Auswahl der wissenschaftlichen Literatur zum Thema „Cleaning Industry“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cleaning Industry" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Cleaning Industry"

1

Perry, T. S. „Cleaning (electronics industry safety)“. IEEE Spectrum 30, Nr. 2 (Februar 1993): 20–26. http://dx.doi.org/10.1109/6.208358.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tomar, Prashant, und Preeti Khothiyal. „A REVIEW ON CLEANING VALIDATION FOR PHARMACEUTICAL INDUSTRY“. INDIAN RESEARCH JOURNAL OF PHARMACY AND SCIENCE 4, Nr. 2 (Juni 2017): 950–62. http://dx.doi.org/10.21276/irjps.2017.4.2.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Edser, Caroline. „Cleaning products industry embraces sustainability“. Focus on Surfactants 2007, Nr. 5 (Mai 2007): 1–2. http://dx.doi.org/10.1016/s1351-4210(07)70157-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Butler, John. „INTERNAL CLEANING — AN INDUSTRY VIEW“. Facilities 7, Nr. 2 (Februar 1989): 8–10. http://dx.doi.org/10.1108/eb006478.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Booth, Vicki. „Cleaning up the power industry“. Physics World 20, Nr. 3 (März 2007): 49. http://dx.doi.org/10.1088/2058-7058/20/3/38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mazonakis, Nikos E., Panagiota H. Karathanassi, Dimitrios P. Panagiotopoulos, Paraskevi G. Hamosfakidi und Dimitrios A. Melissos. „Cleaning validation in the toiletries industry“. Analytica Chimica Acta 467, Nr. 1-2 (September 2002): 261–66. http://dx.doi.org/10.1016/s0003-2670(02)00486-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Whelan, Kent F. „Heat cleaning for the coating industry“. Metal Finishing 98, Nr. 6 (Januar 2000): 500–506. http://dx.doi.org/10.1016/s0026-0576(00)80451-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Whelan, Kent F. „Heat cleaning for the coating industry“. Metal Finishing 97, Nr. 5 (Januar 1999): 488–94. http://dx.doi.org/10.1016/s0026-0576(99)80816-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bauer, Andrea. „Contact dermatitis in the cleaning industry“. Current Opinion in Allergy and Clinical Immunology 13, Nr. 5 (Oktober 2013): 521–24. http://dx.doi.org/10.1097/aci.0b013e328364ec21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bdiri, Bensghaier, Chaabane, Kozmai, Baklouti und Larchet. „Preliminary Study on Enzymatic-Based Cleaning of Cation-Exchange Membranes Used in Electrodialysis System in Red Wine Production“. Membranes 9, Nr. 9 (03.09.2019): 114. http://dx.doi.org/10.3390/membranes9090114.

Der volle Inhalt der Quelle
Annotation:
The use of enzymatic agents as biological solutions for cleaning ion-exchange membranes fouled by organic compounds during electrodialysis (ED) treatments in the food industry could be an interesting alternative to chemical cleanings implemented at an industrial scale. This paper is focused on testing the cleaning efficiency of three enzyme classes (β-glucanase, protease, and polyphenol oxidase) chosen for their specific actions on polysaccharides, proteins, and phenolic compounds, respectively, fouled on a homogeneous cation-exchange membrane (referred CMX-Sb) used for tartaric stabilization of red wine by ED in industry. First, enzymatic cleaning tests were performed using each enzyme solution separately with two different concentrations (0.1 and 1.0 g/L) at different incubation temperatures (30, 35, 40, 45, and 50 °C). The evolution of membrane parameters (electrical conductivity, ion-exchange capacity, and contact angle) was determined to estimate the efficiency of the membrane′s principal action as well as its side activities. Based on these tests, we determined the optimal operating conditions for optimal recovery of the studied characteristics. Then, cleaning with three successive enzyme solutions or the use of two enzymes simultaneously in an enzyme mixture were tested taking into account the optimal conditions of their enzymatic activity (concentration, temperatures, and pH). This study led to significant results, indicating effective external and internal cleaning by the studied enzymes (a recovery of at least 25% of the electrical conductivity, 14% of the ion-exchange capacity, and 12% of the contact angle), and demonstrated the presence of possible enzyme combinations for the enhancement of the global cleaning efficiency or reducing cleaning durations. These results prove, for the first time, the applicability of enzymatic cleanings to membranes, the inertia of their action towards polymer matrix to the extent that the choice of enzymes is specific to the fouling substrates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Cleaning Industry"

1

Tourdot, Justin M. „A comparison of wet manual cleaning processes to carbon dioxide cleaning processes in the semiconductor industry“. Online version, 2001. http://www.uwstout.edu/lib/thesis/2001/2001tourdotj.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Curran, Carmel. „Laser cleaning of microelectronic components for the semiconductor industry“. Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sinsheimer, Peter. „Fashioning a greener shade of clean integrating pollution prevention into public policy : the case of professional wet cleaning /“. Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1835200081&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Noyan, Mehmet Alican. „Self-cleaning optical surfaces for the inkjet and 3D printing industry“. Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456201.

Der volle Inhalt der Quelle
Annotation:
Liquid and solid repellent surfaces are key to many industries. For example, construction industry benefits from self-cleaning windows, cements, paints, roof tiles, and corrosion resistant surfaces, while easy-to-clean, antifingerprint and antibacterial surfaces are highly relevant for display applications. In inkjet and 3D printers, the unwanted deposition on the inner parts of raw materials in the form of liquid, aerosol or solid particulates may cause device malfunctioning. In particular, ink aerosol and powder may obstruct light passage in several key components, such as sensors and lamps. To address this, the thesis proposes and investigates novel designs and methods to reduce ink aerosol and powder contamination on transparent surfaces. In the first part, Joule heating and hydrophobicity against ink aerosol contamination are studied. The former effect is provided by a transparent conducting film (TCF), while the latter through a self-assembled monolayer (SAM) coating. The combination of the two effects reduce transmittance loss from an average of 10% to less than 1.5% in the presence of ink aerosol. Correspondingly, the area of the surface covered by ink decreases from around 45% to less than 2%. Results obtained with the glass substrates are subsequently extended to the plastic window of a commercial inkjet printer calibration sensor. Furthermore, effectiveness of the proposed self-cleaning surfaces inside an inkjet printer is demonstrated. In the second part, a technology called ¿electric curtain¿ is used to design a self-cleaning surface against powder contamination in 3D printers. Powders are the starting material for forming the objects and are largely present inside the printer. It is shown that an electric curtain can clean about 50% of the powder that deposits on the surface . The thesis also proposes a new electric curtain design consisting of a double electrode layer which significantly increases the particle removal efficacy to more than 70%, with plenty of margin of improvement. In summary, in this thesis novel self-cleaning transparent surfaces are proposed and their potential for inkjet and 3D printing industry is demonstrated in real operating conditions.
En la actualidad, el uso de superficies repelentes de partículas sólidas y líquidas es de gran importancia en el ámbito de la industria. Un caso concreto es el de la industria de la construcción, donde el uso de ventanas, cementos, pinturas y tejas que son “autolimpiables” junto con superficies resistentes a la corrosión son de gran utilidad. Asimismo, superficies fáciles de limpiar, antibacterianas y antihuella son de vital importancia para aplicaciones de visualización. En el caso concreto de las impresoras de tinta y 3D puede existir la deposición de partículas líquidas y solidas respectivamente, durante el funcionamiento de los equipos. Esto conlleva a un mal funcionamiento de las mismas ya que, tanto el aerosol procedente de las tintas como el polvo utilizado en las impresoras 3D, pueden obstruir el paso de la luz en los componentes principales de la impresora, como son los sensores y lámparas. Con el fin de solucionar las cuestiones descritas previamente, en esta tesis se ha desarrollado un nuevo diseño y procedimiento para reducir la contaminación provocada por los aerosoles y el polvo. En la primera parte, se estudia la reducción de la contaminación de aerosoles en el sensor de la impresora mediante dos vías, el calentamiento del mismo por efecto Joule y modificando químicamente la superficie del sensor transformándola en hidrofóbica. El efecto Joule se proporciona a través de una película conductora transparente (TCF), mientras que la hidrofobicidad se confiere mediante un revestimiento de monocapa autoensamblada (SAM). La combinación de ambos efectos hace que la pérdida de transmisión se reduzca de un 10% a un valor igual o inferior del 1.5%. Asimismo, el área recubierta por el aerosol disminuye de un 45% a un valor de 2%. Estos resultados obtenidos para substratos de vidrio se aplicaron posteriormente a una ventana de plástico de un sensor comercial utilizado en impresoras de tinta. Finalmente, se demuestra la efectividad del proceso propuesto (efecto Joule y SAM) al instalarse en una impresora industrial. En la segunda parte, una tecnología llamada “cortina eléctrica" se utiliza para diseñar una superficie de autolimpieza contra la contaminación de polvo en impresoras 3D. Los polvos son el material de partida para formar los objetos y están en gran parte presentes dentro de la impresora. Se muestra que una cortina eléctrica puede limpiar aproximadamente el 50% del polvo que se deposita en la superficie. La tesis también propone un nuevo diseño de cortina eléctrica consistente en una capa de doble electrodo que aumenta significativamente la eficacia de eliminación de partículas a más del 70%, con suficiente margen de mejora. En resumen, en esta tesis se proponen nuevas superficies transparentes de autolimpieza y se demuestra su potencial para la industria de impresión por inyección y 3D en condiciones reales de funcionamiento.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Atwell, Charlotte. „Improvement and optimisation of industrial process cleaning in the brewing industry“. Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3423.

Der volle Inhalt der Quelle
Annotation:
Heineken faces on-going business challenges due to the frequently increasing demand to attain more rigid production, sustainable, and financial targets. There are many factors which influence their ability to meet these targets within their production processes. One significant area which is often overlooked in industry is the limiting aspects within their cleaning in place (CIP) systems which includes; i) production down time, ii) cleaning costs, iii) effluent costs, and iv) quality control. This thesis details the work done in three projects completed by the research engineer for the EngD with Newcastle University in collaboration with Heineken. The aims of the projects were to benchmark the CIP costs within Bulmers fermentation area, to optimise the detergent cleaning phase of the CIP process for fermentation vessels, and to develop a predictive model to determine the theoretical end point of a cleaning process. The thesis also details business benefits which have been seen from the EngD. The research engineer has spent 3.5 years of the EngD working on site at Bulmers on the projects by i) collecting extensive data and site knowledge, ii) performing bench scale experiments, iii) analysis of results, and iv) on site verification of findings. The rest of the time was spent at Newcastle University for the taught section of the EngD, or performing pilot scale trials on the ZEAL pilot plant at Birmingham University. Based on the outcomes of the projects, the work done may be implemented to optimise the detergent CIP step, reduce chemical and water consumption, reduce effluent costs and reduce production down time. The predictive model may also be further developed for implementation on site to provide cost benefits in the same aspects of site cleaning. The overall implementation is predicted to save more than £2,000,000 per annum for Bulmers with the opportunity to be extended and provide comparable savings for all Heineken sites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yardi, Chaitanya Narendra. „Design of regulated velocity flow assurance device for petroleum industry“. Texas A&M University, 2004. http://hdl.handle.net/1969.1/1527.

Der volle Inhalt der Quelle
Annotation:
The petroleum industry faces problems in transportation of crude petroleum be- cause of the deposition of paraffins, hydrates and asphaltenes on the insides of the pipeline. These are conventionally removed using either chemical inhibitors or mechani- cal devices, called pigs, which travel through the pipeline and mechanically scrape away the deposits. These pigs are propelled by the pipeline product itself and hence travel at the same velocity as the product. Research has indicated that cleaning would be better if the pigs are traveling at a relatively constant velocity of around 70% of the product velocity. This research utilizes the concept of regulating the bypass flow velocity in order to maintain the pig velocity. The bypass flow is regulated by the control unit based on the feedback from the turbine flowmeter, which monitors the bypass flow. A motorized butterfly valve is used for actually controlling the bypass flow. In addition to cleaning, the proposed pig utilizes on-board electronics like accelerom- eter and pressure transducers to store the data gathered during the pig run. This data can then be analyzed and the condition of the pipeline predicted. Thus, this research addresses the problem of designing a pig to maintain a constant velocity in order to achieve better cleaning. It also helps gather elementary data that can be used to predict the internal conditions in the pipe.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lado, Karen M. (Karen Maria). „Immigrant workers in the cleaning industry : the Central American experience in Boston“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/68292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Emmerich, Jodi. „Cost analysis on the use of chamber cleaning agents nitrogen trifluoride and chlorine trifluoride in the semiconductor industry“. Online version, 1999. http://www.uwstout.edu/lib/thesis/1999/1999emmerichj.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Van, Dyke Stephanie A. „An analysis of chlorine trifluoride as an effective substitute for nitrogen triflouride in the chemical vapor deposition reactor cleaning process“. Online version, 1998. http://www.uwstout.edu/lib/thesis/1998/1998vandykes.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Crabbe, Tim John. „Multinational companies in the cleaning industry : local government privatisation, trade union responses and the European dimension“. Thesis, University of Glasgow, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259945.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Cleaning Industry"

1

Babington, Mary F., Anna Docktor, Margaret K. Strekal und Tonia P. Bell. Cleaning products. Cleveland: Freedonia Group, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McCarron, Brendan. BS5750 for the cleaning industry. Herausgegeben von Butler John. Northampton: Clavis, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Olivier, Lucie. Garment cleaning: Pollution control through wet cleaning. Montréal, Qué: Environment Canada, Environmental Protection Branch, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Office, Energy Efficiency. Energy efficiency in the dry-cleaning industry. London: Energy Efficiency Office, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bennett, Rod. Hygiene and cleaning in the fish industry. [UK]: Manpower Services Commission for Sea Fish Industry Authority, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

William, Thomas. Introduction to contract cleaning maintenance. Oakland, Calif: Marsh-Wentworth Pub. Co., 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Canada. Industry, Science and Technology Canada. Soap and cleaning compounds. Ottawa: Business Centre, Communications Branch, Industry, Science and Technology Canada, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

William, Thomas. Instructors manual (cleaning maintenance). Oakland, Calif: Marsh-Wentworth Pub. Co., 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Canada. Industry, Science and Technology Canada. Soap and cleaning compounds. Ottawa: Industry, Science and Technology Canada, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Stanga, Mario. Sanitation: Cleaning and disinfection in the food industry. Weinheim: Wiley-VCH, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Cleaning Industry"

1

Hackney, Cameron R., und Jon Porter. „Cleaning and Sanitation“. In The Seafood Industry, 268–90. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-2041-2_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Parkinson, Nina Gritzai. „Cleaning and Sanitation“. In The Seafood Industry, 297–307. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118229491.ch22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Singh, Manjit, und Jackie Fisher. „Cleaning and disinfection in the brewing industry“. In Brewing Microbiology, 337–66. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9250-5_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wheeler, Roy W. „Cleaning Process Lines in the Explosives Industry“. In ACS Symposium Series, 300–303. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0345.ch021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Singh, M., und J. Fisher. „Cleaning and disinfection in the brewing industry“. In Brewing Microbiology, 271–300. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4684-0038-0_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Singh, M., und J. Fisher. „Cleaning and disinfection in the brewing industry“. In Brewing Microbiology, 271–300. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-4679-2_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Littleton, Peter. „Cleaning and Disinfection in the Fish Canning Industry“. In Fish Canning Handbook, 262–82. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444323405.ch14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Louie, Winnie, und David Reuschlein. „Cleaning and Disinfection in the Bottled Water Industry“. In Technology of Bottled Water, 223–66. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444393330.ch8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bolz, Roger W. „2B Industry Applications Automated Cleaning of Rim Stock“. In Manufacturing Automation Management, 33. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2541-3_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tomas, Norton, und Brijesh K. Tiwari. „Sustainable Cleaning and Sanitation in the Food Industry“. In Sustainable Food Processing, 363–76. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118634301.ch15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Cleaning Industry"

1

Umemoto, Hiroshi, Hideaki Hayashi, Kazunori Takashima und Akira Mizuno. „Electrostatic Precipitators for Cleaning Diesel Exhaust“. In 2008 IEEE Industry Applications Society Annual Meeting (IAS). IEEE, 2008. http://dx.doi.org/10.1109/08ias.2008.97.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jehassi, O., und R. Kinsman. „462. Pollution Prevention in the Dry Cleaning Industry“. In AIHce 1996 - Health Care Industries Papers. AIHA, 1999. http://dx.doi.org/10.3320/1.2765149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zymbler, Mikhail, Yana Kraeva, Elizaveta Latypova, Sachin Kumar, Dmitry Shnayder und Alexander Basalaev. „Cleaning Sensor Data in Smart Heating Control System“. In 2020 Global Smart Industry Conference (GloSIC). IEEE, 2020. http://dx.doi.org/10.1109/glosic50886.2020.9267813.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhiyong Cheng, Juan Jia, Liang Zhong, Rui Guo, Chunlei Han und Richeng Zhu. „Development of insulator cleaning robot“. In 2016 4th International Conference on Applied Robotics for the Power Industry (CARPI). IEEE, 2016. http://dx.doi.org/10.1109/carpi.2016.7745641.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Culbert, I. M. „A Review of Cleaning Methods for Motor Windings“. In 2008 IEEE Cement Industry Technical Conference Record. IEEE, 2008. http://dx.doi.org/10.1109/citcon.2008.31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brems, Steven, Herbert Struyf, Marc Hauptmann, Elisabeth Camerotto, Paul Mertens und Stefan De Gendt. „Optimizing High Frequency Ultrasound Cleaning in the Semiconductor Industry“. In 8th International Symposium on Cavitation. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2826-7_236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Leivo, Charles, Jens Lange und Dan Ramshaw. „Reduced baghouse maintenance with LPHV pulse cleaning technology“. In 2014 IEEE-IAS/PCA Cement Industry Technical Conference. IEEE, 2014. http://dx.doi.org/10.1109/citcon.2014.6820120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zesch, W., S. Honold, Ph Roth und V. de Vries. „Automated boiler wall cleaning and inspection“. In 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI 2012). IEEE, 2012. http://dx.doi.org/10.1109/carpi.2012.6473368.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rodibaugh, Scott A. „Diesel Lube Oil Contaminant Size and Composition by Analysis of Solids Collected by Oil Cleaning Centrifuge“. In Earthmoving Industry Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Yahui, Wei Zhang, Jingyi Li, Guangyong Jin und Chenxiao Zhao. „Study on the mechanism of continuous laser cleaning of epoxy resin coating on Q235B steel“. In Global Intelligent Industry Conference 2020, herausgegeben von Liang Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2589825.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie