Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Climates changes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Climates changes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Climates changes"
Lelono, Eko Budi, und Robert J. Morley. „Oligocene Climate Changes of Java“. Scientific Contributions Oil and Gas 34, Nr. 3 (14.03.2022): 169–76. http://dx.doi.org/10.29017/scog.34.3.803.
Der volle Inhalt der QuelleZajch, Andrew, William A. Gough und Giacomo Chiesa. „Earth–Air Heat Exchanger Geo-Climatic Suitability for Projected Climate Change Scenarios in the Americas“. Sustainability 12, Nr. 24 (18.12.2020): 10613. http://dx.doi.org/10.3390/su122410613.
Der volle Inhalt der QuelleDubois, Emmanuel, Marie Larocque, Sylvain Gagné und Marco Braun. „Climate Change Impacts on Groundwater Recharge in Cold and Humid Climates: Controlling Processes and Thresholds“. Climate 10, Nr. 1 (12.01.2022): 6. http://dx.doi.org/10.3390/cli10010006.
Der volle Inhalt der QuelleHarrison, Susan, Marko J. Spasojevic und Daijiang Li. „Climate and plant community diversity in space and time“. Proceedings of the National Academy of Sciences 117, Nr. 9 (18.02.2020): 4464–70. http://dx.doi.org/10.1073/pnas.1921724117.
Der volle Inhalt der QuelleKwon, Minsung, und Jang Hyun Sung. „Changes in Future Drought with HadGEM2-AO Projections“. Water 11, Nr. 2 (12.02.2019): 312. http://dx.doi.org/10.3390/w11020312.
Der volle Inhalt der QuelleBryson, Reid A. „Simulating Past and Forecasting Future Climates“. Environmental Conservation 20, Nr. 4 (1993): 339–46. http://dx.doi.org/10.1017/s0376892900023547.
Der volle Inhalt der QuelleMcGee, David. „Glacial–Interglacial Precipitation Changes“. Annual Review of Marine Science 12, Nr. 1 (03.01.2020): 525–57. http://dx.doi.org/10.1146/annurev-marine-010419-010859.
Der volle Inhalt der QuelleRuget, F., J. C. Moreau, M. Ferrand, S. Poisson, P. Gate, B. Lacroix, J. Lorgeou, E. Cloppet und F. Souverain. „Describing the possible climate changes in France and some examples of their effects on main crops used in livestock systems“. Advances in Science and Research 4, Nr. 1 (02.08.2010): 99–104. http://dx.doi.org/10.5194/asr-4-99-2010.
Der volle Inhalt der QuelleChiesa, Giacomo. „Climatic potential maps of ventilative cooling techniques in Italian climates including resilience to climate changes“. IOP Conference Series: Materials Science and Engineering 609 (23.10.2019): 032039. http://dx.doi.org/10.1088/1757-899x/609/3/032039.
Der volle Inhalt der QuelleBarcellos, Afonso Lopes, Renata Da Silva Pereira Saccol, Nathalia Leal Carvalho und Luana Filippin Rosa. „A simple reflection on climate change“. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental 23 (01.06.2019): 18. http://dx.doi.org/10.5902/2236117034387.
Der volle Inhalt der QuelleDissertationen zum Thema "Climates changes"
Bahadur, Aditya Vansh. „Policy climates and climate policies : analysing the politics of building resilience to climate change“. Thesis, University of Sussex, 2014. http://sro.sussex.ac.uk/id/eprint/48873/.
Der volle Inhalt der QuelleRupper, Summer Burton. „Glacier sensitivity and regional climate : past and present /“. Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/6728.
Der volle Inhalt der QuelleVan, Niekerk Christiaan Hermanus. „Past and present climates : owl pellet composition as an indicator of local climatic change“. Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52395.
Der volle Inhalt der QuelleENGLISH ABSTRACT: During Holocene times a considerable deposit of barn owl pellet material accumulated in the Hot Pot Cave at De Hoop Nature Reserve on the southern coast of the Western Cape Province, South Africa. An excavation of this accumulation has yielded information on barn owl prey species over the past some two millennia. Four distinct layers were excavated and radiocarbon-dated to AD 381, AD 615, AD 991 and AD 1417. The micromammalian cranial contents of these layers were compared to material from two pellet collections that represent modem bam owl predation at De Hoop (AD 2000). Comparisons were made from three perspectives: (1) physical size measurements of certain cranial parameters, (2) micromammal community species composition and (3) community structure indices, such as the Shannon-Wiener diversity index, Simpson's diversity index and the species equitability index. By extrapolating from known ecological distribution information of the relevant prey species, these data were used to recreate the local climate at the time of the accumulation of the layers. The results were compared to other palaeoclimate models for the region as a test of validity. It was found that the lower two layers of the sequence represented mild conditions with possibly more grass than in recent times, while the upper layers represented cool weather with a possible increase in scrub. AD 381 was found to be somewhat dry and mild, AD 615 to be the wettest level and possibly milder than AD 381, AD 991 to be the coolest of all the levels and dryest of the ancient levels, AD 1417 to be somewhat cool and probably drier than AD 615, but wetter than AD 381, and AD 2000 to be the mildest and dryest of all levels, with the artificial influence of nearby agricultural activities evident.
AFRIKAANSE OPSOMMING: Tydens die Holoseen tydperk het 'n relatief groot hoeveelheid nonnietjie-uil bolusmateriaal versamel in Hot Pot Grot in die De Hoop Natuurreservaat aan die Wes-Kaapse suidkus, Suid- Afrika. Opgrawings van hierdie bolusversameling het waardevolle en insiggewende inligting aandie lig gebring rakende nonnetjie-uil prooi tydens ongeveer die afgelope tweeduisend jaar. Vier defnitiewe lae is opgegrawe en deur radiodatering is die lae se datums vasgestelop 381, 615, 991 en 1417 n.e. Deur gebruik te maak van kraniale kriteria. is die mikrosoogdier inhoud van die opgrawings vergelyk met dié van twee bolusversamelings wat die huidige uilprooi (2000 n.Ci) in De Hoop verteenwoordig. Die vergelykings is op drie maniere getref: (1) fisiese grootternates van sekere kraniale parameters, (2) species-samestelling van die mikrosoogdiergemeenskap en (3) gemeenskap-struktuur indekse nl. die Shannon-Wiener diversiteitsindeks, Simpson se diversiteitsindeks en die species-gelykheid indeks. Deur ekstrapolasie vanaf bekende ekologiese verspreidingsinligting rakende die betrokke species, is hierdie data gebruik om die klimaat van daardie tydperke te herskep op 'n streeksbasis en vergelyk met ander paleoklimaat-modelle om die geldigheid daarvan te beproef. Die resultate het getoon dat die onderste (oudste) twee lae warmer toestande met moontlik meer gras verteenwoordig, terwyl die boonste twee lae koeler weer met moontlik meer bosse verteenwoordig. Daar is verder gevind dat 381 n.e. redelik droog en warm was, 615 n.e. die natste laag en moontlik warmer as 381 n.e., 991 n.e. die koudste van al die lae en droogste van die grot-lae, 1417 n.e. redelik koel en moontlik droëer as 615 n.e., maar natter as 381 n.e., en 2000 n.C. die warmste en droogste van al die lae, met kunsmatige invloed van nabygeleë landbou aktiwiteite.
Romanova, Vanya. „Stability of the climate system and extreme climates in model experiments = Stabilität des Klimasystems und extreme Klimate in Modellexperimenten /“. Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung, 2005. http://www.gbv.de/dms/goettingen/495760498.pdf.
Der volle Inhalt der QuelleHeard, Joshua Andrews. „Late Pleistocene and Holocene Aged Glacial and Climatic Reconstructions in the Goat Rocks Wilderness, Washington, United States“. PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/557.
Der volle Inhalt der QuelleYoung, Seth Allen. „A chemostratigraphic investigation of the late Ordovician greenhouse to icehouse transition oceanographic, climatic, and tectonic implications /“. Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1201628490.
Der volle Inhalt der QuelleTidwell, Amy C. „Assessing the impacts of climate change on river basin management a new method with application to the Nile river/“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19830.
Der volle Inhalt der QuelleCommittee Chair: Georgakakos, Aris; Committee Member: Fu, Rong; Committee Member: Peters-Lidard, Christa; Committee Member: Roberts, Phil; Committee Member: Sturm, Terry; Committee Member: Webster, Don.
Sandu, Suwin. „Assessment of carbon tax as a policy option for reducing carbon-dioxide emissions in Australia“. Electronic version, 2007. http://hdl.handle.net/2100/535.
Der volle Inhalt der QuelleThis research has analysed the economy-wide impacts of carbon tax as a policy option to reduce the rate of growth of carbon-dioxide emissions from the electricity sector in Australia. These impacts are analysed for energy and non energy sectors of the economy. An energy-oriented Input–Output framework, with ‘flexible’ production functions, based on Translog and Cobb-Douglas formulations, is employed for the analysis of various impacts. Further, two alternative conceptions of carbon tax are considered in this research, namely, based on Polluter Pays Principle (PPP) and Shared Responsibility Principle (SRP). In the first instance, the impacts are analysed, for the period 2005–2020, for tax levels of $10 and $20 per tonne of CO2, in a situation of no a-priori limit on CO2 emissions. The analysis shows that CO2 emissions from the electricity sector, when carbon tax is based on PPP, would be 211 and 152 Mt, for tax levels of $10 and $20, respectively (as compared to 250 Mt in the Base Case scenario, that is, the business-as-usual-case). The net economic costs, corresponding with these tax levels, expressed in present value terms, would be $27 and $49 billion, respectively, over the period 2005-2020. These economic costs are equivalent to 0.43 and 0.78 per cent of the estimated GDP of Australia. Further, most of the economic burden, in this instance, would fall on the electricity sector, particularly coal-fired electricity generators – large consumers of direct fossil fuel. On the other hand, in the case of a carbon tax based on SRP, CO2 emissions would be 172 and 116 Mt, for tax levels of $10 and $20, respectively. The corresponding net economic costs would be $47 (0.74 per cent of GDP) and $84 (1.34 per cent of GDP) billion, respectively, with significant burden felt by the commercial sector – large consumers of indirect energy and materials whose production would contribute to CO2 emissions. Next, the impacts are analysed by placing an a-priori limit on CO2 emissions from the electricity sector – equivalent to 108 per cent of the 1990 level (that is, 138 Mt), by the year 2020. Two cases are analysed, namely, early action (carbon tax introduced in 2005) and deferred action (carbon tax introduced in 2010). In the case of early action, the analysis suggests, carbon tax of $25 and $15, based on PPP and SRP, respectively, would be required to achieve the above noted emissions target. The corresponding tax levels in the case of deferred action are $51 and $26, respectively. This research also shows that the net economic costs, in the case of early action, would be $32 billion (for PPP) and $18 billion (for SRP) higher than those in the case of deferred action. However, this research has demonstrated, that this inference is largely due to the selection of particular indicator (that is, present value) and the relatively short time frame (that is, 2005–2020) for analysis. By extending the time frame of the analysis to the year 2040, the case for an early introduction of carbon tax strengthens. Overall, the analysis in this research suggests that an immediate introduction of carbon tax, based on SRP, is the most attractive approach to reduce the rate of growth of CO2 emissions from the electricity sector and to simultaneously meet economic and social objectives. If the decision to introduce such a tax is deferred, it would be rather difficult to achieve not only environmental objectives but economic and social objectives as well.
Gramcianinov, Carolina Barnez. „Changes in South Atlantic Cyclones due Climate Change“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/14/14133/tde-03122018-151737/.
Der volle Inhalt der QuelleA distribuição e intensidade dos ciclones afeta diretamente as atividades humanas devido a precipitação e fortes ventos associados a esses sistemas. O objetivo principal deste trabalho é entender as mudanças nos ciclones gerados no Atlântico Sul devido às mudanças climáticas, focando em seus mecanismos geradores e intensificadores. Os ciclones foram identificados e rastreados utilizando a vorticidade relativa em 850hPa, calculada a partir do campo de ventos horizontal. Também foram usadas composições centradas para a análise da estrutura e evolução dos ciclones durante seu desenvolvimento. A climatologia de ciclones feita com o NCEP-CFSR mostra quatro regiões ciclogenéticas principais no Oceano Atlântico Sul: na costa sul do Brasil (SE-BR, 30°S), sobre o continente próximo da desembocadura do Rio da Prata (LA PLATA, 35°S), na costa sudeste da Argentina (ARG, 40°S-55°S) e no Sudeste do Atlântico (SE-SAO, centrada em 55°S, 10°W). Para analisar as mudanças no desenvolvimento dos ciclones, nós utilizamos os experimentos histórico (1980-2005) e RCP8.5 (2074-2099) do HadGEM2-ES (CMIP5). O HadGEM2-ES é capaz de reapresentar as principais características dos ciclones do Atlântico Sul, quando comparado à climatologia. No entanto, existe uma subestimativa do número de ciclones no lado equatorial da região de máxima atividade ciclônica, principalmente na região LA PLATA. A projeção futura HadGEM2-ES no cenário RCP8.5 mostra uma redução de aproximadamente 10% na ciclogêneses no domínio do Atlântico Sul, principalmente associada ao deslocamento em direção ao polo da região de máxima atividade ciclônica. Porém, a região LA PLATA apresenta um pequeno aumento em sua atividade ciclogenética (6.1 e 3.6%), no verão e inverno, respectivamente). O aumento na ciclogênese em 30°S está associada ao fortalecimento do jato de altos níveis e ao aumento da advecção quente e de umidade nessa localidade. O aumento do transporte de umidade dos trópicos está associado também à intensificação dos ciclones observada na projeção futura, principalmente ao norte de 35°S. Por fim, uma regionalização com o modelo WRF foi usada para melhorar a resolução do modelo climático. Porém, as simulações regionais subestimaram os ciclones em número e intensidade. A única região que em as regionalizações apresentaram melhor desempenho foi a LA PLATA, devido a uma melhor representação de feições locais associadas a orografia e processos úmidos. A regionalização do cenário futuro RCP8.5 também apresentou aumento da ciclogênese do LA PLATA, mas para o inverno. Tanto a projeção RCP8.5 do HadGEM2-ES quanto sua regionalização mostram que a ciclogênese em algumas regiões da América do Sul está aumentando, principalmente devido ao aumento de umidade em baixos níveis da atmosfera e fortalecimento do lado ramo equatorial do jato de altos níveis. Os ciclones nessas localidades serão intensos (entre 20°S e 30°S) e tendem a afetar uma região mais próxima à costa.
Van, Huyssteen Roelof Cornelis. „Regulatory aspects of carbon credits and carbon markets“. Thesis, Nelson Mandela Metropolitan University, 2015. http://hdl.handle.net/10948/5086.
Der volle Inhalt der QuelleBücher zum Thema "Climates changes"
Keith, Lye. Equatorial climates. Austin, Tex: Raintree Steck-Vaughn, 1997.
Den vollen Inhalt der Quelle findenFrancou, Bernard. Les glaciers, à l'épreuve du climat. Paris: IRD Éditions : Éditions Belin, 2007.
Den vollen Inhalt der Quelle findenBroecker, Wallace S. The glacial world according to Wally. Palisades,NY: Eldigio Press, 1995.
Den vollen Inhalt der Quelle findenGritzner, Charles F. Changing climates. New York: Chelsea House Publishers, 2009.
Den vollen Inhalt der Quelle findenGritzner, Charles F. Changing climates. New York: Chelsea House Publishers, 2010.
Den vollen Inhalt der Quelle findenTurney, Chris. Ice, mud and blood: Lessons from climates past. London: Macmillan, 2008.
Den vollen Inhalt der Quelle findenMartin, Beniston, Hrsg. Mountain environments in changing climates. London: Routledge, 1994.
Den vollen Inhalt der Quelle findenGebauer, Claudia. Changing climates: Translating adaptation in/to Rwanda. Berlin: LIT Verlag, 2017.
Den vollen Inhalt der Quelle finden1940-, Greenland David, Long-Term Ecological Research Program. Climatology Committee., University of Colorado, Boulder. Institute of Arctic and Alpine Research. und National Science Foundation (U.S.). Division of Biotic Systems and Resources., Hrsg. The Climates of the long-term ecological research sites. Boulder, Colo: University of Colorado, Institute of Arctic and Alpine Research, 1987.
Den vollen Inhalt der Quelle findenWeidick, Anker. Neoglacial and historical glacier changes around Kangersuneq Fjord in southern West Greenland. Copenhagen: Geological Survey of Denmark and Greenland, Danish Ministry of Climate and Energy, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Climates changes"
Montmessin, F. „The Orbital Forcing of Climate Changes on Mars“. In Solar Variability and Planetary Climates, 457–72. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-48341-2_37.
Der volle Inhalt der QuellePanyushkina, Irina P. „Climate-Induced Changes in Population Dynamics of Siberian Scythians (700-250 B.C.)“. In Climates, Landscapes, and Civilizations, 145–54. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/2012gm001220.
Der volle Inhalt der QuelleRen, Diandong. „Changes in Extreme Precipitation in a Future Warming Climate“. In Storm-triggered Landslides in Warmer Climates, 155–207. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08518-0_7.
Der volle Inhalt der QuelleKaryono, Tri Harso. „Behavioural Changes May Affect Changes in Comfort Temperature of Indonesian People“. In Sustainable Houses and Living in the Hot-Humid Climates of Asia, 219–24. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8465-2_21.
Der volle Inhalt der QuelleWeisse, Ralf, und Hans von Storch. „Past and future changes in wind, wave, and storm surge climates“. In Marine Climate and Climate Change, 165–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68491-6_5.
Der volle Inhalt der QuelleMcGlone, Matt S. „The response of New Zealand forest diversity to Quaternary climates“. In Past and Future Rapid Environmental Changes, 73–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60599-4_5.
Der volle Inhalt der QuellePaterson, Shona K., und Kristen Guida. „Bridging Gaps: Connecting Climate Change Risk Assessments with Disaster Risk Reduction and Climate Change Adaptation Agendas“. In Creating Resilient Futures, 65–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80791-7_4.
Der volle Inhalt der QuelleKovar-Eder, J., R. Givulescu, L. Hably, Z. Kvacek, D. Mihajlovic, J. Teslenko, H. Walther und E. Zastawniak. „Floristic Changes in the Areas Surrounding the Paratethys during Neogene Time“. In Cenozoic Plants and Climates of the Arctic, 347–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79378-3_23.
Der volle Inhalt der QuelleNayak, Sridhara, und Tetsuya Takemi. „Assessing the Impact of Climate Change on Temperature and Precipitation Over India“. In Natural Disaster Science and Mitigation Engineering: DPRI reports, 121–42. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2904-4_4.
Der volle Inhalt der QuelleShishov, Vladimir V., Alberto Arzac, Margarita I. Popkova, Bao Yang, Minhui He und Eugene A. Vaganov. „Experimental and Theoretical Analysis of Tree-Ring Growth in Cold Climates“. In Advances in Global Change Research, 295–321. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15988-6_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Climates changes"
Zhou, Shijia, Siyao Peng und Barbara Plank. „CLIMATELI: Evaluating Entity Linking on Climate Change Data“. In Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024), 215–22. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.climatenlp-1.16.
Der volle Inhalt der QuelleKrarti, Moncef. „Evaluation of the Energy Efficiency Effectiveness of Cool Roofs for Residential Applications“. In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6613.
Der volle Inhalt der QuelleGaudenyi, Tivadar. „LOESS OF SERBIA—FROM PALEOCLIMATE TO WINEYARDS“. In Book of Abstracts and Contributed Papers, 10. Geographical Institute "Jovan Cvijić" SASA, 2024. http://dx.doi.org/10.46793/csge5.05tg.
Der volle Inhalt der QuelleSequera, Pedro, Osei Rhone, Jorge E. Gonza´lez, Amanuel T. Ghebreegziabher, Robert Bornstein und Bereket Lebassi. „Impacts of Climate Changes in the Northern Pacific Coast on Related Regional Scale Energy Demands“. In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54708.
Der volle Inhalt der QuelleMihajlović, Jovan, Dragan Burić und Miroslav Doderović. „REVISED THORNTHWAITE CLIMATE CLASSIFICATION FOR MONTENEGRO (1961–2020)“. In Book of Abstracts and Contributed Papers, 18. Geographical Institute "Jovan Cvijić" SASA, 2024. http://dx.doi.org/10.46793/csge5.11jm.
Der volle Inhalt der QuelleSherman, Elisheva, und Lauren Neitzke Adamo. „CHANGING OCEANS AND CHANGING CLIMATES: EXAMINING DEEP-WATER CIRCULATION CHANGES ON GARDAR DRIFT“. In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-341324.
Der volle Inhalt der QuelleLohan, John, Niall Burke und Michael Greene. „Climate Variables That Influence the Thermal Performance of Horizontal Collector Ground Source Heat Pumps“. In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95589.
Der volle Inhalt der QuelleMall, Martin, Ulo Suursaar, Tomoya Shibayama und Ryota Nakamura. „Modeling Cyclone-Related Precipitation Changes in Future Climates Using WRF Model and CMIP5 Output Data“. In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8900309.
Der volle Inhalt der QuelleGrekin, Rebecca, und Jacques de Chalendar. „Leveraging HVAC Set Point Changes for Operational Energy Performance Efficiency and Flexibility in Commercial Buildings: Experiments in a Moist Climate Zone“. In ASME 2023 17th International Conference on Energy Sustainability collocated with the ASME 2023 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/es2023-107885.
Der volle Inhalt der QuelleSosa, María Belén, Erica Correa und María Alicia Cantón. „Urban cooling strategies applying at neighborhood scale for facing heatwave events“. In XVII ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO. ANTAC, 2023. http://dx.doi.org/10.46421/encac.v17i1.4139.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Climates changes"
Näslund-Hadley, Emma, María Clara Ramos, Juan Roberto Paredes, Ángela Bolivar und Gustavo Wilches-Chaux. Our Climate is Changing. Inter-American Development Bank, Januar 2015. http://dx.doi.org/10.18235/0006273.
Der volle Inhalt der QuelleKleman, Isabella. Onion storage diseases and their headspace volatiles. Faculty of Landscape Architecture, Horticulture and Crop Production Science, Swedish University of Agricultural Sciences, 2023. http://dx.doi.org/10.54612/a.602791tdo5.
Der volle Inhalt der QuelleLavender, B. Weathering the changes - climate change in Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/212662.
Der volle Inhalt der QuelleLawrence, David, Mike Tercek, Amber Runyon und Jeneva Wright. Historical and projected climate change for Grand Canyon National Park and surrounding areas. National Park Service, 2024. http://dx.doi.org/10.36967/2301726.
Der volle Inhalt der QuelleDuffy, Katie, Kelly De Bruin, Loïc Henry, Clement Kyei, Anne Nolan und Brendan Walsh. Health impacts of climate change and mitigation policies in Ireland. ESRI, Juli 2024. http://dx.doi.org/10.26504/rs188.
Der volle Inhalt der QuelleHadley, Stanton W., David J. Erickson III und Jose L. Hernandez Figueroa. Modeling U.S. Energy Use Changes with Global Climate Change. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/974607.
Der volle Inhalt der QuelleBrandt, Leslie A., Cait Rottler, Wendy S. Gordon, Stacey L. Clark, Lisa O'Donnell, April Rose, Annamarie Rutledge und Emily King. Vulnerability of Austin’s urban forest and natural areas: A report from the Urban Forestry Climate Change Response Framework. U.S. Department of Agriculture, Northern Forests Climate Hub, Oktober 2020. http://dx.doi.org/10.32747/2020.7204069.ch.
Der volle Inhalt der QuelleAbdullah, Hannah, Karim Elgendy und Hanne Knaepen. Climate Resilience in Cities of the EU’s Southern Neighbourhood: Opportunities for the EU Green Deal. The Royal Institute of International Affairs, November 2021. http://dx.doi.org/10.55317/casc016.
Der volle Inhalt der QuelleSowa, Patience, Rachel Jordan, Wendi Ralaingita und Benjamin Piper. Higher Grounds: Practical Guidelines for Forging Learning Pathways in Upper Primary Education. RTI Press, Mai 2021. http://dx.doi.org/10.3768/rtipress.2021.op.0069.2105.
Der volle Inhalt der QuelleOstoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, Mark Battany und George Zhuang. Adapt - On-farm changes in the face of climate change: NRCS Area 3. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444387.ch.
Der volle Inhalt der Quelle