Dissertationen zum Thema „Clinical Natural Language Processing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Clinical Natural Language Processing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Chien, Isabel. „Natural language processing for precision clinical diagnostics and treatment“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119754.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 61-65).
In this thesis, I focus upon application of natural language processing to clinical diagnostics and treatment within the palliative care and serious illness field. I explore a variety of natural language processing methods, including deep learning, rule-based, and classic machine learning, and applied to the identication of documentation reflecting advanced care planning measures, serious illnesses, and serious illness symptoms. I introduce two tools that can be used to analyze clinical notes from electronic health records: ClinicalRegex, a regular expression interface, and PyCCI, an a clinical text annotation tool. Additionally, I discuss a palliative care-focused research project in which I apply machine learning natural language processing methods to identifying clinical documentation in the palliative care and serious illness field. Advance care planning, which includes clarifying and documenting goals of care and preferences for future care, is essential for achieving end-of-life care that is consistent with the preferences of dying patients and their families. Physicians document their communication about these preferences as unstructured free text in clinical notes; as a result, routine assessment of this quality indicator is time consuming and costly. Integrating goals of care conversations and advance care planning into decision-making about palliative surgery have been shown to result in less invasive care near the time of death and improve clinical outcomes for both the patient and surviving family members. Natural language processing methods offer an efficient and scalable way to improve the visibility of documented serious illness conversations within electronic health record data, helping to better quality of care.
by Isabel Chien.
M. Eng.
Mehrabi, Saeed. „Advanced natural language processing and temporal mining for clinical discovery“. Thesis, Indiana University - Purdue University Indianapolis, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10032405.
Der volle Inhalt der QuelleThere has been vast and growing amount of healthcare data especially with the rapid adoption of electronic health records (EHRs) as a result of the HITECH act of 2009. It is estimated that around 80% of the clinical information resides in the unstructured narrative of an EHR. Recently, natural language processing (NLP) techniques have offered opportunities to extract information from unstructured clinical texts needed for various clinical applications. A popular method for enabling secondary uses of EHRs is information or concept extraction, a subtask of NLP that seeks to locate and classify elements within text based on the context. Extraction of clinical concepts without considering the context has many complications, including inaccurate diagnosis of patients and contamination of study cohorts. Identifying the negation status and whether a clinical concept belongs to patients or his family members are two of the challenges faced in context detection. A negation algorithm called Dependency Parser Negation (DEEPEN) has been developed in this research study by taking into account the dependency relationship between negation words and concepts within a sentence using the Stanford Dependency Parser. The study results demonstrate that DEEPEN, can reduce the number of incorrect negation assignment for patients with positive findings, and therefore improve the identification of patients with the target clinical findings in EHRs. Additionally, an NLP system consisting of section segmentation and relation discovery was developed to identify patients’ family history. To assess the generalizability of the negation and family history algorithm, data from a different clinical institution was used in both algorithm evaluations. The temporal dimension of extracted information from clinical records representing the trajectory of disease progression in patients was also studied in this project. Clinical data of patients who lived in Olmsted County (Rochester, MN) during 1966 to 2010 was analyzed in this work. The patient records were modeled by diagnosis matrices with clinical events as rows and their temporal information as columns. Deep learning algorithm was used to find common temporal patterns within these diagnosis matrices.
Forsyth, Alexander William. „Improving clinical decision making with natural language processing and machine learning“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112847.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 49-53).
This thesis focused on two tasks of applying natural language processing (NLP) and machine learning to electronic health records (EHRs) to improve clinical decision making. The first task was to predict cardiac resynchronization therapy (CRT) outcomes with better precision than the current physician guidelines for recommending the procedure. We combined NLP features from free-text physician notes with structured data to train a supervised classifier to predict CRT outcomes. While our results gave a slight improvement over the current baseline, we were not able to predict CRT outcome with both high precision and high recall. These results limit the clinical applicability of our model, and reinforce previous work, which also could not find accurate predictors of CRT response. The second task in this thesis was to extract breast cancer patient symptoms during chemotherapy from free-text physician notes. We manually annotated about 10,000 sentences, and trained a conditional random field (CRF) model to predict whether a word indicated a symptom (positive label), specifically indicated the absence of a symptom (negative label), or was neutral. Our final model achieved 0.66, 1.00, and 0.77 F1 scores for predicting positive, neutral, and negative labels respectively. While the F1 scores for positive and negative labels are not extremely high, with the current performance, our model could be applied, for example, to gather better statistics about what symptoms breast cancer patients experience during chemotherapy and at what time points during treatment they experience these symptoms.
by Alexander William Forsyth.
M. Eng.
Regulapati, Sushmitha. „Natural language processing framework to assist in the evaluation of adherence to clinical guidelines“. Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5340.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains vii, 36 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 33-36).
Leonhard, Annette Christa. „Automated question answering for clinical comparison questions“. Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6266.
Der volle Inhalt der QuelleEglowski, Skylar. „CREATE: Clinical Record Analysis Technology Ensemble“. DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1771.
Der volle Inhalt der QuelleWang, Yefeng. „Information extraction from clinical notes“. Thesis, The University of Sydney, 2010. https://hdl.handle.net/2123/28844.
Der volle Inhalt der QuelleHenriksson, Aron. „Semantic Spaces of Clinical Text : Leveraging Distributional Semantics for Natural Language Processing of Electronic Health Records“. Licentiate thesis, Stockholms universitet, Institutionen för data- och systemvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-94344.
Der volle Inhalt der QuelleDe stora mängder kliniska data som genereras i patientjournalsystem är en underutnyttjad resurs med en enorm potential att förbättra hälso- och sjukvården. Då merparten av kliniska data är i form av ostrukturerad text, vilken är utmanande för datorer att analysera, finns det ett behov av sofistikerade metoder som kan behandla kliniskt språk. Metoder som inte kräver märkta exempel utan istället utnyttjar statistiska egenskaper i datamängden är särskilt värdefulla, med tanke på den begränsade tillgången till annoterade korpusar i den kliniska domänen. System för informationsextraktion och språkbehandling behöver innehålla viss kunskap om semantik. En metod går ut på att utnyttja de distributionella egenskaperna hos språk – mer specifikt, statistisk över hur termer samförekommer – för att modellera den relativa betydelsen av termer i ett högdimensionellt vektorrum. Metoden har använts med framgång i en rad uppgifter för behandling av allmänna språk; dess tillämpning i den kliniska domänen har dock endast utforskats i mindre utsträckning. Genom att tillämpa modeller för distributionell semantik på klinisk text kan semantiska rum konstrueras utan någon tillgång till märkta exempel. Semantiska rum av klinisk text kan sedan användas i en rad medicinskt relevanta tillämpningar. Tillämpningen av distributionell semantik i den kliniska domänen illustreras här i tre användningsområden: (1) synonymextraktion av medicinska termer, (2) tilldelning av diagnoskoder och (3) identifiering av läkemedelsbiverkningar. Det krävs dock att vissa begränsningar eller utmaningar adresseras för att möjliggöra en effektiv tillämpning av distributionell semantik på ett brett spektrum av uppgifter som behandlar språk – både allmänt och, i synnerhet, kliniskt – såsom hur man kan modellera betydelsen av flerordstermer och redogöra för funktionen av negation: ett enkelt sätt att modellera parafrasering och negation i ett distributionellt semantiskt ramverk presenteras och utvärderas. Idén om ensembler av semantisk rum introduceras också; dessa överträffer användningen av ett enda semantiskt rum för synonymextraktion. Den här metoden möjliggör en kombination av olika modeller för distributionell semantik, med olika parameterkonfigurationer samt inducerade från olika korpusar. Detta är inte minst viktigt i den kliniska domänen, då det gör det möjligt att komplettera potentiellt begränsade mängder kliniska data med data från andra, mer lättillgängliga källor. Arbetet påvisar också vikten av att konfigurera dimensionaliteten av semantiska rum, i synnerhet när vokabulären är omfattande, vilket är vanligt i den kliniska domänen.
High-Performance Data Mining for Drug Effect Detection (DADEL)
Khizra, Shufa. „Using Natural Language Processing and Machine Learning for Analyzing Clinical Notes in Sickle Cell Disease Patients“. Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright154759374321405.
Der volle Inhalt der QuelleIslam, Mohammed Ashrafull. „Enhancing the interactivity of a clinical decision support system by using knowledge engineering and natural language processing“. Thesis, Aston University, 2018. http://publications.aston.ac.uk/37540/.
Der volle Inhalt der QuelleAlnazzawi, Noha Abdulkareem D. „Linking clinical records to the biomedical literature“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/linking-clinical-records-to-the-biomedical-literature(7ab62b2f-2178-49f3-9b5f-a8c15598cae7).html.
Der volle Inhalt der QuelleDehghan, Azad. „Mining patient journeys from healthcare narratives“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/mining-patient-journeys-from-healthcare-narratives(69ebfa6d-764a-4dfe-bbf8-6aab1905a6f3).html.
Der volle Inhalt der QuelleShivade, Chaitanya P. „How sick are you?Methods for extracting textual evidence to expedite clinical trial screening“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462810822.
Der volle Inhalt der QuelleTang, Huaxiu. „Detecting Adverse Drug Reactions in Electronic Health Records by using the Food and Drug Administration’s Adverse Event Reporting System“. University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1470753258.
Der volle Inhalt der QuelleVelupillai, Sumithra. „Shades of Certainty : Annotation and Classification of Swedish Medical Records“. Doctoral thesis, Stockholms universitet, Institutionen för data- och systemvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-74828.
Der volle Inhalt der QuelleBustos, Aurelia. „Extraction of medical knowledge from clinical reports and chest x-rays using machine learning techniques“. Doctoral thesis, Universidad de Alicante, 2019. http://hdl.handle.net/10045/102193.
Der volle Inhalt der QuelleKempf, Emmanuelle. „Structuration, standardisation et enrichissement par traitement automatique du langage des données relatives au cancer au sein de l’entrepôt de données de santé de l’Assistance Publique – Hôpitaux de Paris“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS694.
Der volle Inhalt der QuelleCancer is a public health issue for which the improvement of care relies, among other levers, on the use of clinical data warehouses (CDWs). Their use involves overcoming obstacles such as the quality, standardization and structuring of the care data stored there. The objective of this thesis was to demonstrate that it is possible to address the challenges of secondary use of data from the Assistance Publique - Hôpitaux de Paris (AP-HP) CDW regarding cancer patients, and for various purposes such as monitoring the safety and quality of care, and performing observational and experimental clinical research. First, the identification of a minimal data set enabled to concentrate the effort of formalizing the items of interest specific to the discipline. From 15 identified items, 4 use cases from distinct medical perspectives were successfully developed: automation of calculations of safety and quality of care required for the international certification of health establishments , clinical epidemiology regarding the impact of public health measures during a pandemic on the delay in cancer diagnosis, decision support regarding the optimization of patient recruitment in clinical trials, development of neural networks regarding prognostication by computer vision. A second condition necessary for the CDW use in oncology is based on the optimal and interoperable formalization between several CDWs of this minimal data set. As part of the French PENELOPE initiative aiming at improving patient recruitment in clinical trials, the thesis assessed the added value of the oncology extension of the OMOP common data model. This version 5.4 of OMOP enabled to double the rate of formalization of prescreening criteria for phase I to IV clinical trials. Only 23% of these criteria could be automatically queried on the AP-HP CDW, and this, modulo a positive predictive value of less than 30%. This work suggested a novel methodology for evaluating the performance of a recruitment support system: based on the usual metrics (sensitivity, specificity, positive predictive value, negative predictive value), but also based on additional indicators characterizing the adequacy of the model chosen with the CDW related (rate of translation and execution of queries). Finally, the work showed how natural language processing related to the CDW data structuring could enrich the minimal data set, based on the baseline tumor dissemination assessment of a cancer diagnosis and on the histoprognostic characteristics of tumors. The comparison of textual extraction performance metrics and the human and technical resources necessary for the development of rules and machine learning systems made it possible to promote, for a certain number of situations, the first approach. The thesis identified that automatic rule-based preannotation before a manual annotation phase for training a machine learning model was an optimizable approach. The rules seemed to be sufficient for textual extraction tasks of a certain typology of entities that are well characterized on a lexical and semantic level. Anticipation and modeling of this typology could be possible upstream of the textual extraction phase, in order to differentiate, depending on each type of entity, to what extent machine learning should replace the rules. The thesis demonstrated that a close attention to a certain number of data science challenges allowed the efficient use of a CDW for various purposes in oncology
Matsubara, Shigeki. „Corpus-based Natural Language Processing“. INTELLIGENT MEDIA INTEGRATION NAGOYA UNIVERSITY / COE, 2004. http://hdl.handle.net/2237/10355.
Der volle Inhalt der QuelleSmith, Sydney. „Approaches to Natural Language Processing“. Scholarship @ Claremont, 2018. http://scholarship.claremont.edu/cmc_theses/1817.
Der volle Inhalt der QuelleStrandberg, Aron, und Patrik Karlström. „Processing Natural Language for the Spotify API : Are sophisticated natural language processing algorithms necessary when processing language in a limited scope?“ Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186867.
Der volle Inhalt der QuelleChen, Joseph C. H. „Quantum computation and natural language processing“. [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965581020.
Der volle Inhalt der QuelleKnight, Sylvia Frances. „Natural language processing for aerospace documentation“. Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621395.
Der volle Inhalt der QuelleNaphtal, Rachael (Rachael M. ). „Natural language processing based nutritional application“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100640.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 67-68).
The ability to accurately and eciently track nutritional intake is a powerful tool in combating obesity and other food related diseases. Currently, many methods used for this task are time consuming or easily abandoned; however, a natural language based application that converts spoken text to nutritional information could be a convenient and eective solution. This thesis describes the creation of an application that translates spoken food diaries into nutritional database entries. It explores dierent methods for solving the problem of converting brands, descriptions and food item names into entries in nutritional databases. Specifically, we constructed a cache of over 4,000 food items, and also created a variety of methods to allow refinement of database mappings. We also explored methods of dealing with ambiguous quantity descriptions and the mapping of spoken quantity values to numerical units. When assessed by 500 users entering their daily meals on Amazon Mechanical Turk, the system was able to map 83.8% of the correctly interpreted spoken food items to relevant nutritional database entries. It was also able to nd a logical quantity for 92.2% of the correct food entries. Overall, this system shows a signicant step towards the intelligent conversion of spoken food diaries to actual nutritional feedback.
by Rachael Naphtal.
M. Eng.
Eriksson, Simon. „COMPARING NATURAL LANGUAGE PROCESSING TO STRUCTURED QUERY LANGUAGE ALGORITHMS“. Thesis, Umeå universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-163310.
Der volle Inhalt der QuelleKesarwani, Vaibhav. „Automatic Poetry Classification Using Natural Language Processing“. Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37309.
Der volle Inhalt der QuellePham, Son Bao Computer Science & Engineering Faculty of Engineering UNSW. „Incremental knowledge acquisition for natural language processing“. Awarded by:University of New South Wales. School of Computer Science and Engineering, 2006. http://handle.unsw.edu.au/1959.4/26299.
Der volle Inhalt der Quelle張少能 und Siu-nang Bruce Cheung. „A concise framework of natural language processing“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31208563.
Der volle Inhalt der QuelleCahill, Lynne Julie. „Syllable-based morphology for natural language processing“. Thesis, University of Sussex, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386529.
Der volle Inhalt der QuelleLei, Tao Ph D. Massachusetts Institute of Technology. „Interpretable neural models for natural language processing“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108990.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 109-119).
The success of neural network models often comes at a cost of interpretability. This thesis addresses the problem by providing justifications behind the model's structure and predictions. In the first part of this thesis, we present a class of sequence operations for text processing. The proposed component generalizes from convolution operations and gated aggregations. As justifications, we relate this component to string kernels, i.e. functions measuring the similarity between sequences, and demonstrate how it encodes the efficient kernel computing algorithm into its structure. The proposed model achieves state-of-the-art or competitive results compared to alternative architectures (such as LSTMs and CNNs) across several NLP applications. In the second part, we learn rationales behind the model's prediction by extracting input pieces as supporting evidence. Rationales are tailored to be short and coherent, yet sufficient for making the same prediction. Our approach combines two modular components, generator and encoder, which are trained to operate well together. The generator specifies a distribution over text fragments as candidate rationales and these are passed through the encoder for prediction. Rationales are never given during training. Instead, the model is regularized by the desiderata for rationales. We demonstrate the effectiveness of this learning framework in applications such multi-aspect sentiment analysis. Our method achieves a performance over 90% evaluated against manual annotated rationales.
by Tao Lei.
Ph. D.
Grinman, Alex J. „Natural language processing on encrypted patient data“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/113438.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 85-86).
While many industries can benefit from machine learning techniques for data analysis, they often do not have the technical expertise nor computational power to do so. Therefore, many organizations would benefit from outsourcing their data analysis. Yet, stringent data privacy policies prevent outsourcing sensitive data and may stop the delegation of data analysis in its tracks. In this thesis, we put forth a two-party system where one party capable of powerful computation can run certain machine learning algorithms from the natural language processing domain on the second party's data, where the first party is limited to learning only specific functions of the second party's data and nothing else. Our system provides simple cryptographic schemes for locating keywords, matching approximate regular expressions, and computing frequency analysis on encrypted data. We present a full implementation of this system in the form of a extendible software library and a command line interface. Finally, we discuss a medical case study where we used our system to run a suite of unmodified machine learning algorithms on encrypted free text patient notes.
by Alex J. Grinman.
M. Eng.
Alharthi, Haifa. „Natural Language Processing for Book Recommender Systems“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39134.
Der volle Inhalt der QuelleMedlock, Benjamin William. „Investigating classification for natural language processing tasks“. Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611949.
Der volle Inhalt der QuelleHuang, Yin Jou. „Event Centric Approaches in Natural Language Processing“. Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/265210.
Der volle Inhalt der QuelleWoldemariam, Yonas Demeke. „Natural language processing in cross-media analysis“. Licentiate thesis, Umeå universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147640.
Der volle Inhalt der QuelleCheung, Siu-nang Bruce. „A concise framework of natural language processing /“. [Hong Kong : University of Hong Kong], 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12432544.
Der volle Inhalt der QuelleDawborn, Timothy James. „DOCREP: Document Representation for Natural Language Processing“. Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14767.
Der volle Inhalt der QuelleMiao, Yishu. „Deep generative models for natural language processing“. Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:e4e1f1f9-e507-4754-a0ab-0246f1e1e258.
Der volle Inhalt der QuelleHu, Jin. „Explainable Deep Learning for Natural Language Processing“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254886.
Der volle Inhalt der QuelleDjupa inlärningsmetoder får imponerande prestanda i många naturliga Neural Processing (NLP) uppgifter, men det är fortfarande svårt att veta vad hände inne i ett djupt neuralt nätverk. I denna avhandling, en allmän översikt av förklarliga AI och hur förklarliga djupa inlärningsmetoder tillämpas för NLP-uppgifter ges. Då den bi-riktiga LSTM och CRF (BiLSTM-CRF) modell för Named Entity Recognition (NER) uppgift införs, liksom tillvägagångssättet för att göra denna modell förklarlig. De tillvägagångssätt för att visualisera vikten av neuroner i BiLSTM-skiktet av Modellen för NER genom Layer-Wise Relevance Propagation (LRP) föreslås, som kan mäta hur neuroner bidrar till varje förutsägelse av ett ord i en sekvens. Idéer om hur man mäter påverkan av CRF-skiktet i Bi-LSTM-CRF-modellen beskrivs också.
Gainon, de Forsan de Gabriac Clara. „Deep Natural Language Processing for User Representation“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS274.
Der volle Inhalt der QuelleThe last decade has witnessed the impressive expansion of Deep Learning (DL) methods, both in academic research and the private sector. This success can be explained by the ability DL to model ever more complex entities. In particular, Representation Learning methods focus on building latent representations from heterogeneous data that are versatile and re-usable, namely in Natural Language Processing (NLP). In parallel, the ever-growing number of systems relying on user data brings its own lot of challenges. This work proposes methods to leverage the representation power of NLP in order to learn rich and versatile user representations.Firstly, we detail the works and domains associated with this thesis. We study Recommendation. We then go over recent NLP advances and how they can be applied to leverage user-generated texts, before detailing Generative models.Secondly, we present a Recommender System (RS) that is based on the combination of a traditional Matrix Factorization (MF) representation method and a sentiment analysis model. The association of those modules forms a dual model that is trained on user reviews for rating prediction. Experiments show that, on top of improving performances, the model allows us to better understand what the user is really interested in in a given item, as well as to provide explanations to the suggestions made.Finally, we introduce a new task-centered on UR: Professional Profile Learning. We thus propose an NLP-based framework, to learn and evaluate professional profiles on different tasks, including next job generation
Guy, Alison. „Logical expressions in natural language conditionals“. Thesis, University of Sunderland, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278644.
Der volle Inhalt der QuelleBannour, Nesrine. „Information Extraction from Electronic Health Records : Studies on temporal ordering, privacy and environmental impact“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG082.
Der volle Inhalt der QuelleAutomatically extracting rich information contained in Electronic Health Records (EHRs) is crucial to improve clinical research. However, most of this information is in the form of unstructured text.The complexity and the sensitive nature of clinical text involve further challenges. As a result, sharing data is difficult in practice and is governed by regulations. Neural-based models showed impressive results for Information Extraction, but they need significant amounts of manually annotated data, which is often limited, particularly for non-English languages. Thus, the performance is still not ideal for practical use. In addition to privacy issues, using deep learning models has a significant environmental impact.In this thesis, we develop methods and resources for clinical Named Entity Recognition (NER) and Temporal Relation Extraction (TRE) in French clinical narratives.Specifically, we propose a privacy-preserving mimic models architecture by exploring the mimic learning approach to enable knowledge transfer through a teacher model trained on a private corpus to a student model. This student model could be publicly shared without disclosing the original sensitive data or the private teacher model on which it was trained. Our strategy offers a good compromise between performance and data privacy preservation.Then, we introduce a novel event- and task-independent representation of temporal relations. Our representation enables identifying homogeneous text portions from a temporal standpoint and classifying the relation between each text portion and the document creation time. This makes the annotation and extraction of temporal relations easier and reproducible through different event types, as no prior definition and extraction of events is required.Finally, we conduct a comparative analysis of existing tools for measuring the carbon emissions of NLP models. We adopt one of the studied tools to calculate the carbon footprint of all our created models during the thesis, as we consider it a first step toward increasing awareness and control of their environmental impact.To summarize, we generate shareable privacy-preserving NER models that clinicians can efficiently use. We also demonstrate that the TRE task may be tackled independently of the application domain and that good results can be obtained using real-world oncology clinical notes
Walker, Alden. „Natural language interaction with robots“. Diss., Connect to the thesis, 2007. http://hdl.handle.net/10066/1275.
Der volle Inhalt der QuelleFuchs, Gil Emanuel. „Practical natural language processing question answering using graphs /“. Diss., Digital Dissertations Database. Restricted to UC campuses, 2004. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleKolak, Okan. „Rapid resource transfer for multilingual natural language processing“. College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3182.
Der volle Inhalt der QuelleThesis research directed by: Dept. of Linguistics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Takeda, Koichi. „Building Natural Language Processing Applications Using Descriptive Models“. 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120372.
Der volle Inhalt der QuelleÅkerud, Daniel, und Henrik Rendlo. „Natural Language Processing from a Software Engineering Perspective“. Thesis, Blekinge Tekniska Högskola, Avdelningen för programvarusystem, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2056.
Der volle Inhalt der QuelleByström, Adam. „From Intent to Code : Using Natural Language Processing“. Thesis, Uppsala universitet, Avdelningen för datalogi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325238.
Der volle Inhalt der QuelleBigert, Johnny. „Automatic and unsupervised methods in natural language processing“. Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156.
Der volle Inhalt der QuelleCohn, Trevor A. „Scaling conditional random fields for natural language processing /“. Connect to thesis, 2007. http://eprints.unimelb.edu.au/archive/00002874.
Der volle Inhalt der QuelleZhang, Lidan, und 张丽丹. „Exploiting linguistic knowledge for statistical natural language processing“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46506299.
Der volle Inhalt der Quelle