Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Clay catalyzed vinyl polymerization.

Zeitschriftenartikel zum Thema „Clay catalyzed vinyl polymerization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Clay catalyzed vinyl polymerization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Tsuchiya, Yoshikatsu, und Kiyoshi Endo. „Vanadium alkoxide catalyzed polymerization of vinyl chloride“. Journal of Polymer Science Part A: Polymer Chemistry 49, Nr. 4 (03.01.2011): 1006–12. http://dx.doi.org/10.1002/pola.24514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Satoh, Kotaro, und Masami Kamigaito. „Sequence-Controlled Vinyl Polymers by Transition Metal-Catalyzed Step-Growth and Living Radical Polymerizations“. MRS Proceedings 1613 (2014): 17–21. http://dx.doi.org/10.1557/opl.2014.153.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTThe metal-catalyzed step-growth radical polymerization was achieved to enable two systems for preparing tailored polymeric structures, i.e., sequence-regulated vinyl copolymer and periodically-functionalized polymer. The former is a novel strategy for preparing sequence-regulated vinyl copolymers by step-polymerization of sequence-regulated vinyl oligomers prepared from common vinyl monomers as building blocks. The later deals the simultaneous chain- and step-growth radical polymerization, which resulted in the polymers with periodic functional groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Knutson, Phil C., Aaron J. Teator, Travis P. Varner, Caleb T. Kozuszek, Paige E. Jacky und Frank A. Leibfarth. „Brønsted Acid Catalyzed Stereoselective Polymerization of Vinyl Ethers“. Journal of the American Chemical Society 143, Nr. 40 (01.10.2021): 16388–93. http://dx.doi.org/10.1021/jacs.1c08282.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

El-Shall, M. Samy, und H. Reiss. „Observation of homogeneous gas-phase catalyzed vinyl polymerization“. Journal of Physical Chemistry 92, Nr. 5 (März 1988): 1021–22. http://dx.doi.org/10.1021/j100316a007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Asandei, A. D., und V. Percec. „From metal-catalyzed radical telomerization to metal-catalyzed radical polymerization of vinyl chloride: Toward living radical polymerization of vinyl chloride“. Journal of Polymer Science Part A: Polymer Chemistry 39, Nr. 19 (2001): 3392–418. http://dx.doi.org/10.1002/pola.1322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhang, Zepeng, Yunpeng Gao, Shufeng Chen und Jianbo Wang. „Palladium-Catalyzed Living/Controlled Vinyl Addition Polymerization of Cyclopropenes“. Journal of the American Chemical Society 143, Nr. 42 (14.10.2021): 17806–15. http://dx.doi.org/10.1021/jacs.1c09071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mohaddespour, Ahmad, Seyed J. Ahmadi, Hossein Abolghassemi, Seyed M. Mahjoub und Saeid Atashrouz. „Irradiation of poly(vinyl ester)/clay nanocomposites“. Journal of Composite Materials 52, Nr. 1 (04.04.2017): 17–25. http://dx.doi.org/10.1177/0021998317701999.

Der volle Inhalt der Quelle
Annotation:
The effect of electron beam irradiation on pristine poly(vinyl ester) and cured poly(vinyl ester)/clay nanocomposite with different clay contents is studied at irradiation doses ranging from 100 to 1000 kGy at room temperature. Poly(vinyl ester)/clay nanocomposites were prepared with different amounts of organically modified montmorillonite (1, 3, and 5 wt.%) by in situ polymerization method. Morphology properties of synthesized nanocomposites were studied by X-ray diffraction and transition electron microscopy. The irradiation dose up to 500 kGy yields an increase in Young’s modulus and tensile strength of nanocomposites while further irradiation deteriorates the mechanical strength of samples. Irradiation has no considerable influence on the surface hardness of synthesized nanocomposites. Thermogravimetric analysis results reveal the thermal stability of poly(vinyl ester), and its nanocomposites is improved with irradiation up to 500 kGy. However, similar to mechanical perdition at 1000 kGy irradiation, thermal resistance of nanocomposites decreases. The enhancement in mechanical and thermal properties of synthesized nanocomposites is attributed to the cross-linking effect as bonds can be formed directly between the neighbouring chains.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khalili, Amirali, Abdul Razak Rahmat, Alireza Fakhari und Zyad Salem Alsagayar. „Mechanical Properties of Vinyl Ester Resin/Epoxidized Plam Oil/Nanoclay Composite“. Applied Mechanics and Materials 554 (Juni 2014): 165–69. http://dx.doi.org/10.4028/www.scientific.net/amm.554.165.

Der volle Inhalt der Quelle
Annotation:
The aim of this study is to develop vinyl ester resin (VE) with enhanced mechanical and thermal properties. Nanocomposites vinyl ester resin (VE)/ epoxidized palm oil (EPO)/ clay were prepared at different amount of epoxidized palm oil (EPO) (5, 7.5 and 10 wt%) in presence of various ratio of clay (1,2 and 3 phr) by free radical polymerization. The curing agent for polymerizing nanocomposites was methyl ethyl ketone peroxide (MEKP). Studies on their mechanical and physical properties were carried out by tensile and flexural tests. The results obtained revealed interactions between the vinyl ester resin (VE) and epoxidized palm oil (EPO). Based on the results of tensile strength, the optimum loading content for EPO and clay was 5wt% and 1 phr, respectively. When the concentration of EPO increased, the ductility was improved, indicated higher toughness.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

NAKAYAMA, Yuushou, und Takeshi SHIONO. „Vinyl-Type Polymerization of Cycloolefins Catalyzed by Transition Metal Complexes“. NIPPON GOMU KYOKAISHI 78, Nr. 12 (2005): 453–60. http://dx.doi.org/10.2324/gomu.78.453.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhu, Changwei, Manqing Yan, Xianyang Shi, Jiamin Fan und Hong Bi. „Carbon nanodots-catalyzed free radical polymerization of water-soluble vinyl monomers“. RSC Advances 6, Nr. 44 (2016): 38470–74. http://dx.doi.org/10.1039/c6ra06273c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Pudasaini, Bimal. „Yttrium Catalyzed Dialkyl Vinyl Phosphonate Polymerization: Mechanistic Insights on the Precision Polymerization from DFT“. Organometallics 38, Nr. 5 (25.02.2019): 1091–98. http://dx.doi.org/10.1021/acs.organomet.8b00884.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Yeum, Jeong Hyun. „Novel Poly(vinyl alcohol)/Clay Nanocomposite Microspheres via Suspension Polymerization and Saponification“. Polymer-Plastics Technology and Engineering 50, Nr. 11 (15.07.2011): 1149–54. http://dx.doi.org/10.1080/03602559.2011.566302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Demarteau, Jérémy, Julien De Winter, Christophe Detrembleur und Antoine Debuigne. „Ethylene/vinyl acetate-based macrocycles via organometallic-mediated radical polymerization and CuAAC ‘click’ reaction“. Polymer Chemistry 9, Nr. 3 (2018): 273–78. http://dx.doi.org/10.1039/c7py01891f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Hou, Xiaohua, und Zongquan Wu. „Living/Controlled Vinyl Addition Polymerization of Cyclopropenes Catalyzed by Palladium Complex“. Chinese Journal of Organic Chemistry 41, Nr. 12 (2021): 4830. http://dx.doi.org/10.6023/cjoc202100090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Percec, Virgil, Anatoliy V. Popov, Ernesto Ramirez-Castillo, Michael Monteiro, Bogdan Barboiu, Oliver Weichold, Alexandru D. Asandei und Catherine M. Mitchell. „Aqueous Room Temperature Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride“. Journal of the American Chemical Society 124, Nr. 18 (Mai 2002): 4940–41. http://dx.doi.org/10.1021/ja0256055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kadokawa, J., Y. Iwasaki und H. Tagaya. „Ring-opening polymerization of lactones catalyzed by ion-exchanged clay montmorillonite“. Green Chemistry 4, Nr. 1 (08.01.2002): 14–16. http://dx.doi.org/10.1039/b107609b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Fakhari, Alireza, Abdul Razak Rahmat, Mat Uzir Wahit, Zyad Salem Alsagayar und Siti Noor Hidayah Mustapha. „Influence of Nanoclay on Mechanical Properties of Vinyl Ester/Acrylated Epoxidized Palm Oil Blends“. Applied Mechanics and Materials 695 (November 2014): 293–96. http://dx.doi.org/10.4028/www.scientific.net/amm.695.293.

Der volle Inhalt der Quelle
Annotation:
A series of green clay/polymer nanocomposites have been produced using blends of vinyl ester resin (VE) and acrylated epoxidized palm oil (AEPO) via free radical polymerization. A solvent-based processing technique was used to incorporate the bio-resin and nanoclay into vinyl ester resin. The effects of various loadings of bio-resin (5, 10, 15 and 20 wt.%) with 5 wt.% nanoclay on tensile and impact properties of resulting polymer systems were investigated. The results showed that, these bio-based nanocomposites exhibit mechanical properties comparable to those of petroleum-based nanocomposites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Bauer, R. F. „A Two-Step Emulsion Polymerization Process Catalyzed by an Organic Diperoxide“. Rubber Chemistry and Technology 77, Nr. 4 (01.09.2004): 776–90. http://dx.doi.org/10.5254/1.3547851.

Der volle Inhalt der Quelle
Annotation:
Abstract An emulsion polymerization process is described which consists of consecutively polymerizing at least two olefinic monomers using an organic diperoxide with two independently functioning peroxy groups, namely 2,5-dimethyl-2-t-butylperoxy-5-hydroxy hexane. In the first polymerization step, the hydroperoxide group is activated by a redox reaction at low temperatures without decomposing the t-butyl peroxide portion of the initiator molecule. After charging fresh monomer, the t-butyl peroxide can then be thermally activated to initiate a second-stage polymerization reaction. This polymerization process employs conventional emulsion polymerization technology. It yields polymeric product with unique physical properties. Polymers with butadiene monomer in the first polymerization step, followed by styrene polymerization in the second step, resemble SBS tri-block polymers. They are thermoplastic, highly resilient and of good strength at high ultimate elongations. The consecutive polymerization of butadiene and acrylonitrile yields elastomers with a superior balance of low-temperature flexibility and resistance to swelling in organic solvents, when compared with random NBR copolymers of equivalent chemical composition. Combinations of butadiene and styrene in the first polymerization stage followed by styrene/acrylonitrile polymerization in the second, yield transparent ABS polymers with superior low-temperature impact resistance. Reference is also made to the polymerization of additional vinyl monomers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Liu, Di, und Christopher W. Bielawski. „Post-polymerization modification of poly(vinyl ether)s: a Ru-catalyzed oxidative synthesis of poly(vinyl ester)s and poly(propenyl ester)s“. Polymer Chemistry 7, Nr. 1 (2016): 63–68. http://dx.doi.org/10.1039/c5py01409c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hong, Changwen, Xingbao Wang und Changle Chen. „Palladium-Catalyzed Dimerization of Vinyl Ethers: Mechanism, Catalyst Optimization, and Polymerization Applications“. Macromolecules 52, Nr. 18 (13.09.2019): 7123–29. http://dx.doi.org/10.1021/acs.macromol.9b01484.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Li, Peng, und Kun-Yuan Qiu. „Cu(S2CNEt2)Cl-Catalyzed Reverse Atom-Transfer Radical Polymerization of Vinyl Monomers“. Macromolecular Rapid Communications 23, Nr. 18 (Dezember 2002): 1124–29. http://dx.doi.org/10.1002/marc.200290006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sun, Wei Min, Guang Cheng Zhang, He Lin Li, Dong Dong Li, Pei Pei Li, Bai Chen Liu, Die Zhang, Xia Lei und Qing Ren Zhao. „Synthesis, Characterization, and Flocculation Properties of Branched Polyacrylamide“. Advanced Materials Research 476-478 (Februar 2012): 2311–16. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.2311.

Der volle Inhalt der Quelle
Annotation:
A water soluble branched polyacrylamide has been synthesized through solution polymerization. The polymerization was initiated by potassium diperiodatocuprate, K5[Cu(HIO6)2](Cu(III)), in alkaline medium and capable of initiating the self condensation vinyl polymerization of acrylamide monomer. The polymer obtained was characterized using Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Its flocculation properties were evaluated with clay suspensions using standard jar tests. The concentration of monomers, concentration of initiators, reaction temperature and solution pH on the influence of intrinsic viscosity and flocculation properties of production were studied. The results demonstrate that the branched polymer can be used as a kind of novel flocculant in water and wastewater treatment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Corobea, M. C., V. Uricanu, D. Donescu, C. Radovici, S. Serban, S. Garea und H. Iovu. „Poly(vinyl acetate)–clay hybrids prepared via emulsion polymerization, assisted by a nonionic surfactant“. Materials Chemistry and Physics 103, Nr. 1 (Mai 2007): 118–26. http://dx.doi.org/10.1016/j.matchemphys.2007.01.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

IANCHIS, RALUCA, DAN DONESCU, LUDMILA OTILIA CINTEZA, VIOLETA PURCAR, CRISTINA LAVINIA NISTOR, CRISTIAN PETCU, CRISTIAN ANDI NICOLAE, RALUCA GABOR und SILVIU PREDA. „Polymer-clay nanocomposites obtained by solution polymerization of vinyl benzyl triammonium chloride in the presence of advanced functionalized clay“. Journal of Chemical Sciences 126, Nr. 3 (Mai 2014): 609–16. http://dx.doi.org/10.1007/s12039-014-0621-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kanazawa, Arihiro, Shokyoku Kanaoka und Sadahito Aoshima. „Heterogeneously Catalyzed Living Cationic Polymerization of Isobutyl Vinyl Ether Using Iron(III) Oxide“. Journal of the American Chemical Society 129, Nr. 9 (März 2007): 2420–21. http://dx.doi.org/10.1021/ja068124k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Wakioka, Masayuki, Kyung-Youl Baek, Tsuyoshi Ando, Masami Kamigaito und Mitsuo Sawamoto. „Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(I) Complex1“. Macromolecules 35, Nr. 2 (Januar 2002): 330–33. http://dx.doi.org/10.1021/ma0115444.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Islam, Mohammad Tariqul, Yuvaraj Haldorai, Van Hoa Nguyen, Muhammad Naoshad Islam, Choon Sup Ra und Jae-Jin Shim. „Controlled radical polymerization of vinyl acetate in supercritical CO2 catalyzed by CuBr/terpyridine“. Korean Journal of Chemical Engineering 31, Nr. 6 (05.04.2014): 1088–94. http://dx.doi.org/10.1007/s11814-014-0031-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Harada, Nari-aki, Takashi Nishikata und Hideo Nagashima. „Vinyl polymerization versus [1,3] O to C rearrangement in the ruthenium-catalyzed reactions of vinyl ethers with hydrosilanes“. Tetrahedron 68, Nr. 15 (April 2012): 3243–52. http://dx.doi.org/10.1016/j.tet.2012.02.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

He, Wen Juan, Yu Feng He, Zhen Hua Zhang, Ju Hua Guo und Rong Min Wang. „The Bentonite Copolymer Composite for Removing Lead Ions“. Advanced Materials Research 750-752 (August 2013): 47–50. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.47.

Der volle Inhalt der Quelle
Annotation:
In this paper, a new kind of clay copolymer adsorbent, bentonite compositing with maleic anhydride (MAH)-acrylic acid (AA)-vinyl acetate (VAc) copolymer (NaB/PMAV) was prepared by in-situ polymerization. It was used as polymer adsorbent for removing Pb (II) ions in wastewater.. Under the optimal condition of adsorption, the removal rate reached to 94.4% and the adsorption capacity got to 235.9 mg/g. Adsorption dynamics were consistent with pseudo-second-order kinetic model and isotherm model can meet the Langmuir isotherm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Lassahn, Paul-Gerhard, Christoph Tzschucke, Willi Bannwarth und Christoph Janiaka. „Transfer of the Fluorous Biphasic Concept to the Palladium-Catalyzed Addition Polymerization of Norbornene“. Zeitschrift für Naturforschung B 58, Nr. 11 (01.11.2003): 1063–68. http://dx.doi.org/10.1515/znb-2003-1105.

Der volle Inhalt der Quelle
Annotation:
Abstract Two perfluorinated palladium(II) pre-catalysts of the type (ArF3P)2PdCl2 (ArF = m-C8F17-C2H4- C6H4 - and p-C7F15-CH2-O-C6H4-) could be highly activated with the co-catalyst B(C6F5)3/AlEt3 or methylalumoxane (MAO) for the vinyl/addition polymerization of norbornene. Their recycling was studied by using the FBS concept (Fluorous Biphasic System).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Mizutani, Masato, Kotaro Satoh und Masami Kamigaito. „Construction of Vinyl Polymer and Polyester or Polyamide Units in a Single Polymer Chain via Metal-catalyzed Simultaneous Chain- and Step-growth Radical Polymerization of Various Monomers“. Australian Journal of Chemistry 67, Nr. 4 (2014): 544. http://dx.doi.org/10.1071/ch13476.

Der volle Inhalt der Quelle
Annotation:
Metal-catalyzed simultaneous chain- and step-growth radical polymerization was examined to combine common conjugated vinyl monomers, such as various acrylates and styrene, as chain-growth monomers and various ester- or amide-linked monomers bearing both an unconjugated C=C bond and an active C–Cl bond as step-growth monomers. The CuCl/1,1,4,7,10,10-hexamethyltriethylenetetramine-catalyzed copolymerization of alkyl acrylates and various step-growth monomers at a 1 : 1-monomer feed ratio resulted in almost linear random copolymers that consisted of vinyl polymer and polyester units. Additional functional groups, such as oxyethylene and disulfide units, can be introduced into the main chain using a step-growth monomer that possesses the functional units between the unconjugated C=C bond and the active C–Cl bond. Copolymerization at a higher feed ratio of chain-growth monomers, such as alkyl acrylates and styrene, can provide multiblock vinyl polymers connected to the functionalized step-growth monomer units.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Cherifi, Badia Imene, Mohammed Belbachir und Souad Bennabi. „Green Polymerization of Vinyl Acetate Using Maghnite-Na+, an Exchanged Montmorillonite Clay, as an Ecologic Catalyst“. Chemistry & Chemical Technology 15, Nr. 2 (15.05.2021): 183–90. http://dx.doi.org/10.23939/chcht15.02.183.

Der volle Inhalt der Quelle
Annotation:
In this work, the green polymerization of vinyl acetate is carried out by a new method which consists in the use of clay called Maghnite-Na+ as an ecological catalyst, non-toxic, inexpensive and recyclable by a simple filtration. X-ray diffraction and scanning electron microscopy showed that Maghnite-Na+ is successfully obtained after cationic treatment (sodium) on crude maghnite. It is an effective alternative to replace toxic catalysts such as benzoyl peroxide and azobisisobutyronitrile which are mostly used during the synthesis of polyvinyl acetate (PVAc) making the polymerization reaction less problematic for the environment. The synthesis reaction is less energetic by the use of recycled polyurethane as a container for the reaction mixture and is considered as a renewable material and a good thermal insulator maintaining the temperature of 273 K for 6 h. The reaction in bulk is also preferred to avoid the use of a solvent and therefore to stay in the context of green chemistry. In these conditions, the structure of obtained polymer is established by 1H NMR and 13C NMR. Infrared spectroscopy (FT-IR) was also used to confirm the structure of PVAc. Thermogravimetric analysis showed that it is thermally stable and starts to degrade at 603 K while differential scanning calorimetry showed that this polymer has a glass transition temperature Tg of 323 K.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zhang, Jun-Kai, Peng-Chao Wang, Xiao-Wei Wang, Liang Wang, Jun-Cai Chen, Zhi-Wu Zheng und Yong-Ping Niu. „Vinyl addition polymerization of norbornene catalyzed by β-iminoamine Ni(II) complexes/methylaluminoxane systems“. Journal of Organometallic Chemistry 696, Nr. 23 (November 2011): 3697–702. http://dx.doi.org/10.1016/j.jorganchem.2011.08.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Bellan, Ekaterina V., Lucas Thevenin, Florence Gayet, Christophe Fliedel und Rinaldo Poli. „Catalyzed Chain Transfer in Vinyl Acetate Polymerization Mediated by 9-Oxyphenalenone Cobalt(II) Complexes“. ACS Macro Letters 6, Nr. 9 (17.08.2017): 959–62. http://dx.doi.org/10.1021/acsmacrolett.7b00551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Olvera-Mancilla, Jessica, Salvador López-Morales, Joaquín Palacios-Alquisira, David Morales-Morales, Ronan Le Lagadec und Larissa Alexandrova. „Thermal and microwave assisted polymerization of vinyl acetate catalyzed by cyclometalated ruthenium (II) complexes“. Polymer 55, Nr. 7 (April 2014): 1656–65. http://dx.doi.org/10.1016/j.polymer.2014.02.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Yang, Haijian, Wen-Hua Sun, Fei Chang und Yan Li. „Vinyl-polymerization of norbornene catalyzed by bis-[N-(substituted methyl)-salicylideneiminato]nickel/MAO system“. Applied Catalysis A: General 252, Nr. 2 (Oktober 2003): 261–67. http://dx.doi.org/10.1016/s0926-860x(03)00472-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Liu, Binyuan, Yang Li, Boo-Gyo Shin, Do Yeung Yoon, IL Kim, Li Zhang und Weidong Yan. „Pd (II)-catalyzed vinyl addition polymerization of novel functionalized norbornene bearing dimethyl carboxylate groups“. Journal of Polymer Science Part A: Polymer Chemistry 45, Nr. 15 (01.08.2007): 3391–99. http://dx.doi.org/10.1002/pola.22091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Tang, Huadong, Maciej Radosz und Youqing Shen. „Atom transfer radical polymerization and copolymerization of vinyl acetate catalyzed by copper halide/terpyridine“. AIChE Journal 55, Nr. 3 (März 2009): 737–46. http://dx.doi.org/10.1002/aic.11706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Niu, Yong-Ping, Xiao-Wei Wang, Zhi-Wu Zheng, Xiao-Fei Ma, Jun-Qing Cai, Jun-Kai Zhang und Jin-Lian Cheng. „Vinyl polymerization of norbornene catalyzed by 2-Py-amidine Ni(II) complex/methylaluminoxane systems“. Applied Organometallic Chemistry 28, Nr. 9 (29.06.2014): 688–95. http://dx.doi.org/10.1002/aoc.3183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Lepoittevin, Bénédicte, Nadège Pantoustier, Myriam Devalckenaere, Michael Alexandre, Dana Kubies, Cédric Calberg, Robert Jérôme und Philippe Dubois. „Poly(ε-caprolactone)/Clay Nanocomposites by in-Situ Intercalative Polymerization Catalyzed by Dibutyltin Dimethoxide“. Macromolecules 35, Nr. 22 (Oktober 2002): 8385–90. http://dx.doi.org/10.1021/ma020300w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Amin, Amal, Rajarshi Sarkar, Charles N. Moorefield und George R. Newkome. „Synthesis of polymer–clay nanocomposites of some vinyl monomers by surface-initiated atom transfer radical polymerization“. Designed Monomers and Polymers 16, Nr. 6 (06.03.2013): 528–36. http://dx.doi.org/10.1080/15685551.2013.771304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Amin, Amal, Eman H. Ahmed, Magdy M. H. Ayoub, Magdy W. Sabaa und Inas K. Battisha. „Dielectric Properties of Vinyl Polymers/Montmorillonite Clay Nanocomposites Prepared via Surface Initiated Atom Transfer Radical Polymerization“. Materials Focus 2, Nr. 5 (01.10.2013): 406–14. http://dx.doi.org/10.1166/mat.2013.1110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Anadão, Priscila, Francisco Rolando Valenzuela-Díaz und Hélio Wiebeck. „Preparation and Characterization of Poly(vinyl Butyral)-Polyaniline-Montmorillonite Nanocomposites“. Journal of Nano Research 18-19 (Juli 2012): 291–97. http://dx.doi.org/10.4028/www.scientific.net/jnanor.18-19.291.

Der volle Inhalt der Quelle
Annotation:
Poly(vinyl butyral)-polyaniline-sodium montmorillonite nanocomposites were prepared via polymerization of aniline between clay mineral platelets at two different pH levels (2.0 and 5.0), followed by dispersion of the polyaniline-sodium montmorillonite nanocomposite in a poly(vinyl butyral) solution. A comparison was made of the effect of the pH levels and the polyaniline-sodium montmorillonite nanocomposite precursor on the final structures of the poly(vinyl butyral) nanocomposites and their electrical conductivities. X-ray diffraction patterns revealed the formation of nanocomposites at both pH levels. UV-Vis spectra indicated that the polyaniline formed at both pH levels was conductive, with the UV-Vis spectra presenting a band at 420 nm corresponding to the polaronic form and the beginning of a new band at 600 nm indicating the presence of polaronic segments. FTIR spectra revealed the peaks of the groups present in polyaniline and poly(vinyl butyral) nanocomposites. The electrical conductivities of the polyaniline and poly(vinyl butyral) nanocomposites prepared at pH 2.0 were lower than those of the same nanocomposites prepared at pH 5.0, probably due to the lower formation of polyaniline chains in a more acidic dispersion and to the final configuration of polyaniline in the nanocomposites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Yan, Yunxing, Xutang Tao, Guibao Xu, Huaping Zhao, Yuanhong Sun, Chuankui Wang, Jiaxiang Yang, Xiaoqiang Yu, Xian Zhao und Minhua Jiang. „Synthesis, Characterization, and Non-Linear Optical Properties of Two New Symmetrical Two-Photon Photopolymerization Initiators“. Australian Journal of Chemistry 58, Nr. 1 (2005): 29. http://dx.doi.org/10.1071/ch04111.

Der volle Inhalt der Quelle
Annotation:
Two new symmetrical two-photon free-radical photopolymerization initiators, 1,4-bis-{2-[4-(2-pyridin-4-ylvinyl)phenyl]vinyl}-2,5-bisdimethoxybenzene 6 and 1,4-bis-{2-[4-(2-pyridin-4-ylvinyl)phenyl]vinyl}-2,5-bisdodecyloxybenzene 7, were synthesized using an efficient Wittig and Pd-catalyzed Heck coupling methodology. One-photon fluorescence, one-photon fluorescence quantum yields, one-photon fluorescence lifetimes, and two-photon fluorescence have been investigated. Experimental results show that both compounds were good two-photon absorbing chromophores and effective two-photon photopolymerization initiators. Two-photon polymerization microfabrication experiments have been studied and the possible photopolymerization mechanism is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Li, Weiwen, Chunyang Ji, Honggang Zhu, Feng Xing, Jiaxin Wu und Xueli Niu. „Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite“. Journal of Nanomaterials 2013 (2013): 1–11. http://dx.doi.org/10.1155/2013/352639.

Der volle Inhalt der Quelle
Annotation:
Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP) composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE)/organoclay and 2 wt% epoxy (EP)/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Nikolaidis, Alexandros K., Elisabeth A. Koulaouzidou, Christos Gogos und Dimitris S. Achilias. „Synthesis and Characterization of Dental Nanocomposite Resins Filled with Different Clay Nanoparticles“. Polymers 11, Nr. 4 (22.04.2019): 730. http://dx.doi.org/10.3390/polym11040730.

Der volle Inhalt der Quelle
Annotation:
Nanotechnology comprises a promising approach towards the update of dental materials.The present study focuses on the reinforcement ofdental nanocomposite resins with diverse organomodified montmorillonite (OMMT) nanofillers. The aim is to investigate whether the presence of functional groups in the chemical structure of the nanoclay organic modifier may virtually influence the physicochemical and/or the mechanical attitude of the dental resin nanocomposites. The structure and morphology of the prepared materials were investigated by means of wide angle X-ray diffraction and scanning electron microscopy analysis. Fourier transform infrared spectroscopy was used to determine the variation of the degree of conversion over time. Measurements of polymerization shrinkage and mechanical properties were conducted with a linear variable displacement transducer apparatus and a dynamometer, respectively. All the obtained nanocomposites revealed intercalated structures and most of them had an extensive filler distribution into the polymer matrix. Polymerization kinetics werefound to be influenced by the variance of the clay organomodifier, whilenanoclays with vinyl groups considerably increased the degree of conversion. Polymerization shrinkage was almost limited up to 50% by incorporating nanoclays. The absence of reactive groups in the OMMT structure may retain setting contraction atlow levels. An enhancement of the flexural modulus was observed, mainly by using clay nanoparticles decorated with methacrylated groups, along with a decrease in the flexural strength at a high filler loading. The overall best performance was found for the nanocomposites with OMMTs containing double bonds. The significance of the current work relies on providing novel information about chemical interactions phenomena between nanofillers and the organic matrix towards the improvement of dental restorative materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Satoh, Kotaro, Kenta Ishizuka, Tsuyoshi Hamada, Masato Handa, Tomohiro Abe, Satoshi Ozawa, Masato Miyajima und Masami Kamigaito. „Construction of Sequence-Regulated Vinyl Copolymers via Iterative Single Vinyl Monomer Additions and Subsequent Metal-Catalyzed Step-Growth Radical Polymerization“. Macromolecules 52, Nr. 9 (22.04.2019): 3327–41. http://dx.doi.org/10.1021/acs.macromol.9b00676.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Harada, Nari-aki, Takashi Nishikata und Hideo Nagashima. „ChemInform Abstract: Vinyl Polymerization versus [1,3] O to C Rearrangements in the Ruthenium-Catalyzed Reactions of Vinyl Ethers with Hydrosilanes.“ ChemInform 43, Nr. 35 (02.08.2012): no. http://dx.doi.org/10.1002/chin.201235061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Andou, Yoshito, und Haruo Nishida. „Melt-Processable Nanocomposites Grafting-From Platelet Surfaces by Vapor-Assisted Surface Polymerization“. ISRN Nanotechnology 2011 (16.10.2011): 1–6. http://dx.doi.org/10.5402/2011/589615.

Der volle Inhalt der Quelle
Annotation:
One issue accompanying the melt-processing polymer/clay nanocomposites is the reaggregation of silicate platelets, which induces decreases in advantages of nanocomposites. To address this issue, vapor-assisted surface polymerization (VASP) method was applied with an initiator-attached and copolymerizable surfactant moiety-bound A-C18/C6MMT to obtain the exfoliated and intercalated nanocomposites using methylmethacrylate and styrene as vinyl monomers, respectively. The melt processing of the nanocomposites was carried out by a melt-compression molding method at 200°C. From XRD measurements, the C18/C6MMT-based nanocomposites showed no change in d-spacing even after melt processing, indicating the maintenance of the exfoliation and intercalation states. This maintenance must result from polymer chains grafting from the silicate layer surfaces, thus clearly confirming the anchoring effect of the copolymerizable surfactant moiety units.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Mizutani, Masato, Kotaro Satoh und Masami Kamigaito. „Metal-Catalyzed Simultaneous Chain- and Step-Growth Radical Polymerization: Marriage of Vinyl Polymers and Polyesters“. Journal of the American Chemical Society 132, Nr. 21 (02.06.2010): 7498–507. http://dx.doi.org/10.1021/ja1023892.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie