Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Co system.

Zeitschriftenartikel zum Thema „Co system“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Co system" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Aurada, Klaus D. „Co-evolvierende + co-respondierende Systeme = co-operierendes System“. Erdkunde 57, Nr. 4 (2003): 308–29. http://dx.doi.org/10.3112/erdkunde.2003.04.05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ben Ayed, Mossaad, Ayman Massaoudi, Shaya A. Alshaya und Mohamed Abid. „System-level co-simulation for embedded systems“. AIP Advances 10, Nr. 3 (01.03.2020): 035113. http://dx.doi.org/10.1063/1.5140466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rice, Winston C. „Co‐linear loudspeaker system“. Journal of the Acoustical Society of America 92, Nr. 5 (November 1992): 3032. http://dx.doi.org/10.1121/1.404217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chan, Pak, und Vincent Fusco. „Co‐operating retrodirective system“. IET Microwaves, Antennas & Propagation 7, Nr. 3 (Februar 2013): 187–94. http://dx.doi.org/10.1049/iet-map.2012.0409.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Muttillo, Vittoriano, Luigi Pomante, Marco Santic und Giacomo Valente. „System C-based Co-Simulation/Analysis for System-Level Hardware/Software Co-Design“. Computers and Electrical Engineering 110 (September 2023): 108803. http://dx.doi.org/10.1016/j.compeleceng.2023.108803.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ha, Yeon Chul, und Jung Kwan Seo. „Applicability of CO₂ Extinguishing System for Ships“. Journal of the Society of Naval Architects of Korea 54, Nr. 4 (31.08.2017): 294–300. http://dx.doi.org/10.3744/snak.2017.54.4.294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Burenin, A. V. „The CO-CO dimer as a nonrigid molecular system“. Optics and Spectroscopy 95, Nr. 2 (August 2003): 192–200. http://dx.doi.org/10.1134/1.1604424.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dong, Wei-Ping, Hyun-Kyu Kim, Won-Seok Ko, Byeong-Moon Lee und Byeong-Joo Lee. „Atomistic modeling of pure Co and Co–Al system“. Calphad 38 (September 2012): 7–16. http://dx.doi.org/10.1016/j.calphad.2012.04.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Arai, Tsunenori, Kyoichi Mizuno, Makoto Kikuchi, Akira Kurita, Kiyoshi Takeuchi, Atsushi Utsumi und Yoshiro Akai. „CO Laser Angioplasty: System Operation“. JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 13, Supplement (1992): 511–14. http://dx.doi.org/10.2530/jslsm1980.13.supplement_511.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Konyk, M. B., und O. I. Bodak. „Ternary Ce–Co–Ge system“. Journal of Alloys and Compounds 267, Nr. 1-2 (März 1998): 189–91. http://dx.doi.org/10.1016/s0925-8388(97)00546-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Romaka, L., Yu V. Stadnyk und O. I. Bodak. „Ternary Hf–Co–Sn system“. Journal of Alloys and Compounds 317-318 (April 2001): 347–49. http://dx.doi.org/10.1016/s0925-8388(00)01428-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Park, H. R., Yu M. Lugovoi, A. Nikiforov und N. Getoff. „Radiolysis of cyclohexine/CO system“. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 37, Nr. 3 (Januar 1991): 469–72. http://dx.doi.org/10.1016/1359-0197(91)90020-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bitzer, Matthias, Martin Herrmann und Eckart Mayer-John. „System Co-Design (SCODE): Methodik zur Analyse hybrider Systeme“. at - Automatisierungstechnik 67, Nr. 9 (25.09.2019): 739–50. http://dx.doi.org/10.1515/auto-2019-0003.

