactor has been developed, describing the non-isothermal, non-adiabatic and non-isobaric operation of this type of reactor. The model was developed to describe a SEWGS reactor designed to work under operating conditions and syngas feeds encountered in a coal-fed Integrated Gasification Combined Cycle power plant utilizing an oxygen-fed gasifier. Different from previous integration designs reported in literature, the feasibility of leaving out the conventional high-temperature water-gas shift (WGS) reactor upstream of the SEWGS reactor has been investigated. The reactor was assumed to be packed with a mixture of K2CO3-promoted hydrotalcite CO2 adsorbent and commercial high-temperature FeCr-based water-gas shift catalyst pellets. Utilizing the reactor model, a mathematical modelling framework for the operation of eight SEWGS reactors in a SEWGS cycle has been developed. This system model accounts for all the necessary interactions between the reactors during the SEWGS cycle, including the exchange of mass in the feed, rinse, equalization and repressurization steps. In contrast to available open literature, the mathematical framework describes in detail how the necessary switches in the boundary conditions for the reactors have been realized.Simulations of several SEWGS cycles were carried out. The results were compared with experimental and modelling data from literature. Due to inconsistencies in the parameters and implementation of the model in the simulation software employed, results were in most aspects quantitatively not comparable to results from literature. However, the qualitative trends and physical mechanisms expected were observed and confirmed by the model. The temperatures in the reactors reached an unacceptable high level with respect to the tolerable operating conditions of the catalyst and adsorbent. It is planned to continue the work on the model, and implementing it within a full power plant model to investigate the effects of changes in the power production and thus the required amount of syngas to be treated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ertan, Aslı Özkan Fehime S. „CO2, N2 and ar adsorption on modified zeolites/“. [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/kimyamuh/T000295.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Dai, Jing. „Adsorption, aggregation and phase separation in colloidal systems“. Doctoral thesis, KTH, Tillämpad fysikalisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-220669.

Der volle Inhalt der Quelle
Annotation:
The thesis presents work regarding amphiphilic molecules associated in aqueous solution or at the liquid/solid interface. Two main topics are included: the temperature-dependent behavior of micelles and the adsorption of dispersants on carbon nanotube (CNT) surfaces. Various NMR methods were used to analyze those systems, such as chemical shift detection, spectral intensity measurements, spin relaxation and, in particular, self-diffusion experiments. Besides this, small angle X-ray scattering (SAXS) was also applied for structural characterization.   A particular form of phase transition, core freezing, was detected as a function of temperature in micelles composed by a single sort of Brij-type surfactants. In mixed micelles, that phase transition still occurs accompanied by a reversible segregation of different surfactants into distinct aggregates. Adding a hydrophobic solubilizate shifts the core freezing point to a lower temperature. Upon lowering the temperature to the core freezing point, the solubilizate is released. The temperature course of the release curves with different initial solubilizate loadings is rationalized in terms of a temperature-dependent loading capacity.   The behavior of amphiphilic dispersant molecules in aqueous dispersions of carbon nanotubes (CNTs) has been investigated with a Pluronic-type block copolymer as frequent model dispersant. Detailed dispersion curves were recorded and the distribution of the dispersant among different available environments was analyzed. The amount of dispersed CNT was shown to be defined by a complex interplay of several factors during the dispersion process such as dispersant concentration, sonication time, centrifugation and CNT loading. In the dispersion process, high amphiphilic concentration is required because the pristine CNT surfaces made available by sonication must be rapidly covered by dispersants to avoid their re-attachment. In the prepared dispersions, the competitive adsorption of possible dispersants was investigated that provided information about the relative strength of the interaction of those with the nanotube surfaces. Anionic surfactants were found to have a strong tendency to replace Pluronics, which indicates a strong binding of those surfactants.   CNTs were dispersed in an epoxy resin to prepare nanotube-polymer composites. The molecular mobility of epoxy was investigated and the results demonstrated the presence of loosely associated CNT aggregates within which the molecular transport of epoxy is slow because of strong attractive intermolecular interactions between epoxy and the CNT surface. The rheological behavior is dominated by aggregate-aggregate jamming.

QC 20180103

APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Mutasim, Z. Z. „Separation of gas mixtures by pressure swing adsorption“. Thesis, Swansea University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379811.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Armstrong, Jayne. „Gas adsorption and separation properties of porous material“. Thesis, University of Newcastle upon Tyne, 2013. http://hdl.handle.net/10443/2119.

Der volle Inhalt der Quelle
Annotation:
The development of new porous materials for use in applications such as gas storage and separation processes, catalysis, catalysts supports and the removal of environmentally unfriendly species has increased rapidly over the past decade. Research into the development of these new materials has been dominated by metal organic frameworks, covalent organic frameworks, nanoporous polymers and, most recently, porous organic cage molecules. This thesis describes adsorption studies of a metal organic framework, Zn (TBAPy) and a porous tetrahedral organic cage molecule of ~ 1 nm diameter formed by the condensation reaction of 1,3,5- triformylbenzene with 1,2-ethylenediamine. The development of metal organic frameworks has traditionally involved the formation of rigid network structures, analogous to that of zeolites. More recently the focus has shifted to those of dynamic, flexible framework materials, and the response of these materials to adsorption of gases and vapours. The metal organic framework Zn (TBAPy) is based on a zinc metal centre functionalised with benzoate fragments. The initial two-dimensional structure undergoes rearrangement of the paddlewheel units to form a 3D framework, Zn (TBAPy)' upon desolvation. The ability of this 3D network to separate p-xylene and m-xylene was investigated. It was found that these isomers produced different effects on the framework, with p-xylene producing a typical Type I isotherm, whereas m-xylene induced a structural change within the material, with a much slower rate of m-xylene adsorption at higher pressures. This could potentially lead to the equilibrium separation of these two isomers by the metal organic framework Zn (TBAPy)'. The 1 nm diameter tetrahedral cage molecules formed by the condensation reaction of 1,3,5-triformylbenzene with 1,2-ethylenediamine can exist in a number of stable polymorphs, Cage 1α, Cage 1β and Cage 1γ. These polymorphs can be interconverted by exposure to certain organic vapours/solvents. The conversion of Cage 1β to Cage 1α by adsorption of probe molecules ethyl acetate, 2-butanone, diethyl ether, pentane and methanol was studied. Adsorption of ethyl acetate, 2- butanone and diethyl ether produced unusual adsorption isotherms, which included desorption of adsorbed vapour with increasing pressure during the adsorption isotherms. This desorption is attributed to the structural change from Cage 1β to Cage 1α. The unusual desorption step is not observed for methanol or pentane adsorption. The adsorption of methyl acetate was studied over a wide temperature range in order to assess the thermodynamic and kinetic characteristics of the unusual desorption step. The adsorption of dichloromethane showed the reverse transformation of Cage 1α to Cage 1β, showing that the inter conversion produces stable polymorphs. The kinetics of the structural transformation followed an Avrami model and the mechanism is an activated process. Cage 1α has voids between the cages, which are connected by very narrow constrictions that allow the kinetic molecular sieving of oxygen, carbon dioxide and nitrogen. It was found that oxygen adsorbs approximately ten times faster than nitrogen on Cage 1α, with selectivity and rate constants similar to those observed for carbon molecular sieves. The thermodynamics and kinetic results are discussed in terms of structural characteristics and diffusion into molecular cage materials. The kinetic molecular sieving is not present in the polymorph Cage 1β, which has wider pores.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Fouladvand, Shahpar. „Study of MFI zeolite membrane for CO2 separation“. Licentiate thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59614.

Der volle Inhalt der Quelle
Annotation:
Nowadays, the need and interest for renewable sources of energy has increased. Biogas is a renewable source of energy that can be considered as a sustainable substitute for natural gas. Biogas is mainly composed of CH4 and CO2, and normally the CO2 content of the gas has to be reduced as it decreases the calorific value of the gas and it may also cause corrosion in pipes and other equipment. Most today’s technologies used for upgrading biogas have been adapted from upgrading of natural gas. However, these technologies are best suited for large scale operation; whereas, production of biogas is typically several orders of magnitude smaller. This leads to high costs for removal of CO2 from biogas and consequently, new efficient technologies for upgrading biogas should be developed. Membrane-based separations are generally considered as energy efficient and are suitable for a wide range in scale of production due to their modular design. Zeolite membranes have been singled out as especially attractive membranes for gas separations. In this work, we therefore study separation of CO2 from CH4 and H2 using zeolite MFI membranes.  The performance of a high-silica (Si/Al ca. 139) MFI membrane for CO2/CH4 separation was investigated in a wide temperature range i.e. 245 K to 300 K. The separation factor increased with decreasing temperatures as is typically the case for adsorption governed separations. The highest separation factor observed was about 10 at 245 K. The CO2 permeance was very high in the whole temperature studied, varying from ca. 60 × 10-7 mol s-1 m -2 Pa-1 at the lowest temperature to about 90 × 10-7 mol s-1 m -2 Pa-1 at the highest temperature studied. The CO2 permeance was higher than that reported previously in the open literature for this separation. Modeling of the experimental data revealed that the membrane performance was adversely affected by pressure drop over the support, whereas the effect of concentration polarization was small. Removing the former effect would improve both the permeance and selectivity of the membrane.  In order to investigate the impact of the aluminum content on the performance of MFI membranes for the CO2/CH4 separation, MFI membranes with different Si/Al ratios were prepared. Increasing the aluminum content makes the zeolite II more polar which should increase the CO2/CH4 adsorption selectivity. Again the effect of temperature on the performance was investigated by varying the temperature in a range almost similar as above. Altering the Si/Al ratio in MFI zeolite membranes indeed changed the separation performances. At the lower temperatures the separation performance increased with increasing aluminum content in the zeolite as a result of larger adsorption selectivity. However, as the temperature was decreased, the selectivity of the membrane with the highest aluminum content went through a maximum, whereas for the other membranes the selectivity continued to increase with decreasing temperature under the conditions studied. At the same time, the CO2 permeances were high for all membranes studied and for the membrane with the highest selectivity, the CO2 permeance increased from 65 × 10-7 to 100 × 10-7 mol s-1 m -2 Pa-1 with increasing temperature.  High-silica MFI membranes were also evaluated for CO2/H2 separation, which is critical for syngas purification and H2 production. The highest CO2 permeance at the feed pressure of 9 bar was about 78 × 10-7 mol s-1 m -2 Pa-1 at around 300 K, which is one or two order of magnitude higher than those reported previously in the literature. By decreasing the temperature, separation factor reached its highest value of 165 at 235 K.  In summary, zeolite membranes show great potential for CO2 separation from industrial gases, in particular for CO2 removal from synthesis gas. For the CO2/CH4 separation the selectivity of the MFI membranes should be improved or other frameworks relying on molecular sieving e.g. the CHA framework should be explored.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Darwish, Amina M. „Silica Surface Modifications for Protein Separation“. University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1416231191.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Liu, Jing. „Multilayered PEI-based Films for CO2 Adsorption and Diffusion“. University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1367839488.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Abdehagh, Niloofar. „Improvements in Biobutanol Production: Separation and Recovery by Adsorption“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34406.

Der volle Inhalt der Quelle
Annotation:
Due to environmental challenges, depleting oil resources, rising cost of oil and instability in oil-producing countries, biofuel production has attracted a lot of attention in recent decades. Biobutanol is one of the biofuels showing the most potential as an alternative for partly replacing petroleum-based fuels. Both researchers and industrialists are currently working at developing an energy-effective process to produce biobutanol at a large scale. Acetone-butanol-ethanol (ABE) fermentation is the biological process of biobutanol production and Clostridia are the most common bacteria used to produce biobutanol. However, there are several challenges in the butanol bioproduction process that should be addressed to make this process economically viable. The main challenge in the biobutanol production process is the low concentration of butanol in the ABE fermentation broth. It is therefore important to develop an efficient separation method. Several separation methods such as distillation, liquid-liquid extraction (LLE), pervaporation, gas stripping and adsorption have been considered to recover butanol from dilute solutions and ABE fermentation broths. Adsorption is considered as one of the most promising methods due to its high performance and energy efficiency for butanol separation. In this study, the focus was on developing an efficient separation method for butanol recovery from dilute model solution and fermentation broth using adsorption. A comprehensive adsorbent screening was first carried out to identify the best commercially available adsorbent among a series of potentially promising adsorbents. Activated carbon (AC) F-400 was selected for further experimentation since it showed high adsorption capacity and adsorption rate in addition to high selectivity toward butanol. AC F-400 was then tested extensively in packed adsorption column experiments for binary and ABE model solutions and fermentation broths to investigate the competitive adsorption between butanol and other components present in ABE broths. The results showed that the butanol adsorption capacity was not affected by the presence of ethanol, glucose and xylose while the presence of acetone led to a slight decrease in adsorption capacity at low butanol concentrations. On the other hand, the presence of acids (acetic acid and butyric acid) in the ABE broth showed a significant effect on the butanol adsorption capacity over a wide ii range of butanol concentration and this effect was more pronounced for butyric acid. At the end, different competitive adsorption isotherm models were also studied to appropriately represent the behaviour of the competitive adsorption. Desorption of butanol was subsequently investigated to evaluate both the desorption capacity of butanol and the capability of the adsorbent particles to be used for multiple adsorption-desorption cycles. The results of this set of experiments showed that AC F-400 can retain its initial adsorption capacity after 6 adsorption/desorption cycles. The recovery of butanol from butanol-water (1.5 wt%) binary and ABE model solutions was 84 and 80% with butanol adsorption capacity of 302 and 171 mg/g, respectively. The combination of adsorption and gas stripping techniques was also studied to investigate the performance of CO2 gas stripping of solvents from the model solutions and fermentation broths followed by adsorption. The results showed that the butanol adsorption capacity of the overall system for binary solutions (260 mg/g for a binary butanol-water solution of 15 g/L with vapour phase concentration of 5.8 mg/L), ABE model solutions (192 mg/g for a corresponding vapour concentration of 5.2 mg/L) and ABE fermentation broths (247 mg/g for a corresponding vapour phase concentration of 2.5 mg/L) was higher than what has been published in the literature. Finally, a model was developed and adequately validated the experimental data to predict the behaviour of the ABE compounds in a packed bed adsorption column for butanol separation from dilute solutions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Mehta, Rupel. „The separation of waste oily water using carbon adsorption“. Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

He, Xuezhong. „Development of Hollow Fiber Carbon Membranes for CO2 Separation“. Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14424.

Der volle Inhalt der Quelle
Annotation:
CO2 capture from flue gases by membrane technology in post combustion power plants could be used for the reducing of CO2 emissions. Previous work has demonstrated that the carbon membrane can achieve a high separation performance with respect to high CO2 permeability and selectivity over the other gases, such as N2 and O2. The focus of the current work was to find a low-cost precursor and develop a simple process for the preparation of high performance hollow fiber carbon membranes (HFCMs) for CO2 separation. The cellulose acetate (CA) hollow fibers were spun from a dope solution of CA / Polyvinylpyrrolidone (PVP) / N-methyl-2-pyrrolidone (NMP) (22.5 % / 5 % / 72.5 %) using an optimal spinning condition: bore fluid (water + NMP (85 %)), air gap (25 mm), bore flow rate (40 % of dope flow rate) and temperature of quench bath (50 °C). The cellulosic hollow fibers, regenerated from the spun CA fibers by deacetylation, were used as the precursors for preparation of HFCMs. The experimental results indicated that the precursors would influence significantly the separation performances of the prepared HFCMs. Therefore, the deacetylation process needed to be optimized, and the optimal deacetylation condition was found to be: soaking CA hollow fibers in a 10 % glycerol solution for 24 h, and then treated by immersion in a 0.075 M NaOH (96 % ethanol) solution for 2 h. The carbonization parameters were also found to affect the separation properties of the HFCMs significantly. The carbonization condition was optimized based on an orthogonal experimental design method and statistical analysis. The optimal carbonization procedure was found to be: CO2 as purge gas, a final temperature of 823K, a heating rate of 4K/min and a final soak time of 2h (CO2-823K-4K/min-2h), and the importance of the investigated carbonization parameters was sorted out with respect to their influence on carbon membrane separation performances. The order of importance for the carbonization parameters was found to be: purge gas > final temperature > heating rate > final soak time. It was hence concluded that the purge gas was the most important parameter affecting the final carbon membrane performance, and CO2 was found to be the most effective purge gas for preparation of the high performance cellulosic derived carbon membranes. A symmetric structure for the prepared HFCMs with a typical thickness of 25 um was identified from the scanning electronic microscopy (SEM) images, and a great shrinkage compared to the precursor could be seen. The Fourier Transform Infrared (FTIR) spectra showed the decomposition and break down of the chemical groups in precursors in various carbonization environments, leading to the release of volatile gases. A typical d-spacing of the carbon membranes was found to be 4 A from the X-ray diffraction (XRD) characterization. CO2 and N2 adsorption equilibrium isotherms were obtained by the gravimetric sorption measurements. A higher adsorption affinity of CO2, obtained by fitting the experimental data using Langmuir-Freundlich model, indicated that CO2 is more adsorbable than N2. Two type of hollow fiber carbon membrane (HFCM-A and HFCM-B) has been prepared in the current work. The micropore volume and average pore size for the carbon membrane HFCM-B are around 0.17 cm3/g and 5.6 A, respectively, which are slightly larger than that of the HFCM-A (0.15 cm3/g and 5.2 A). The kinetic rate constants were also determined from the CO2 kinetic adsorption experiments, and the higher kinetic rate constant of HFCM-B indicates the more open structure. Gas permeation tests were conducted with single gases (H2, CO2, O2, N2 and CH4) as well as gas mixtures. The single gas permeation tests confirmed that the permeability values decreased with increasing kinetic diameter of the gas molecules, which indicated that the molecular sieving mechanism was dominating in the carbon membrane separation processes. The results also showed that the kinetic diameter had a larger effect than the Lennard-Jones well depth, which indicated that the diffusion was dominated by a molecular sieving process and that the sorption had relatively little influence. The gas permeability increased with temperature due to the activated transport process for the molecular sieve mechanism. The gas molecules with larger activation energy (e.g. CH4 and N2) were affected by the temperature more significantly, comparing to that with lower activation energy (e.g. CO2). The strongly adsorbed CO2 showed a more significant decrease of permeability with pressure compared to N2, reflecting a stronger concentration dependence for the diffusion coefficient of CO2. The gas permeability decreased with the presence of water vapor which might be caused by the pore blocking. The aging test results indicated that the permeability of carbon membrane decreased over time when exposed to air, and needed to be regenerated. The gas mixture measurements showed that the significant effects of the operating parameters, especially the feed pressure, on the membrane performance based on the fractional factorial design method and statistical analysis. Therefore, the operating conditions need to be optimized for the specific applications. The single stage membrane processes for CO2 capture from flue gases with feed compression, permeate evacuation, and their combination were investigated using Aspen HYSYS simulation tool integrated with an in-house membrane simulation model called ChemBrane. The simulation results indicated that the single stage membrane process could not achieve high CO2 purity and CO2 recovery simultaneously using these HFCMs. The plotted characteristic diagrams could be easily used to identify the required operating conditions and membrane areas to accomplish specific targets for a given separation process. A two stage membrane system was also designed for the evaluation of process feasibility, and the simulation results indicated that a CO2 purity of 90 % and a recovery of 80 % could be achieved by optimizing of the process conditions. Although the cost of carbon membranes is still unknown, the membrane/module cost could be greatly reduced by further improving the membrane separation performance (especially increasing the gas permeance by reducing the wall thickness of HFCMs) and simplifying the membrane production process. The capital cost estimation for two-stage cascade membrane process indicated that the potential application for carbon membrane technique could be promising compared to chemical absorption.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Basdemir, Merve. „Development Of Pbi Based Membranes For H2/co2 Separation“. Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615473/index.pdf.

Der volle Inhalt der Quelle
Annotation:
Recent developments have confirmed that in the future hydrogen demand in industrial applications will arise because of the growing requirements for H2 in chemical manufacturing, petroleum refining, and the newly emerging clean energy concepts. Hydrogen is mainly produced from the steam reforming of natural gas and water gas shift reactions. The major products of these processes are hydrogen and carbon dioxide. The selective removal of CO2 from the product gas is important because it poisons catalysts in the reactor and it is highly corrosive. Membrane separation processes for hydrogen purification may be employed as alternative for conventional methods such as adsorption, cryogenic distillation. Mixed matrix membranes (MMMs) are composed of an insoluble phase dispersed homogeneously in a continuous polymer matrix. They have potential in gas separation applications by combining the advantageous properties of both phases. The objective of this study is to produce neat polybenzimidazole (PBI) membranes and PBI based mixed matrix membranes for separation of H2/CO2. Furthermore, to test the gas permeation performance of the prepared membranes at permeation temperatures of 35oC to 90oC. Commercial PBI supplied from both Celanese and FumaTech were used as polymer matrix. PBI was selected based on its thermal, chemical stabilities and mechanical properties and its performance as a fuel-cell membrane produced by PBI. Micro-sized Zeolite 3A and nano-sized SAPO-34 are zeolites with 0.30 nm and 0.38 nm pore size respectively have attracted considerable interest and employed as fillers in this study. Commercial Zeolite 3A and synthesized SAPO-34 by our group was used throughout the study. Membranes were prepared using N,N-dimethylacetamide as the solvent. Prepared membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The effect of annealing procedure and operating temperature on gas separation performance of resultant neat PBI, PBI/Zeolite 3A and PBI/SAPO-34 membranes were investigated by gas permeation tests. Hydrogen and carbon dioxide gases were used for single gas permeation measurements. Two different annealing strategies were utilized namely in-line annealing and in-oven annealing. In-oven annealing was performed in an oven in nitrogen atmosphere at 120oC, 0.7 atm while in-line annealing was performed in the gas permeation set-up by feeding helium as permeating gas at 90oC and 3 bar. Neat PBI and PBI/ Zeolite 3A membranes were in-oven annealed. The in-oven annealed membranes showed better selectivities with lower permeabilities, but the performance results of these membranes had low repeatability. On the other hand, in-line annealed membranes showed much higher permeabilities and lower selectivities with stable performance. By changing the annealing method hydrogen permeability increased from 5.16 Barrer to almost 7.77 barrer for neat membranes and for PBI/Zeolite 3A mixed matrix membranes increased from 5.55 to to 7.69 Barrer at 35oC. The selectivities were decreased from 6.21 to 2.31 for neat membranes and for PBI/Zeolite 3A from 5.55 to 2.63. Effect of increasing operating temperature was investigated by using in-line annealed membranes. Increasing temperature from 35oC to 90o improved the performance of the both types of membranes and repeatable results were obtained. Besides neat PBI and PBI/Zeolite 3A, PBI/SAPO-34 membranes were prepared only via in-line annealing. The addition of nano-sized filer to the membranes provided homogeneous distribution in polymer matrix for PBI/SAPO-34 membranes. For this type of membrane hydrogen permeability increased from 8.01 to 26.73 Barrer and with no change in H2/CO2 selectivities via rising temperature. Consequently, it is better to study hydrogen and carbon dioxide separation at high temperature. For all types of membranes hydrogen showed higher activation energies. In between all membranes magnitude of activation energies were the highest for PBI/SAPO-34 membrane which is an indication of good interaction between polymer and zeolite interface. In-line annealed membranes gave the best gas permeation results by providing repeatability of measurements. Among all studied membranes in-line annealed PBI/SAPO-34 membrane exhibited the best gas permeation results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

GILLONO, MATTEO. „3D printable materials for CO2 capture and separation technologies“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2827712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Rada, Zana Hassan. „Adsorption of gases (CO2, CH4) using novel porous materials (MOFs)“. Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/1628.

Der volle Inhalt der Quelle
Annotation:
This research focuses on the synthesis, characterization, and capability of the metal organic frameworks (MOFs) as a candidate adsorbent for storage and separation of greenhouses gases. The performance and effectiveness of various synthesized MOFs were explored for the selectivity of CO2/N2 and CO2/CH4. The research contributes to the advances in synthesis of different MOFs and their application for gas uptake. This has potential advantages than other materials for future environmental science and materials applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Ferreira, Tiago Jorge. „Hybrid Ionic Liquids/Metal Organic Frameworks for CO2/CH4 Separation“. Master's thesis, 2017. http://hdl.handle.net/10362/24510.

Der volle Inhalt der Quelle
Annotation:
Nesta tese produziram-se nove novos materiais compósitos de ZIF-8, uma rede organometálica porosa (MOF), impregnado com diferentes líquidos iónicos (ILs). Estes novos compósitos, designados genericamente por IL@ZIF-8, foram preparados e caracterizados com o objetivo de serem considerados potenciais adsorventes a aplicar em processos de separação por adsorção, tais como o upgrading ou condicionamento de biogás a biometano. Numa primeira fase, a mesma quantidade molar de nove ILs diferentes foi incorporada na estrutura do ZIF-8, garantindo uma comparação válida entre as amostras. O efeito da incorporação do IL na capacidade de adsorção dos materiais compósitos foi estudado, bem como a influência do catião e do anião do IL na capacidade de adsorção de CO2 (dióxido de carbono) e CH4 (metano) e respetivo efeito na seletividade ideal CO2/CH4. A caracterização textural exaustiva a cada material compósito foi feita com recurso a picnometria de He, adsorção-dessorção de N2 a 77 K, difração de raios-X de pó (PXRD), espectroscopia de infravermelho com transformada de Fourier (FT-IR) e microscopia eletrónica de varrimento (SEM). Os resultados de equilíbrio de adsorção-dessorção de CO2 e CH4 nos compósitos mostram que o catião imidazólio com uma curta cadeia alquílica favorece a capacidade de adsorção para estes materiais. No entanto, quem tem um papel mais ativo de adsorção de gás é o anião e o melhor daqueles que foi testado é o acetato. Em termos de seletividade ideal CO2/CH4, em traços gerais, as amostras que capturaram menos gás são as mais seletivas. O compósito C10@ZIF-8 é o material mais seletivo entre 1 e 3 bar; de 4 a 16 bar, C2OH@ZIF-8 é o material mais seletivo, com ganhos médios de quase 25% na seletividade em comparação com o ZIF-8 puro. O compósito C6B(CN)4@ZIF-8 apresenta boa capacidade de adsorção de gás, tendo ao mesmo tempo uma boa seletividade CO2/CH4. O efeito da quantidade de IL impregnada (loading) foi também estudado. Novas amostras C2OH@ZIF-8 e C6B(CN)4@ZIF-8 foram produzidas com diferentes loadings e caraterizadas com as mesmas técnicas anteriormente mencionadas. Os resultados obtidos de equilíbrio de adsorção para estas amostras foram inconclusivos. Este trabalho abre assim as portas para um campo de investigação de novos materiais com resultados potencialmente interessantes em aplicações de adsorção, dada a multitude de ILs e MOFs existentes.
For this thesis nine new composite materials of ZIF-8, a porous organometallic network (MOF), impregnated with different ionic liquids (ILs) were produced. These new composites, generically named IL@ZIF-8, were prepared and characterized with the purpose of studying their potential use as adsorbents in adsorption separation processes such as biogas upgrading or biogas to biomethane conditioning. Firstly, the same molar amount of nine different ILs was incorporated in ZIF-8 structure, assuring a valid comparison among samples. IL impregnation effect on the adsorption capacity of the composite materials was studied, as well as the influence of the cation and anion of the IL on the adsorption capacity of CO2 (carbon dioxide) and CH4 (methane) and respective effect on ideal CO2/CH4 selectivity. An exhaustive textural characterization was performed for every composite, such as He pycnometry, N2 adsorption-desorption at 77 K, Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). CO2 and CH4 adsorption-desorption equilibria results indicate that the imidazolium cation with shorter alkyl chains favours the adsorption capacity for these materials. However, it is the anion that has the key role in adsorption capacity; of all tested, the best one was acetate. Generally speaking, CO2/CH4 ideal selectivities show that samples with less adsorption capacity are the most selective. C10@ZIF-8 composite is the most selective material between 1 and 3 bar; from 4 to 16 bar, C2OH@ZIF-8 is the most selective material, with average gains of almost 25% in selectivity when compared to pristine ZIF-8. C6B(CN)4@ZIF-8 presents good gas adsorption capacity, while at the same time showing good ideal CO2/CH4 selectivity. IL loading effect was also tested, with new C2OH@ZIF-8 and C6B(CN)4@ZIF-8 samples with different loadings being manufactured and texturally characterized by the above-mentioned techniques. Adsorption equilibria results for these new samples were inconclusive. This thesis opens new possibilities for the manufacture of good and selective adsorbent materials for adsorption applications, given the amount of existing MOFs and ILs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zafanelli, Lucas F. A. S. „Simulation of fixed bed and pressure swing adsorption processes for capture and separation of CO2/CH4/N2 mixtures“. Master's thesis, 2018. http://hdl.handle.net/10198/19538.

Der volle Inhalt der Quelle
Annotation:
Dupla diplomação UTFPR
Nowadays, several research and development efforts are devoted to find processes that can mitigate global warming. This phenomenon is caused by anthropogenic emissions of greenhouse gases, such as carbon dioxide and methane. In this way, adsorption processes are a promising alternative for capturing and separating greenhouse gases because it presents a lower energy cost, compared to other methods, and especially for the possibility of regenerating the adsorbent material without generating by-products. In addition, adsorption processes can be used for upgrading natural gas, a fuel with a low emission of carbon dioxide per kilowatt of energy produced. Thus, the main objective of this work was the development of an adsorption simulator to study the separation of CO2/CH4/N2 mixtures in a fixed bed including the conceptual design of a cyclic pressure swing adsorption (PSA) process for CO2 capture and purification. In order to achieve this objective, a mathematical model has been developed to describe the adsorption of mixtures in a fixed bed solved through numerical methods available in the literature. The numerical implementation was performed in MATLAB® simulation environment. The implemented model was tested and validated by simulating numerical examples of fixed bed adsorption available in the literature. Also, the model was used to fit experimental data collected at LSRE/CIMO-IPB concerning the CO2 adsorption in a fixed bed containing Activated Carbon derived from a municipal solid waste compost (AC-MSW). It was found, that the non-isothermal fixed bed adsorption model developed accurately described the experimental data. Finally, the thermodynamic and kinetic data collected from the best AC-MSW studied material was used to design a conceptual PSA unit using the numerical model and simulator developed. The conceptual PSA process was designed to capture carbon dioxide in a real post-combustion stream with data supplied by Persian Gulf Star Oil Company (PGSOC). Process performance parameters of the conceptual PSA simulated, indicate that is possible to achieve between 9.5-25% purity and high recovery of CO2 (above 87%) with the AC-MSW material, depending on the purge to feed ratio.
Atualmente, grandes esforços em pesquisa e desenvolvimento são destinados à busca de processos que possam mitigar o aquecimento global. Esse fenômeno é ocasionado por emissões antropogênicas de gases de efeito estufa, como o dióxido de carbono e o metano. Diante deste problema, o processo de adsorção é uma alternativa promissora para a captura e separação de gases do efeito estufa por apresentar menor custo energético, comparado a outros métodos, e especialmente, pela possibilidade de regenerar o material adsorvente sem gerar subprodutos. Além disso, a adsorção pode ser utilizada na purificação do gás natural, um combustível com baixa emissão de dióxido de carbono por kilowatt de energia produzida. Assim, o principal objetivo deste trabalho foi desenvolver um simulador do processo de adsorção para o estudo da separação de misturas CO2/CH4/N2 em leito fixo incluindo um projeto conceitual do processo cíclico de adsorção por oscilação de pressão (PSA) para captura e purificação de CO2. Para alcançar este objetivo, um modelo matemático que descreve a adsorção de misturas em leito fixo foi desenvolvido e resolvido aplicando-se métodos numéricos disponíveis na literatura. A implementação numérica foi realizada no ambiente de simulação MATLAB®. O modelo implementado foi testado e validado simulando exemplos numéricos disponíveis na literatura. Além disso, o modelo foi ajustado aos dados experimentais coletados no LSRE/CIMO-IPB sobre a adsorção de CO2 em leito fixo contendo Carbono Ativado derivado de compostos de resíduos sólidos urbanos (AC-MSW). Constatou-se que o modelo não isotérmico de adsorção em leito fixo descreveu com boa precisão os dados experimentais. Por fim, os dados termodinâmicos e cinéticos coletados do melhor material estudado de AC-MSW foram utilizados para projetar uma unidade conceitual PSA utilizando o modelo numérico desenvolvido. A unidade conceitual PSA foi projetado para capturar dióxido de carbono de um fluxo real de gases pós-combustão, com dados fornecidos pela empresa Persian Gulf Star Oil Company (PGSOC). Os parâmetros de desempenho do processo PSA simulado indicam que com o AC-MSW é possível obter uma pureza entre 9.5-25% e alta recuperação de CO2 (acima de 87%), dependendo da relação entre a purga e a alimentação.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie