Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CO₂ detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CO₂ detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CO₂ detection"
Langenfeld-Heyser, R., Bruno Schella, Kirsten Buschmann und Frieder Speck. „Microautoradiographic detection of CO“. Trees 10, Nr. 4 (1996): 255. http://dx.doi.org/10.1007/s004680050031.
Der volle Inhalt der QuelleFu, Huazhu, Xiaochun Cao und Zhuowen Tu. „Cluster-Based Co-Saliency Detection“. IEEE Transactions on Image Processing 22, Nr. 10 (Oktober 2013): 3766–78. http://dx.doi.org/10.1109/tip.2013.2260166.
Der volle Inhalt der QuellePardo Pedraza, Diana. „Sensory Co-laboring“. Environmental Humanities 15, Nr. 3 (01.11.2023): 30–51. http://dx.doi.org/10.1215/22011919-10745968.
Der volle Inhalt der QuelleLu, Xiaofei, Jingjing Jia, Zonghua Wang und Wenjing Wang. „MXene/Carbon Dots Nanozyme Composites for Glutathione Detection and Tumor Therapy“. Nanomaterials 14, Nr. 13 (25.06.2024): 1090. http://dx.doi.org/10.3390/nano14131090.
Der volle Inhalt der QuelleYANG Ming-yu, 杨名宇. „Detecting of photoelectric peeping devices based on active laser detection“. Chinese Optics 8, Nr. 2 (2015): 255–62. http://dx.doi.org/10.3788/co.20150802.0255.
Der volle Inhalt der QuelleDananché, Cédric, Gláucia Paranhos-Baccalà, Mélina Messaoudi, Mariam Sylla, Shally Awasthi, Ashish Bavdekar, Jean-William Pape et al. „Nasopharyngeal Viral and Bacterial Co-Detection among Children from Low- and Middle-Income Countries with and without Pneumonia“. American Journal of Tropical Medicine and Hygiene 106, Nr. 4 (06.04.2022): 1086–93. http://dx.doi.org/10.4269/ajtmh.21-0980.
Der volle Inhalt der QuelleYe, Linwei, Zhi Liu, Junhao Li, Wan-Lei Zhao und Liquan Shen. „Co-Saliency Detection via Co-Salient Object Discovery and Recovery“. IEEE Signal Processing Letters 22, Nr. 11 (November 2015): 2073–77. http://dx.doi.org/10.1109/lsp.2015.2458434.
Der volle Inhalt der QuelleProbst, Varvara, Bhinnata Piya, Laura Stewart, Susan Gerber, Brian Rha, Joana Yu, Suman Das, Angela P. Campbell, John V. Williams und Natasha B. Halasa. „741. Impact of Adenovirus Co-detections on Illness Severity“. Open Forum Infectious Diseases 5, suppl_1 (November 2018): S266. http://dx.doi.org/10.1093/ofid/ofy210.748.
Der volle Inhalt der QuelleEncrenaz, Th, E. Lellouch, P. Drossart, H. Feuchtgruber, G. S. Orton und S. K. Atreya. „First detection of CO in Uranus“. Astronomy & Astrophysics 413, Nr. 2 (18.12.2003): L5—L9. http://dx.doi.org/10.1051/0004-6361:20034637.
Der volle Inhalt der QuelleBeheshtian, Javad, Zargham Bagheri, Mohammad Kamfiroozi und Ali Ahmadi. „Toxic CO detection by B12N12 nanocluster“. Microelectronics Journal 42, Nr. 12 (Dezember 2011): 1400–1403. http://dx.doi.org/10.1016/j.mejo.2011.10.010.
Der volle Inhalt der QuelleDissertationen zum Thema "CO₂ detection"
Li, Yuan. „Multiuser Detection for Co-channel Interference Cancellation“. 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/180902.
Der volle Inhalt der QuelleHogan, Justin Allan. „Multi-spectral imaging of vegetation for COâ‚‚ leak detection“. Thesis, Montana State University, 2011. http://etd.lib.montana.edu/etd/2011/hogan/HoganJ0511.pdf.
Der volle Inhalt der QuelleZavala, Martin. „Autonomous detection and characterization of nuclear materials using co-robots“. Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55052.
Der volle Inhalt der QuelleChen, Yi-Ching. „Co-design of Fault-Tolerant Systems with Imperfect Fault Detection“. Thesis, Linköpings universitet, Programvara och system, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-104942.
Der volle Inhalt der QuelleSahin, Mustafa. „Baseband receiver algorithms for 4G co-channel femtocells“. [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003283.
Der volle Inhalt der QuelleRosso, Kevin M. „Detection limits of CO₂in fluid inclusions using microthermometry and Raman spectroscopy and the spectroscopic characterization of CO₂“. Thesis, Virginia Tech, 1994. http://hdl.handle.net/10919/40534.
Der volle Inhalt der QuelleMaster of Science
Rosso, Kevin Michael. „Detection limits of CO₂ in fluid inclusions using microthermometry and Raman spectroscopy and the spectroscopic characterization of CO₂ /“. This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-01052009-091123/.
Der volle Inhalt der QuelleRaisi, Elaheh. „Weakly Supervised Machine Learning for Cyberbullying Detection“. Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/89100.
Der volle Inhalt der QuelleDoctor of Philosophy
Social media has become an inevitable part of individuals social and business lives. Its benefits, however, come with various negative consequences such as online harassment, cyberbullying, hate speech, and online trolling especially among the younger population. According to the American Academy of Child and Adolescent Psychiatry,1 victims of bullying can suffer interference to social and emotional development and even be drawn to extreme behavior such as attempted suicide. Any widespread bullying enabled by technology represents a serious social health threat. In this research, we develop automated, data-driven methods for harassment-based cyberbullying detection. The availability of tools such as these can enable technologies that reduce the harm and toxicity created by these detrimental behaviors. Our general framework is based on consistency of two detectors that co-train one another. One learner identifies bullying incidents by examining the language content in the message; another learner considers social structure to discover bullying. When designing the general framework, we address three tasks: First, we use machine learning with weak supervision, which significantly alleviates the need for human experts to perform tedious data annotation. Second, we incorporate the efficacy of distributed representations of words and nodes such as deep, nonlinear models in the framework to improve the predictive power of models. Finally, we decrease the sensitivity of the framework to language describing particular social groups including race, gender, religion, and sexual orientation. This research represents important steps toward improving technological capability for automatic cyberbullying detection.
Haddad, Lema. „New approaches to co-segregation studies and mutation detection in familial hypercholesterolaemia“. Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286402.
Der volle Inhalt der QuelleDoblas, Jiménez David. „Exploration and detection of ultra-traces of explosives by chip calorimetry“. Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE017/document.
Der volle Inhalt der QuelleBeing able to sense the minuscule amounts of energetic materials is crucial in the context of the fight against terrorism. Apart from the methods of detection of EM, which are specific to the chemical structure, one could use the enthalpy variations of the EM decomposition process for their detection by means of thermal analysis. However, the sensitivity of classical methods would be still insufficient to sense particles in the nanogram range. By contrast, the recently developed technique of chip calorimetry is perfectly suited for characterizing small amounts of samples and is therefore fully adequate for this task.In order to explore the possibilities of detection and identification of solid micro-particles of EM with thermal analysis, we discuss on the protocols optimized for the detection and identification of nanogram-size particles of EM and its mixtures with the chip calorimeter accessory. The results obtained on pure EM and its mixtures show that the detection threshold can be put at approximately several hundred picograms. The experiments were completed by the in-situ structural analysis using a combination with nanofocus synchrotron XRD
Bücher zum Thema "CO₂ detection"
Mulligan, Carol Heather. The detection and toxicological evaluation of polluting inputs to the lower river Faughan Co. Londonderry. [s.l: The Author], 1993.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Comparison of 2 [micron]m Ho and 10 [micron]m CO lidar for atmospheric backscatter and Doppler windshear detection: Progress report. Tampa, Fla: Dept. of Physics, University of South Florida, 1991.
Den vollen Inhalt der Quelle findenOctavia, Camps, und United States. National Aeronautics and Space Administration., Hrsg. Detection of obstacles in monocular image sequences: Final technical report for NASA co-operative research agreement number NCC 2-916, "A vision-based obstacle detection system for aircraft navigation," period of grant--August 1, 1995 to July 31, 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenGreat Britain. Department of the Environment, Transport and the Regions., Hrsg. A low-cost on-line steam leak detection sysytem: Holroyd Instruments Ltd, University of Sunderland, Allen Consultant Engineering Co Ltd, National Power plc, Cleveland Potash Ltd. Garston: BRECSU, 1999.
Den vollen Inhalt der Quelle findenResearch Co-ordination Meeting on the Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops (3rd 1997 Mumbai, India). Use of novel DNA fingerprinting techniques for the detection and characterization of genetic variation in vegetatively propagated crops: Proceedings of a final Research Co-ordination Meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and held in Mumbai, India, 24-28 February 1997. Vienna, Austria: International Atomic Energy Agency, 1998.
Den vollen Inhalt der Quelle findenSpenneberg, Ralf. Intrusion Detection und Prevention mit Snort 2 & Co. Addison Wesley Verlag, 2004.
Den vollen Inhalt der Quelle findenHaroon, Muhammad. Co-morbidities. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198737582.003.0015.
Der volle Inhalt der QuelleNon Co-Operative Detection of LPI/LPD Signals Via Cyclic Spectral Analysis. Storming Media, 1999.
Den vollen Inhalt der Quelle findenDetection of obstacles in monocular image sequences: Final technical report for NASA co-operative research agreement number NCC 2-916, "A vision-based obstacle detection system for aircraft navigation," period of grant--August 1, 1995 to July 31, 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenProbability of Symbol Error for Coherent and Non-Coherent Detection of M-ary Frequency-Shift Keyed (MFSK) Signals Affected by Co-Channel Interference and Additive White Gaussian Noise (AWGN) in a. Storming Media, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "CO₂ detection"
Bao, Sid Yingze, Yu Xiang und Silvio Savarese. „Object Co-detection“. In Computer Vision – ECCV 2012, 86–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33718-5_7.
Der volle Inhalt der QuelleZhang, Zhao, Wenda Jin, Jun Xu und Ming-Ming Cheng. „Gradient-Induced Co-Saliency Detection“. In Computer Vision – ECCV 2020, 455–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58610-2_27.
Der volle Inhalt der Quelleİnci, Mehmet Sinan, Berk Gulmezoglu, Thomas Eisenbarth und Berk Sunar. „Co-location Detection on the Cloud“. In Constructive Side-Channel Analysis and Secure Design, 19–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43283-0_2.
Der volle Inhalt der QuellePapalexakis, Evangelos E., Alex Beutel und Peter Steenkiste. „Network Anomaly Detection Using Co-clustering“. In Encyclopedia of Social Network Analysis and Mining, 1–17. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4614-7163-9_354-1.
Der volle Inhalt der QuellePapalexakis, Evangelos E., Alex Beutel und Peter Steenkiste. „Network Anomaly Detection Using Co-clustering“. In Encyclopedia of Social Network Analysis and Mining, 1054–68. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6170-8_354.
Der volle Inhalt der QuellePapalexakis, Evangelos E., Alex Beutel und Peter Steenkiste. „Network Anomaly Detection Using Co-clustering“. In Encyclopedia of Social Network Analysis and Mining, 1501–16. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7131-2_354.
Der volle Inhalt der QuelleLi, Bo, Zhengxing Sun, Jiagao Hu und Junfeng Xu. „Co-saliency Detection via Sparse Reconstruction and Co-salient Object Discovery“. In Advances in Multimedia Information Processing – PCM 2017, 222–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77383-4_22.
Der volle Inhalt der QuelleGhidoni, Stefano, Arrigo Guizzo und Emanuele Menegatti. „Crowd Detection Based on Co-occurrence Matrix“. In Biologically Inspired Cognitive Architectures 2012, 145–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34274-5_28.
Der volle Inhalt der QuelleLei, Zhengchao, Weiyan Chai, Sanyuan Zhao, Hongmei Song und Fengxia Li. „Co-saliency Detection Based on Siamese Network“. In Communications in Computer and Information Science, 99–109. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8890-2_8.
Der volle Inhalt der QuelleMetin, Senem Kumova. „Standard Co-training in Multiword Expression Detection“. In Intelligent Human Computer Interaction, 178–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72038-8_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CO₂ detection"
Ding, Chuang, Yang Wu, Huihui Song, Kaihua Zhang, Xu Zhang und Zhenhua Guo. „Language-Guided Semantic Alignment for Co-saliency Detection“. In 2024 IEEE International Conference on Multimedia and Expo (ICME), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icme57554.2024.10687964.
Der volle Inhalt der QuelleLebedeva, E. D., A. M. Buryakov, P. Yu Avdeev und A. V. Gorbatova. „INVESTIGATION OF THZ RADIATION PARAMETERS IN CO/WSE2 AND CO/IRMN3 STRUCTURES“. In Terahertz and Microwave Radiation: Generation, Detection and Applications (ТЕRА-2023). Moscow: Our Style, 2023. http://dx.doi.org/10.59043/9785604953914_106_1.
Der volle Inhalt der QuelleGuo, Xin, Dong Liu, Brendan Jou, Mojun Zhu, Anni Cai und Shih-Fu Chang. „Robust Object Co-detection“. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2013. http://dx.doi.org/10.1109/cvpr.2013.412.
Der volle Inhalt der QuelleChen, Hwann-Tzong. „Preattentive co-saliency detection“. In 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5650014.
Der volle Inhalt der QuelleXie, Yufeng, Linwei Ye, Zhi Liu und Xuemei Zou. „Video co-saliency detection“. In Eighth International Conference on Digital Image Processing (ICDIP 2016), herausgegeben von Charles M. Falco und Xudong Jiang. SPIE, 2016. http://dx.doi.org/10.1117/12.2245113.
Der volle Inhalt der QuelleGai, Tianyang, Tong Qu, Xiaojing Su, Shuhan Wang, Lisong Dong, Libin Zhang, Rui Chen, Yajuan Su, Yayi Wei und Tianchun Ye. „Multi-level layout hotspot detection based on multi-classification with deep learning“. In Design-Technology Co-optimization XV, herausgegeben von Chi-Min Yuan und Ryoung-Han Kim. SPIE, 2021. http://dx.doi.org/10.1117/12.2583726.
Der volle Inhalt der QuelleYang, Haoyu, Piyush Pathak, Frank E. Gennari, Ya-Chieh Lai und Bei Yu. „Hotspot detection using squish-net“. In Design-Process-Technology Co-optimization for Manufacturability XIII, herausgegeben von Jason P. Cain und Chi-Min Yuan. SPIE, 2019. http://dx.doi.org/10.1117/12.2515172.
Der volle Inhalt der QuelleHsu, Kuang-Jui, Yen-Yu Lin und Yung-Yu Chuang. „DeepCO3: Deep Instance Co-Segmentation by Co-Peak Search and Co-Saliency Detection“. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00905.
Der volle Inhalt der QuelleYu, Heng, Ying Lu, Cong Yu, Hongya Zhao und Lei Wang. „Co-Occurrence Morphological Edge Detection“. In 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2019. http://dx.doi.org/10.1109/ithings/greencom/cpscom/smartdata.2019.00086.
Der volle Inhalt der QuelleWei, Lina, Shanshan Zhao, Omar El Farouk Bourahla, Xi Li und Fei Wu. „Group-wise Deep Co-saliency Detection“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/424.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "CO₂ detection"
Wigley, T. M. L., und P. D. Jones. Detection of CO sub 2 -Induced climatic change. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5721338.
Der volle Inhalt der QuelleWigley, T., und P. Jones. Detection of CO sub 2 -induced climatic change. Office of Scientific and Technical Information (OSTI), Juli 1990. http://dx.doi.org/10.2172/6371968.
Der volle Inhalt der QuelleAlonso, Jesus. Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of CO2. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1245137.
Der volle Inhalt der QuelleHanson, Ronald K. Novel Extended-Wavelength Diode Lasers to Enable Sensitive Detection of CO and NOx. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada383138.
Der volle Inhalt der QuelleSinclair, Michael B., Jeb Hunter Flemming, Raymond Blair und Kent Bryant Pfeifer. Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer. Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/903153.
Der volle Inhalt der QuelleSun, Alexander. Pressure-Based Inversion and Data Assimilation System (PIDAS) for CO2 Leakage Detection. Office of Scientific and Technical Information (OSTI), Dezember 2018. http://dx.doi.org/10.2172/1494374.
Der volle Inhalt der QuelleYang, X., T. A. Buscheck, K. Mansoor und S. A. Carroll. Likelihood of Brine and CO2 Leak Detection using Magnetotellurics and Electrical Resistivity Tomography Methods. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1393348.
Der volle Inhalt der QuelleHaider, Huma. Malaria, HIV and TB in Nigeria: Epidemiology and Disease Control Challenges. Institute of Development Studies (IDS), Dezember 2021. http://dx.doi.org/10.19088/k4d.2022.040.
Der volle Inhalt der QuelleDeschamps, Henschel und Robert. PR-420-123712-R01 Lateral Ground Movement Detection Capabilities Derived from Synthetic Aperture Radar. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2014. http://dx.doi.org/10.55274/r0010831.
Der volle Inhalt der QuelleKamrath, Matthew, Vladimir Ostashev, D. Wilson, Michael White, Carl Hart und Anthony Finn. Vertical and slanted sound propagation in the near-ground atmosphere : amplitude and phase fluctuations. Engineer Research and Development Center (U.S.), Mai 2021. http://dx.doi.org/10.21079/11681/40680.
Der volle Inhalt der Quelle