Der volle Inhalt der Quelle
Annotation:
Zusammenfassung Die zunehmende Komplexität von regelungstechnischer Funktionalität und deren Umsetzung in Software erfordert eine Systematik zur Integration von systemtheoretischen als auch softwaretechnischen Vorgehensweisen. Die vorgestellte SCODE-Methode zielt auf eine systematische Herleitung von Betriebsmodi und Verifikation aller für den Funktionsentwurf relevanten logischen Zusammenhänge im Sinne einer „Essentiellen Analyse“ für mechatronische Systeme. Der Nutzen einer systematischen modularen Strukturierung ist neben garantierter (logischer) Vollständigkeit und Konsistenz durch eine damit einhergehende Komplexitätsreduktion sowie bessere Wartbarkeit und Testbarkeit gegeben. Der Artikel beschreibt die Methode anhand eines mechatronischen Beispiels, zeigt ihren Nutzen auf und stellt die vorhandene Toolunterstützung vor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Oin Ge, Wei, Chang Heng Wu und Yu Chi Chuang. „Re-Investigation of the Gd - Co Binary System / Untersuchungen im binären System Gd —- Co“. International Journal of Materials Research 83, Nr. 5 (01.05.1992): 300–303. http://dx.doi.org/10.1515/ijmr-1992-830503.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Liu, Rongrong, Xiaoting Meng, Xiyao Yu, Guoqiang Wang, Zhiyong Dong, Zhengjie Zhou, Mingran Qi, Xiao Yu, Tong Ji und Fang Wang. „From 2D to 3D Co-Culture Systems: A Review of Co-Culture Models to Study the Neural Cells Interaction“. International Journal of Molecular Sciences 23, Nr. 21 (28.10.2022): 13116. http://dx.doi.org/10.3390/ijms232113116.

Der volle Inhalt der Quelle
Annotation:
The central nervous system (CNS) controls and regulates the functional activities of the organ systems and maintains the unity between the body and the external environment. The advent of co-culture systems has made it possible to elucidate the interactions between neural cells in vitro and to reproduce complex neural circuits. Here, we classified the co-culture system as a two-dimensional (2D) co-culture system, a cell-based three-dimensional (3D) co-culture system, a tissue slice-based 3D co-culture system, an organoid-based 3D co-culture system, and a microfluidic platform-based 3D co-culture system. We provide an overview of these different co-culture models and their applications in the study of neural cell interaction. The application of co-culture systems in virus-infected CNS disease models is also discussed here. Finally, the direction of the co-culture system in future research is prospected.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Fernändez Guillermet, Armando. „Thermodynamic Properties of the Fe-Co-C System / Thermodynamische Eigenschaften des Systems Fe-Co-C“. International Journal of Materials Research 79, Nr. 5 (01.05.1988): 317–29. http://dx.doi.org/10.1515/ijmr-1988-790508.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Szűcs, Gábor. „Co-operative Transport System and investigation of the co-operation“. Periodica Polytechnica Transportation Engineering 37, Nr. 1-2 (2009): 23. http://dx.doi.org/10.3311/pp.tr.2009-1-2.04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Sakai, Seiji, Kay Yakushiji, Seiji Mitani, Koki Takanashi, Hiroshi Naramoto, Pavel V. Avramov, Kazumasa Narumi, Vasily Lavrentiev und Yoshihito Maeda. „Tunnel magnetoresistance in Co nanoparticle/Co–C60 compound hybrid system“. Applied Physics Letters 89, Nr. 11 (11.09.2006): 113118. http://dx.doi.org/10.1063/1.2354035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Naik, S. J., und A. V. Salker. „Mechanistic approach of CO oxidation over Cu1−Co WO4 system“. Catalysis Communications 10, Nr. 6 (Februar 2009): 884–88. http://dx.doi.org/10.1016/j.catcom.2008.12.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hari Kumar, K. C., T. Van Rompaey und P. Wollants. „Thermodynamic calculation of the phase diagram of the Co–Nb–Ta system“. International Journal of Materials Research 93, Nr. 11 (01.11.2002): 1146–53. http://dx.doi.org/10.1515/ijmr-2002-0196.

Der volle Inhalt der Quelle
Annotation:
Abstract A thermodynamic description of the ternary system Co–Nb–Ta is obtained by combining the descriptions of the lower-order systems according to the CALPHAD method. The thermodynamic data set for the binary Co–Nb system is taken from [1], where a new thermodynamic model for the μ-phase was introduced. The μ-phase appears in several transition metal systems, including Co–Ta. The model is applied to the Co–Ta system and extended to the ternary Co–Nb–Ta system. The thermodynamic descriptions of the systems Co–Ta, Nb–Ta and Co–Nb–Ta are reported in the present work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Tollár, Gábor, und Tamás Kégl. „Computational Study on the Intramolecular Carbene-CO Coupling in M(CH2)(CO)3 Radicals (M = Co, Rh, Ir)“. Journal of Inorganic Chemistry 2013 (29.12.2013): 1–6. http://dx.doi.org/10.1155/2013/149425.

Der volle Inhalt der Quelle
Annotation:
The intramolecular carbene-carbonyl coupling has been investigated for the simple M(CH2)(CO)3 (M = Co, Rh, Ir) radical complexes at the DFT PBEPBE/TZVP level of theory. The coupling is predicted to be very fast for the cobalt-containing system, but it is still feasible for the systems based on the other two metals. The back-way reaction, that is, the conversion of the ketene complex into carbonyl-carbene complex, cannot be excluded from the Ir-containing system in CH2Cl2, and it is even favored in gas phase. The intermolecular ketene formation by the addition of external CO onto the CH2 moiety is the favored pathway for the Ir-complex. The Laplacian distribution, as well as the natural spin density distribution of all the species, being involved in the reaction, gives explanation for the significant difference between the nature of the Co-complex and the Rh- and Ir-systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Zhong, Shuheng, und Dan Lin. „Evaluation of the Coordination Degree of Coal and Gas Co-Mining System Based on System Dynamics“. Sustainability 14, Nr. 24 (08.12.2022): 16434. http://dx.doi.org/10.3390/su142416434.

Der volle Inhalt der Quelle
Annotation:
Coal and gas co-mining is one of the green mining technologies in coal mines. Coal and gas co-mining can reduce environmental pollution and supply-side carbon emissions from the coal industry. It has an important role to play in achieving the goal of carbon peaking and carbon neutrality. The perfect state of safety production and economic efficiency is a “win-win” situation. Therefore, it is of great theoretical and practical importance to evaluate the safety and economic coordination of coal and gas co-mining systems. This study used a system dynamics approach to analyze and evaluate the coordination of coal and gas co-mining systems in a dynamic simulation. A case study was conducted using the Zhuxianzhuang coal mine as an example. The results showed that the coordination degree of the coal and gas co-mining system exhibited dynamic changes. The average value of the system coordination degree is 0.790, which is a good coordination degree. This demonstrates that the system dynamics method is feasible for evaluating the coordination degree of the coal and gas co-mining system. The system dynamics evaluation model can effectively simulate the dynamic changes of different variable factors in the co-mining system. Therefore, these research results can provide corresponding optimization recommendations for practical production needs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Balandin, Sergey, Michel Gillet, Irina Lavrovskaya, Valentin Olenev, Alexey Rabin und Alexander Stepanov. „Co-Modeling of Embedded Networks Using SystemC and SDL“. International Journal of Embedded and Real-Time Communication Systems 2, Nr. 1 (Januar 2011): 23–48. http://dx.doi.org/10.4018/jertcs.2011010102.

Der volle Inhalt der Quelle
Annotation:
Today, SDL and SystemC are two very popular languages for embedded systems modeling. SDL has specific advanced features that make it good for reflection of the multi-object systems and interactions between modules. It is also good for system model validation. The SystemC models are better suitable for tracing internal functions of the modeled modules. The hypothetical possibility of combined use of these two languages promises a number of benefits for researchers. This article specifically addresses and discusses the integration of SDL and SystemC modeling environments, exchange the data and control information between the SDL and SystemC sub-modules and the real-time co-modeling aspects of the integrated SDL/SystemC system. As a result, the mechanisms of SDL/SystemC co-modeling is presented and illustrated for an embedded network protocols co-modeling case study. The article gives an overview and description of a co-modeling solution for embedded networks protocols simulation based on experience and previous publications and research.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Odaira, Takashi. „Daylighting System in Akada Industries Co.“ JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 82, Nr. 9 (1998): 759–60. http://dx.doi.org/10.2150/jieij1980.82.9_759.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Pahomov, O. „The system of regional co-governance“. NEW UNIVERSITY: TOPICAL ISSUES OF HUMANITIES AND SOCIAL SCIENCES, Nr. 5-6 (30.06.2014): 44–49. http://dx.doi.org/10.15350/2222-1484.2014.5-6.00088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Wu, Chang-heng, Yu-chih Chuang, Xi-mei Jin und Xiao-hua Guan. „Reinvestigation of the Ce-Co System“. International Journal of Materials Research 82, Nr. 8 (01.08.1991): 621–25. http://dx.doi.org/10.1515/ijmr-1991-820806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

TADAKAWA, Akira. „Co-Generation System in Kori Mine“. Shigen-to-Sozai 122, Nr. 12 (2006): 646–49. http://dx.doi.org/10.2473/shigentosozai.122.646.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Rothkrantz, Leon, Madalina Toma und Mirela Popa. „AN INTELLIGENT CO-DRIVER SURVEILLANCE SYSTEM“. Acta Polytechnica CTU Proceedings 12 (15.12.2017): 83. http://dx.doi.org/10.14311/app.2017.12.0083.

Der volle Inhalt der Quelle
Annotation:
In recent years many car manufacturers developed digital co-drivers , which are able to monitor the driving behaviour of a car. Sensors in the car measure if a car passes speed limits, leaves its lane, or violates other traffic rules. A new generation of co-drivers is based on sensors in the car which are able to monitor the driver behaviour. Driving a car is a sequence of actions. In case a driver doesn’t show one of the actions the co-driver generates a warning signal. Experiments in the car simulator TORC were performed to extract the actions of a car driver. These actions were used to develop probabilistic models of the driving behaviour. A prototype of a warning system has been developed and tested in the car simulator. The experiments and test results will be reported in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Garfield, Joy, und Pericles Loucopoulos. „Requirements elaboration for system co-development“. Ingénierie des systèmes d'information 14, Nr. 4 (28.08.2009): 77–98. http://dx.doi.org/10.3166/isi.14.4.77-98.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Etien, Anne. „Business process/information system co-evolution“. Ingénierie des systèmes d'information 14, Nr. 6 (14.12.2009): 41–57. http://dx.doi.org/10.3166/isi.14.6.41-57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Damsgaard, Jan. „Global Logistics System Asia Co., Ltd“. Journal of Information Technology 14, Nr. 3 (September 1999): 303–14. http://dx.doi.org/10.1080/026839699344601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Dekkers, R. „Distributed Manufacturing as co-evolutionary system“. International Journal of Production Research 47, Nr. 8 (27.02.2009): 2031–54. http://dx.doi.org/10.1080/00207540802350740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Furuya, Tai, und Tomonari Ito. „Co-generation system of Micro-gasturbine“. Proceedings of the National Symposium on Power and Energy Systems 2002.8 (2002): 27–30. http://dx.doi.org/10.1299/jsmepes.2002.8.27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

BURCHETT, K. R., und J. A. BENNETT. „A new co-axial breathing system“. Anaesthesia 40, Nr. 2 (22.02.2007): 181–87. http://dx.doi.org/10.1111/j.1365-2044.1985.tb10712.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Skolozdra, R. V., Ya S. Mudryk und L. P. Romaka. „The ternary Er–Co–Sn system“. Journal of Alloys and Compounds 296, Nr. 1-2 (Januar 2000): 290–92. http://dx.doi.org/10.1016/s0925-8388(99)00545-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Majdan, Marek, und Paweł Sadowski. „Extraktionsgleichgewichte im System Co,Ni(SCN)“. Monatshefte fuer Chemie/Chemical Monthly 129, Nr. 6 (1998): 607. http://dx.doi.org/10.1007/s007060050080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Gignoux, D., R. Lemaire, R. Mendia-Monterroso, J. M. Moreau und J. Schweizer. „Antiferromagnetism in the La-Co system“. Physica B+C 130, Nr. 1-3 (Mai 1985): 376–78. http://dx.doi.org/10.1016/0378-4363(85)90261-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ishida, K., T. Nishizawa und M. E. Schlesinger. „The Co-Si (Cobalt-Silicon) system“. Journal of Phase Equilibria 12, Nr. 5 (Oktober 1991): 578–86. http://dx.doi.org/10.1007/bf02645074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Wu, C. H., und Y. C. Chuang. „The Co-Y (Cobalt-Yttrium) system“. Journal of Phase Equilibria 12, Nr. 5 (Oktober 1991): 587–92. http://dx.doi.org/10.1007/bf02645075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ishida, K., und T. Nishizawa. „The C-Co(Carbon-Cobalt) system“. Journal of Phase Equilibria 12, Nr. 4 (August 1991): 417–24. http://dx.doi.org/10.1007/bf02645959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ishida, K., und T. Nishizawa. „The Co-Hf (Cobalt-Hafnium) system“. Journal of Phase Equilibria 12, Nr. 4 (August 1991): 424–27. http://dx.doi.org/10.1007/bf02645960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Karakaya, I., und W. T. Thompson. „The Ag−Co (Silver-Cobalt) system“. Bulletin of Alloy Phase Diagrams 7, Nr. 3 (Juni 1986): 259–63. http://dx.doi.org/10.1007/bf02869002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Nayeb-Hashemi, A. A., und J. B. Clark. „The Co-Mg (Cobalt-Magnesium) system“. Bulletin of Alloy Phase Diagrams 8, Nr. 4 (August 1987): 352–55. http://dx.doi.org/10.1007/bf02869272.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Okamoto, H., T. B. Massalski, T. Nishizawa und M. Hasebe. „The Au-Co (Gold-Cobalt) system“. Bulletin of Alloy Phase Diagrams 6, Nr. 5 (Oktober 1985): 449–54. http://dx.doi.org/10.1007/bf02869509.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Smith, J. F. „The Co-V (Cobalt-Vanadium) System“. Journal of Phase Equilibria 12, Nr. 3 (Juni 1991): 324–31. http://dx.doi.org/10.1007/bf02649921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

McAlister, A. J. „The Al-Co (Aluminum-Cobalt) system“. Bulletin of Alloy Phase Diagrams 10, Nr. 6 (Dezember 1989): 646–50. http://dx.doi.org/10.1007/bf02877635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Ishida, K., und T. Nishizawa. „The Co-Ge (Cobalt-Germanium) System“. Journal of Phase Equilibria 12, Nr. 1 (Februar 1991): 77–83. http://dx.doi.org/10.1007/bf02663679.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ishida, K., und T. Nishizawa. „The Co-Pd (Cobalt-Palladium) System“. Journal of Phase Equilibria 12, Nr. 1 (Februar 1991): 83–87. http://dx.doi.org/10.1007/bf02663680.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Ishida, K., und T. Nishizawa. „The Co-Sn (Cobalt-Tin) System“. Journal of Phase Equilibria 12, Nr. 1 (Februar 1991): 88–93. http://dx.doi.org/10.1007/bf02663681.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Corni, F., R. Tonini, G. Ottaviani, S. Alberici, D. Erbetta und T. Marangon. „Phase formations in Co–Silicon system“. Microelectronic Engineering 76, Nr. 1-4 (Oktober 2004): 343–48. http://dx.doi.org/10.1016/j.mee.2004.07.038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie