Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Closed microfluidic system“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Closed microfluidic system" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Closed microfluidic system"
Debski, Pawel, Karolina Sklodowska, Jacek Michalski, Piotr Korczyk, Miroslaw Dolata und Slawomir Jakiela. „Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures“. Micromachines 9, Nr. 9 (17.09.2018): 469. http://dx.doi.org/10.3390/mi9090469.
Der volle Inhalt der QuelleSteege, Tobias, Mathias Busek, Stefan Grünzner, Andrés Fabían Lasagni und Frank Sonntag. „Closed-loop control system for well-defined oxygen supply in micro-physiological systems“. Current Directions in Biomedical Engineering 3, Nr. 2 (07.09.2017): 363–66. http://dx.doi.org/10.1515/cdbme-2017-0075.
Der volle Inhalt der QuelleWang, Ningquan, Ruxiu Liu, Norh Asmare, Chia-Heng Chu, Ozgun Civelekoglu und A. Fatih Sarioglu. „Closed-loop feedback control of microfluidic cell manipulation via deep-learning integrated sensor networks“. Lab on a Chip 21, Nr. 10 (2021): 1916–28. http://dx.doi.org/10.1039/d1lc00076d.
Der volle Inhalt der QuelleLoutherback, K., P. A. Bulur und A. Dietz. „Process Development and Manufacturing: CLOSED MICROFLUIDIC SYSTEM FOR MANUFACTURING DENDRITIC CELL THERAPIES“. Cytotherapy 24, Nr. 5 (Mai 2022): S171—S172. http://dx.doi.org/10.1016/s1465-3249(22)00448-0.
Der volle Inhalt der QuelleLoutherback, K., P. A. Bulur und A. Dietz. „Process Development and Manufacturing: CLOSED MICROFLUIDIC SYSTEM FOR MANUFACTURING DENDRITIC CELL THERAPIES“. Cytotherapy 24, Nr. 5 (Mai 2022): S171—S172. http://dx.doi.org/10.1016/s1465-3249(22)00448-0.
Der volle Inhalt der QuelleFu, Hai, Wen Zeng, Songjing Li und Shuai Yuan. „Electrical-detection droplet microfluidic closed-loop control system for precise droplet production“. Sensors and Actuators A: Physical 267 (November 2017): 142–49. http://dx.doi.org/10.1016/j.sna.2017.09.043.
Der volle Inhalt der QuelleHansen, J. S., J. T. Ottesen und A. Lemarchand. „Molecular dynamics simulations of valveless pumping in a closed microfluidic tube-system“. Molecular Simulation 31, Nr. 14-15 (Dezember 2005): 963–69. http://dx.doi.org/10.1080/08927020500419297.
Der volle Inhalt der QuelleYafia, Mohamed, Amir M. Foudeh, Maryam Tabrizian und Homayoun Najjaran. „Low-Cost Graphene-Based Digital Microfluidic System“. Micromachines 11, Nr. 9 (22.09.2020): 880. http://dx.doi.org/10.3390/mi11090880.
Der volle Inhalt der QuelleLim, Hyunjung, Jae Young Kim, Seunghee Choo, Changseok Lee, Byoung Joe Han, Chae Seung Lim und Jeonghun Nam. „Separation and Washing of Candida Cells from White Blood Cells Using Viscoelastic Microfluidics“. Micromachines 14, Nr. 4 (23.03.2023): 712. http://dx.doi.org/10.3390/mi14040712.
Der volle Inhalt der QuelleJang, Kihoon, Yan Xu, Yo Tanaka, Kae Sato, Kazuma Mawatari, Tomohiro Konno, Kazuhiko Ishihara und Takehiko Kitamori. „Single-cell attachment and culture method using a photochemical reaction in a closed microfluidic system“. Biomicrofluidics 4, Nr. 3 (September 2010): 032208. http://dx.doi.org/10.1063/1.3494287.
Der volle Inhalt der QuelleDissertationen zum Thema "Closed microfluidic system"
Watel, Quentin. „Conception et réalisation de structures textiles microfluidiques pour application médicale de criblage d’organoïdes à haut débit“. Electronic Thesis or Diss., Centrale Lille Institut, 2023. http://www.theses.fr/2023CLIL0035.
Der volle Inhalt der QuelleTo reduce the costs associated with precision medicine, the ANR DROMOS project aims to develop an analysis platform for carrying out tests on large numbers of cells, drawing on the advantages of microfluidics and textile technologies. This new platform is based on a woven structure impregnated in a transparent matrix. This woven structure is made up of various yarns, such as reinforcing yarns and monofilaments, which can be extracted to create microfluidic channels. The implementation limits of this composite structure are studied for an unreinforced matrix, depending on the nature, diameter and embedding length of the sacrificial monofilament. Using this method, channels with a diameter of 500 μm and a length of 200 mm can be produced in a PDMS matrix. Different woven structures embedding the sacrificial monofilament are then designed and produced before being impregnated in an elastomer matrix to form a composite material. Once the sacrificial material has been mechanically removed, the resulting microfluidic textile chip is watertight. It appears that the number of threads that bind the sacrificial monofilament to the fabric is a fundamental parameter in the design of textile microfluidic systems, influencing both the visibility of the microfluidic channel and the removal of the sacrificial material from the reinforced matrix. Finally, to improve the visibility of the microfluidic channel in woven structures, an elastomeric PDMS filament is developed and inserted into a woven reinforcement to bond the sacrificial monofilament. To produce this elastomeric filament, an innovative spinning process has been used. It enables continuous production over several tens of metres. The morphological and mechanical properties of the elastomeric filament are being studied according to different production parameters. The microfluidic textile chip obtained with this woven reinforcement is a composite material that is completely transparent in the microfluidic channel
Lai, Chiu-Chi, und 賴秋吉. „Development of a Closed Loop High-Throughput Microfluidic PCR Chip and System“. Thesis, 2006. http://ndltd.ncl.edu.tw/handle/13412075722599016560.
Der volle Inhalt der Quelle國立臺灣大學
生物產業機電工程學研究所
95
This research has developed a novel disposable closed-loop PCR chip which allows non-restricted number of thermal cycles on a small footprint. The fluid in the microchannel of the PCR chip is driven by mechanically compressing the microchannel using wheels pressing on the channel in only one direction to precisely control the flow to loop through three temperature zones. An automatic driving mechanism is also developed to achieve high throughput by driving multiple chips at the same time on a single thermal platform. The PCR chip is made by bonding a PDMS top layer to a glass substrate. The PDMS top layer is casted on a PMMA mold. The channel pattern on the mold is machined on a CNC machine then furbished by hand. The PDMS cover is then treated by O2 plasma and bond to the glass substrate. The microchannel is 300 μm wide, 100 μm high, with a total loop length of 282.24 mm to contain about 13.1 μl of fluid when full. Fluid to be processed is simply dropped onto a well of the I/O port and then taken into the channel loop automatically by the driving mechanism. When the PCR process completes, the fluid is again released through the same port. Simultaneous PCR amplification results have been successfully demonstrated on two chips. The reported PCR chip is the first flow-type PCR chip that could fully prevent cross contamination within the microchannel.
Buchteile zum Thema "Closed microfluidic system"
Bruus, Henrik. „Complex Flow Patterns“. In Theoretical Microfluidics, 231–54. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780199235087.003.0014.
Der volle Inhalt der QuelleDeng, Kaiwen, Chunyu Chang, Jiansheng Ding, Zhiqiang Jia, Dongping Wang, Shurong Wang und Hanbin Ma. „A Digital Microfluidics System with Closed-Loop Feedback Droplet Sensing“. In Advances in Transdisciplinary Engineering. IOS Press, 2024. http://dx.doi.org/10.3233/atde231140.
Der volle Inhalt der QuelleBuranda, Tione, und Larry A. Sklar. „Flow Cytometry, Beads, and Microchannels“. In Flow Cytometry for Biotechnology. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195183146.003.0010.
Der volle Inhalt der QuelleBose, Goutam Kumar, Pritam Ghosh und Debashis Pal. „Analytical and Numerical Modelling of Liquid Penetration in a Closed Capillary“. In Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering, 114–35. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7138-4.ch004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Closed microfluidic system"
Edwards, Maegan, und Rodward L. Hewlin. „A Computational Model for Analyisis of Field Force and Particle Dynamics in a Ferro-Magnetic Microfluidic System“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95690.
Der volle Inhalt der QuelleMartin, Heather, Miguel Murran, Rachael L’Orsa und Homayoun Najjaran. „Experimental Technique for Sensing Droplet Position in Digital Microfluidic Systems Using Capacitance Measurement“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39278.
Der volle Inhalt der QuelleZeng, Wen, Hai Fu und Songjing Li. „Closed-Loop Pressure Feedback Control of a Pressure-Driven Microdroplet Generator“. In 9th FPNI Ph.D. Symposium on Fluid Power. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fpni2016-1524.
Der volle Inhalt der QuelleMarschner, Uwe, Anthony Beck, Philipp Mehner, Georgi Paschew, Andreas Voigt und Andreas Richter. „Analogies Between Stimuli-Responsive (Smart) Hydrogel-Based Microfluidic Valves and Electronic Transistors“. In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-91225.
Der volle Inhalt der QuellePeysepar, Mahyar, Mohammad Behshad Shafii, Ramin Rasoulian, Hosein Jamalifar und Mohammad Reza Fazeli. „Use of the Freely-Swimming, Serratia Marcescens Bacteria to Enhance Mixing in Microfluidic Systems“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11469.
Der volle Inhalt der QuelleZhou, Xiaoming, Xin Liang, Zhiquan Shu, Pingan Du und Dayong Gao. „Numerical Investigation of a Novel Microfluidic System and its Application in Achieving Ultra-Fast Cooling/Warming Rates for Cell Vitrification Cryopreservation“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14077.
Der volle Inhalt der QuelleYan, Deguang, Chun Yang, Nam-Trung Nguyen und Xiaoyang Huang. „Measurement of Transient Electrokinetic Flow in Microchannels Using Micro-PIV Technique“. In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96071.
Der volle Inhalt der QuelleLi, Kebin, Keith Morton, Matthew Shiu, Karine Turcotte, Luke Lukic, Gaetan Veilleux, Lucas Poncelet und Teodor Veres. „Normally Closed Microfluidic Valves with Microstructured Valve Seats: A Strategy for Industrial Manufacturing of Thermoplastic Microfluidics with Microvalves“. In 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2020. http://dx.doi.org/10.1109/mems46641.2020.9056136.
Der volle Inhalt der QuelleAlsharhan, Abdullah T., Anthony J. Stair, Ryan R. Utz, Andrew C. Lamont, Michael A. Restaino, Ruben Acevedo und Ryan D. Sochol. „A 3D Nanoprinted Normally Closed Microfluidic Transistor“. In 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2020. http://dx.doi.org/10.1109/mems46641.2020.9056155.
Der volle Inhalt der QuelleGómez, Juan R., und Juan P. Escandón. „Combined Magnetohydrodynamic/Pressure Driven Flow of Multi-Layer Pseudoplastic Fluids Through a Parallel Flat Plates Microchannel“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86676.
Der volle Inhalt der Quelle