Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Clustering 3D“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Clustering 3D" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Clustering 3D"
Manjunath, Mohith, Yi Zhang, Yeonsung Kim, Steve H. Yeo, Omar Sobh, Nathan Russell, Christian Followell, Colleen Bushell, Umberto Ravaioli und Jun S. Song. „ClusterEnG: an interactive educational web resource for clustering and visualizing high-dimensional data“. PeerJ Computer Science 4 (21.05.2018): e155. http://dx.doi.org/10.7717/peerj-cs.155.
Der volle Inhalt der QuelleLin, Guoting, Zexun Zheng, Lin Chen, Tianyi Qin und Jiahui Song. „Multi-Modal 3D Shape Clustering with Dual Contrastive Learning“. Applied Sciences 12, Nr. 15 (22.07.2022): 7384. http://dx.doi.org/10.3390/app12157384.
Der volle Inhalt der QuelleSoliman, Mona M., Aboul Ella Hassanien und Hoda M. Onsi. „A Blind 3D Watermarking Approach for 3D Mesh Using Clustering Based Methods“. International Journal of Computer Vision and Image Processing 3, Nr. 2 (April 2013): 43–53. http://dx.doi.org/10.4018/ijcvip.2013040104.
Der volle Inhalt der QuelleAl-Funjan, Amera, Farid Meziane und Rob Aspin. „Describing Pulmonary Nodules Using 3D Clustering“. Advanced Engineering Research 22, Nr. 3 (13.10.2022): 261–71. http://dx.doi.org/10.23947/2687-1653-2022-22-3-261-271.
Der volle Inhalt der QuelleYonggao Yang, J. X. Chen und Woosung Kim. „Gene expression clustering and 3D visualization“. Computing in Science & Engineering 5, Nr. 5 (September 2003): 37–43. http://dx.doi.org/10.1109/mcise.2003.1225859.
Der volle Inhalt der QuelleSim, Kelvin, Ghim-Eng Yap, David R. Hardoon, Vivekanand Gopalkrishnan, Gao Cong und Suryani Lukman. „Centroid-Based Actionable 3D Subspace Clustering“. IEEE Transactions on Knowledge and Data Engineering 25, Nr. 6 (Juni 2013): 1213–26. http://dx.doi.org/10.1109/tkde.2012.37.
Der volle Inhalt der QuelleSim, Kelvin, Vivekanand Gopalkrishnan, Clifton Phua und Gao Cong. „3D Subspace Clustering for Value Investing“. IEEE Intelligent Systems 29, Nr. 2 (März 2014): 52–59. http://dx.doi.org/10.1109/mis.2012.24.
Der volle Inhalt der QuellePeng, Bo, Yuxuan Yao, Qunxia Li, Xinyu Li, Guoting Lin, Lin Chen und Jianjun Lei. „Clustering information-constrained 3D U-Net subspace clustering for hyperspectral image“. Remote Sensing Letters 13, Nr. 11 (10.10.2022): 1131–41. http://dx.doi.org/10.1080/2150704x.2022.2132122.
Der volle Inhalt der QuelleLi, Ailin, Anyong Qin, Zhaowei Shang und Yuan Yan Tang. „Spectral-Spatial Sparse Subspace Clustering Based on Three-Dimensional Edge-Preserving Filtering for Hyperspectral Image“. International Journal of Pattern Recognition and Artificial Intelligence 33, Nr. 03 (19.02.2019): 1955003. http://dx.doi.org/10.1142/s0218001419550036.
Der volle Inhalt der QuelleLi, Wei, Ranran Deng, Yingjie Zhang, Zhaoyun Sun, Xueli Hao und Ju Huyan. „Three-Dimensional Asphalt Pavement Crack Detection Based on Fruit Fly Optimisation Density Peak Clustering“. Mathematical Problems in Engineering 2019 (23.11.2019): 1–15. http://dx.doi.org/10.1155/2019/4302805.
Der volle Inhalt der QuelleDissertationen zum Thema "Clustering 3D"
Petrov, Anton Igorevich. „RNA 3D Motifs: Identification, Clustering, and Analysis“. Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1333929629.
Der volle Inhalt der QuelleWiberg, Benjamin. „Automatic Clustering of 3D Objects for Hierarchical Level-of-Detail“. Thesis, Linköpings universitet, Medie- och Informationsteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-150534.
Der volle Inhalt der QuelleAbu, Almakarem Amal S. „Base Triples in RNA 3D Structures: Identifying, Clustering and Classifying“. Bowling Green State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1308783522.
Der volle Inhalt der QuelleBorke, Lukas. „Dynamic Clustering and Visualization of Smart Data via D3-3D-LSA“. Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18307.
Der volle Inhalt der QuelleWith the growing popularity of GitHub, the largest host of source code and collaboration platform in the world, it has evolved to a Big Data resource offering a variety of Open Source repositories (OSR). At present, there are more than one million organizations on GitHub, among them Google, Facebook, Twitter, Yahoo, CRAN, RStudio, D3, Plotly and many more. GitHub provides an extensive REST API, which enables scientists to retrieve valuable information about the software and research development life cycles. Our research pursues two main objectives: (I) provide an automatic OSR categorization system for data science teams and software developers promoting discoverability, technology transfer and coexistence; (II) establish visual data exploration and topic driven navigation of GitHub organizations for collaborative reproducible research and web deployment. To transform Big Data into value, in other words into Smart Data, storing and processing of the data semantics and metadata is essential. Further, the choice of an adequate text mining (TM) model is important. The dynamic calibration of metadata configurations, TM models (VSM, GVSM, LSA), clustering methods and clustering quality indices will be shortened as "smart clusterization". Data-Driven Documents (D3) and Three.js (3D) are JavaScript libraries for producing dynamic, interactive data visualizations, featuring hardware acceleration for rendering complex 2D or 3D computer animations of large data sets. Both techniques enable visual data mining (VDM) in web browsers, and will be abbreviated as D3-3D. Latent Semantic Analysis (LSA) measures semantic information through co-occurrence analysis in the text corpus. Its properties and applicability for Big Data analytics will be demonstrated. "Smart clusterization" combined with the dynamic VDM capabilities of D3-3D will be summarized under the term "Dynamic Clustering and Visualization of Smart Data via D3-3D-LSA".
Hasnat, Md Abul. „Unsupervised 3D image clustering and extension to joint color and depth segmentation“. Thesis, Saint-Etienne, 2014. http://www.theses.fr/2014STET4013/document.
Der volle Inhalt der QuelleAccess to the 3D images at a reasonable frame rate is widespread now, thanks to the recent advances in low cost depth sensors as well as the efficient methods to compute 3D from 2D images. As a consequence, it is highly demanding to enhance the capability of existing computer vision applications by incorporating 3D information. Indeed, it has been demonstrated in numerous researches that the accuracy of different tasks increases by including 3D information as an additional feature. However, for the task of indoor scene analysis and segmentation, it remains several important issues, such as: (a) how the 3D information itself can be exploited? and (b) what is the best way to fuse color and 3D in an unsupervised manner? In this thesis, we address these issues and propose novel unsupervised methods for 3D image clustering and joint color and depth image segmentation. To this aim, we consider image normals as the prominent feature from 3D image and cluster them with methods based on finite statistical mixture models. We consider Bregman Soft Clustering method to ensure computationally efficient clustering. Moreover, we exploit several probability distributions from directional statistics, such as the von Mises-Fisher distribution and the Watson distribution. By combining these, we propose novel Model Based Clustering methods. We empirically validate these methods using synthetic data and then demonstrate their application for 3D/depth image analysis. Afterward, we extend these methods to segment synchronized 3D and color image, also called RGB-D image. To this aim, first we propose a statistical image generation model for RGB-D image. Then, we propose novel RGB-D segmentation method using a joint color-spatial-axial clustering and a statistical planar region merging method. Results show that, the proposed method is comparable with the state of the art methods and requires less computation time. Moreover, it opens interesting perspectives to fuse color and geometry in an unsupervised manner. We believe that the methods proposed in this thesis are equally applicable and extendable for clustering different types of data, such as speech, gene expressions, etc. Moreover, they can be used for complex tasks, such as joint image-speech data analysis
Gianfrotta, Coline. „Modélisation, analyse et classification de motifs structuraux d'ARN à partir de leur contexte, par des méthodes d'algorithmique de graphes“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG056.
Der volle Inhalt der QuelleIn this thesis, we study the structural context of RNA structural motifs in order to make progress in their prediction. Indeed, some RNA motifs, which are substructures appearing recurrently in RNA structures, remain difficult to predict, because of the presence of non-canonical interactions in these motifs, and because of the distance on the primary sequence between the different parts of these motifs. We therefore model the topological structural context of these motifs by graphs, and compare the contexts of the different occurrences using several graph algorithms. We then classify the motif occurrences according to their topological context similarities and according to their 3D context similarities, using an overlapping clustering algorithm.First, we show on a dataset of three structural motifs that the observed similarities between the topological contexts are consistent with the similarities between the 3D contexts. This indicates that the topological context may be sufficient to determine the 3D context for these three motifs.In a second step, we study several classifications of occurrences of the A-minor motif, according to 3D context similarities. We observe that 3D context similarities exist between non-homologous occurrences, which could be a sign of an evolutionary convergence phenomenon. Moreover, we observe that some parts of the 3D context seem to be better conserved than others between non-homologous occurrences.In a third step, we study the predictive ability of the common topological context of A-minor motif occurrences, sharing similar 3D contexts, as well as the predictive ability of a sequence signal on these same occurrences. To this end, we study the occurrence of this topology and sequence in RNA structures in the absence of A-minor motifs. We conclude that the topology and the sequence represent a good signal for the majority of the studied classes
Borke, Lukas [Verfasser], Wolfgang Karl [Gutachter] Härdle und Stefan [Gutachter] Lessmann. „Dynamic Clustering and Visualization of Smart Data via D3-3D-LSA / Lukas Borke ; Gutachter: Wolfgang Karl Härdle, Stefan Lessmann“. Berlin : Humboldt-Universität zu Berlin, 2017. http://d-nb.info/1189428857/34.
Der volle Inhalt der QuelleYu, En. „Social Network Analysis Applied to Ontology 3D Visualization“. Miami University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=miami1206497854.
Der volle Inhalt der QuelleNawaf, Mohamad Motasem. „3D structure estimation from image stream in urban environment“. Thesis, Saint-Etienne, 2014. http://www.theses.fr/2014STET4024/document.
Der volle Inhalt der QuelleIn computer vision, the 3D structure estimation from 2D images remains a fundamental problem. One of the emergent applications is 3D urban modelling and mapping. Here, we are interested in street-level monocular 3D reconstruction from mobile vehicle. In this particular case, several challenges arise at different stages of the 3D reconstruction pipeline. Mainly, lacking textured areas in urban scenes produces low density reconstructed point cloud. Also, the continuous motion of the vehicle prevents having redundant views of the scene with short feature points lifetime. In this context, we adopt the piecewise planar 3D reconstruction where the planarity assumption overcomes the aforementioned challenges.In this thesis, we introduce several improvements to the 3D structure estimation pipeline. In particular, the planar piecewise scene representation and modelling. First, we propose a novel approach that aims at creating 3D geometry respecting superpixel segmentation, which is a gradient-based boundary probability estimation by fusing colour and flow information using weighted multi-layered model. A pixel-wise weighting is used in the fusion process which takes into account the uncertainty of the computed flow. This method produces non-constrained superpixels in terms of size and shape. For the applications that imply a constrained size superpixels, such as 3D reconstruction from an image sequence, we develop a flow based SLIC method to produce superpixels that are adapted to reconstructed points density for better planar structure fitting. This is achieved by the mean of new distance measure that takes into account an input density map, in addition to the flow and spatial information. To increase the density of the reconstructed point cloud used to performthe planar structure fitting, we propose a new approach that uses several matching methods and dense optical flow. A weighting scheme assigns a learned weight to each reconstructed point to control its impact to fitting the structure relative to the accuracy of the used matching method. Then, a weighted total least square model uses the reconstructed points and learned weights to fit a planar structure with the help of superpixel segmentation of the input image sequence. Moreover, themodel handles the occlusion boundaries between neighbouring scene patches to encourage connectivity and co-planarity to produce more realistic models. The final output is a complete dense visually appealing 3Dmodels. The validity of the proposed approaches has been substantiated by comprehensive experiments and comparisons with state-of-the-art methods
Kéchichian, Razmig. „Structural priors for multiobject semi-automatic segmentation of three-dimensional medical images via clustering and graph cut algorithms“. Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00967381.
Der volle Inhalt der QuelleBuchteile zum Thema "Clustering 3D"
Khattab, Dina, Hala M. Ebeid, Ashraf S. Hussein und Mohamed F. Tolba. „3D Mesh Segmentation Based on Unsupervised Clustering“. In Advances in Intelligent Systems and Computing, 598–607. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48308-5_57.
Der volle Inhalt der QuelleAzri, Suhaibah, Alias Abdul Rahman, Uznir Ujang, François Anton und Darka Mioc. „3D Crisp Clustering of Geo-Urban Data“. In Encyclopedia of GIS, 1–9. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23519-6_1610-1.
Der volle Inhalt der QuelleNiu, Jianwei, Zhizhong Li und Song Xu. „Block Division for 3D Head Shape Clustering“. In Digital Human Modeling, 64–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02809-0_8.
Der volle Inhalt der QuelleAzri, Suhaibah, Alias Abdul Rahman, Uznir Ujang, François Anton und Darka Mioc. „3D Crisp Clustering of Geo-Urban Data“. In Encyclopedia of GIS, 1–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-17885-1_1610.
Der volle Inhalt der QuelleKhalidov, Vasil, Florence Forbes, Miles Hansard, Elise Arnaud und Radu Horaud. „Audio-Visual Clustering for 3D Speaker Localization“. In Machine Learning for Multimodal Interaction, 86–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85853-9_8.
Der volle Inhalt der QuelleChoi, Sung-Ja, und Gang-Soo Lee. „3D Viewer Platform of Cloud Clustering Management System: Google Map 3D“. In Communication and Networking, 218–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17604-3_25.
Der volle Inhalt der QuelleWang, Fengsui, Zhengnan Liu, Haiying Cheng, Linjun Fu, Jingang Chen, Qisheng Wang, Furong Liu und Chao Han. „Hierarchical Clustering-Based Video Summarization“. In Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology, 27–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3863-6_4.
Der volle Inhalt der QuelleFrühwirth, Rudolf, und Are Strandlie. „Vertex Finding“. In Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors, 131–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65771-0_7.
Der volle Inhalt der QuelleAbakumov, Pavel, und Andrey Koucheryavy. „Clustering Algorithm for 3D Wireless Mobile Sensor Network“. In Lecture Notes in Computer Science, 343–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23126-6_31.
Der volle Inhalt der QuelleSuter, Susanne K., Bo Ma und Alireza Entezari. „Visual Analysis of 3D Data by Isovalue Clustering“. In Advances in Visual Computing, 313–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14249-4_30.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Clustering 3D"
Bollenbach, Tobias. „3d Supernovae Collapse Calculations“. In EXOTIC CLUSTERING: 4th Catania Relativistic Ion Studies CRIS 2002. AIP, 2002. http://dx.doi.org/10.1063/1.1523196.
Der volle Inhalt der QuelleZhang, Yongrnei, und Bo Li. „Study on a 3D Clustering Algorithm“. In Sixth International Conference on Intelligent Systems Design and Applications]. IEEE, 2006. http://dx.doi.org/10.1109/isda.2006.258.
Der volle Inhalt der QuelleTaubner, Felix, Florian Tschopp, Tonci Novkovic, Roland Siegwart und Fadri Furrer. „LCD – Line Clustering and Description for Place Recognition“. In 2020 International Conference on 3D Vision (3DV). IEEE, 2020. http://dx.doi.org/10.1109/3dv50981.2020.00101.
Der volle Inhalt der QuelleKrahn, Maximilian, Florian Bernard und Vladislav Golyanik. „Convex Joint Graph Matching and Clustering via Semidefinite Relaxations“. In 2021 International Conference on 3D Vision (3DV). IEEE, 2021. http://dx.doi.org/10.1109/3dv53792.2021.00129.
Der volle Inhalt der QuelleEn-Ya, Shen, Wang Wen-Ke, Li Si-Kun und Cai Xun. „Interactive Continuous Erasing and Clustering in 3D“. In 2012 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2012. http://dx.doi.org/10.1109/icvrv.2012.21.
Der volle Inhalt der QuelleLi, Tianjian, Yan Han, Xiaoyao Liang, Hsien-Hsin S. Lee und Li Jiang. „Fault clustering technique for 3D memory BISR“. In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017. http://dx.doi.org/10.23919/date.2017.7927050.
Der volle Inhalt der QuelleHinojosa, Carlos A., Jorge Bacca und Henry Arguello. „Spectral Imaging Subspace Clustering with 3-D Spatial Regularizer“. In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/3d.2018.jw5e.7.
Der volle Inhalt der QuelleWagner, Patrick, Jakob Paul Morath, Arturo Zychlinsky, Klaus-Robert Muller und Wojciech Samek. „Rotation Invariant Clustering of 3D Cell Nuclei Shapes *“. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8856734.
Der volle Inhalt der QuelleAtchaya, V., und R. Vanitha. „An Optimal centroid based actionable 3D subspace clustering“. In 2014 International Conference on Information Communication and Embedded Systems (ICICES). IEEE, 2014. http://dx.doi.org/10.1109/icices.2014.7033862.
Der volle Inhalt der QuelleMagnusson, Martin, Tomasz Piotr Kucner, Saeed Gholami Shahbandi, Henrik Andreasson und Achim J. Lilienthal. „Semi-supervised 3D place categorisation by descriptor clustering“. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8202216.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Clustering 3D"
Mohapatra, Sucheta. Dynamic Through-Silicon Via Clustering in 3D IC Floorplanning for Early Performance Optimization. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.7437.
Der volle Inhalt der Quelle