Auswahl der wissenschaftlichen Literatur zum Thema „Clay catalyzed vinyl polymerization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Clay catalyzed vinyl polymerization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Clay catalyzed vinyl polymerization"

1

Tsuchiya, Yoshikatsu, und Kiyoshi Endo. „Vanadium alkoxide catalyzed polymerization of vinyl chloride“. Journal of Polymer Science Part A: Polymer Chemistry 49, Nr. 4 (03.01.2011): 1006–12. http://dx.doi.org/10.1002/pola.24514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Satoh, Kotaro, und Masami Kamigaito. „Sequence-Controlled Vinyl Polymers by Transition Metal-Catalyzed Step-Growth and Living Radical Polymerizations“. MRS Proceedings 1613 (2014): 17–21. http://dx.doi.org/10.1557/opl.2014.153.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTThe metal-catalyzed step-growth radical polymerization was achieved to enable two systems for preparing tailored polymeric structures, i.e., sequence-regulated vinyl copolymer and periodically-functionalized polymer. The former is a novel strategy for preparing sequence-regulated vinyl copolymers by step-polymerization of sequence-regulated vinyl oligomers prepared from common vinyl monomers as building blocks. The later deals the simultaneous chain- and step-growth radical polymerization, which resulted in the polymers with periodic functional groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Knutson, Phil C., Aaron J. Teator, Travis P. Varner, Caleb T. Kozuszek, Paige E. Jacky und Frank A. Leibfarth. „Brønsted Acid Catalyzed Stereoselective Polymerization of Vinyl Ethers“. Journal of the American Chemical Society 143, Nr. 40 (01.10.2021): 16388–93. http://dx.doi.org/10.1021/jacs.1c08282.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

El-Shall, M. Samy, und H. Reiss. „Observation of homogeneous gas-phase catalyzed vinyl polymerization“. Journal of Physical Chemistry 92, Nr. 5 (März 1988): 1021–22. http://dx.doi.org/10.1021/j100316a007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Asandei, A. D., und V. Percec. „From metal-catalyzed radical telomerization to metal-catalyzed radical polymerization of vinyl chloride: Toward living radical polymerization of vinyl chloride“. Journal of Polymer Science Part A: Polymer Chemistry 39, Nr. 19 (2001): 3392–418. http://dx.doi.org/10.1002/pola.1322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhang, Zepeng, Yunpeng Gao, Shufeng Chen und Jianbo Wang. „Palladium-Catalyzed Living/Controlled Vinyl Addition Polymerization of Cyclopropenes“. Journal of the American Chemical Society 143, Nr. 42 (14.10.2021): 17806–15. http://dx.doi.org/10.1021/jacs.1c09071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mohaddespour, Ahmad, Seyed J. Ahmadi, Hossein Abolghassemi, Seyed M. Mahjoub und Saeid Atashrouz. „Irradiation of poly(vinyl ester)/clay nanocomposites“. Journal of Composite Materials 52, Nr. 1 (04.04.2017): 17–25. http://dx.doi.org/10.1177/0021998317701999.

Der volle Inhalt der Quelle
Annotation:
The effect of electron beam irradiation on pristine poly(vinyl ester) and cured poly(vinyl ester)/clay nanocomposite with different clay contents is studied at irradiation doses ranging from 100 to 1000 kGy at room temperature. Poly(vinyl ester)/clay nanocomposites were prepared with different amounts of organically modified montmorillonite (1, 3, and 5 wt.%) by in situ polymerization method. Morphology properties of synthesized nanocomposites were studied by X-ray diffraction and transition electron microscopy. The irradiation dose up to 500 kGy yields an increase in Young’s modulus and tensile strength of nanocomposites while further irradiation deteriorates the mechanical strength of samples. Irradiation has no considerable influence on the surface hardness of synthesized nanocomposites. Thermogravimetric analysis results reveal the thermal stability of poly(vinyl ester), and its nanocomposites is improved with irradiation up to 500 kGy. However, similar to mechanical perdition at 1000 kGy irradiation, thermal resistance of nanocomposites decreases. The enhancement in mechanical and thermal properties of synthesized nanocomposites is attributed to the cross-linking effect as bonds can be formed directly between the neighbouring chains.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khalili, Amirali, Abdul Razak Rahmat, Alireza Fakhari und Zyad Salem Alsagayar. „Mechanical Properties of Vinyl Ester Resin/Epoxidized Plam Oil/Nanoclay Composite“. Applied Mechanics and Materials 554 (Juni 2014): 165–69. http://dx.doi.org/10.4028/www.scientific.net/amm.554.165.

Der volle Inhalt der Quelle
Annotation:
The aim of this study is to develop vinyl ester resin (VE) with enhanced mechanical and thermal properties. Nanocomposites vinyl ester resin (VE)/ epoxidized palm oil (EPO)/ clay were prepared at different amount of epoxidized palm oil (EPO) (5, 7.5 and 10 wt%) in presence of various ratio of clay (1,2 and 3 phr) by free radical polymerization. The curing agent for polymerizing nanocomposites was methyl ethyl ketone peroxide (MEKP). Studies on their mechanical and physical properties were carried out by tensile and flexural tests. The results obtained revealed interactions between the vinyl ester resin (VE) and epoxidized palm oil (EPO). Based on the results of tensile strength, the optimum loading content for EPO and clay was 5wt% and 1 phr, respectively. When the concentration of EPO increased, the ductility was improved, indicated higher toughness.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

NAKAYAMA, Yuushou, und Takeshi SHIONO. „Vinyl-Type Polymerization of Cycloolefins Catalyzed by Transition Metal Complexes“. NIPPON GOMU KYOKAISHI 78, Nr. 12 (2005): 453–60. http://dx.doi.org/10.2324/gomu.78.453.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhu, Changwei, Manqing Yan, Xianyang Shi, Jiamin Fan und Hong Bi. „Carbon nanodots-catalyzed free radical polymerization of water-soluble vinyl monomers“. RSC Advances 6, Nr. 44 (2016): 38470–74. http://dx.doi.org/10.1039/c6ra06273c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Clay catalyzed vinyl polymerization"

1

Bhattacharya, Jagannath. „Physico-chemical studies on selected aspects of clay catalyzed vinyl polymerization“. Thesis, University of North Bengal, 1988. http://hdl.handle.net/123456789/717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

DALL'ANESE, ANNA. „Palladium catalyzed copolymerizations: from ligand architecture to macromolecule microstructure“. Doctoral thesis, Università degli Studi di Trieste, 2020. http://hdl.handle.net/11368/2963758.

Der volle Inhalt der Quelle
Annotation:
Polyolefins represent one of the major products of the plastic industry, that satisfy 55 % of the worldwide plastic demand. However, due to their chemical composition, they suffer of scarce surface properties, such as dyeability, compatibility with other materials, printability and adhesion. In this regard, the introduction of polar functional groups into the polyolefin skeleton would overcome this problem. Up to now this target is industrially achieved by radical polymerization reactions, that require harsh conditions of temperature and pressure and do not allow the control on the microstructure of the produced functionalized polyolefin. The direct, homogeneously catalyzed copolymerization reaction of ethylene with polar vinyl monomers would overcome all of these limits, allowing to use milder reaction conditions but, most importantly, to have a precise control on the copolymer microstructure. Much efforts have been done in this direction, and in the last two decades a wide number of systems based on palladium catalysts with a great variety of ligands has been reported. However, the catalytic performances of these systems, in terms of activity/productivity values, incorporation of the polar monomers, molecular weight and molecular weight distribution and copolymer microstructure, do not satisfy the requirements for a potential industrial application, thus better performing catalysts are needed. This PhD thesis aims to develop new homogeneous catalysts for the target reaction based on palladium(II) complexes with bidentate nitrogen-donor ligands (N-N). The strategy of this research project is based on expanding the library of N-N donor ligands reported in literature, and to study the influence of the ligand design on the catalytic outcome. In each Chapter the synthesis and characterization of different N-N ligands will be reported, along with the synthesis and characterization of the relevant Pd(II) complexes, and the study of their catalytic behaviour including the characterization of the catalytic products.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sheng-ChaunChang und 張勝荃. „Synthesis of poly(vinyl acetate-co-methyl methacrylate) macromonomers by cobalt-catalyzed chain transfer and their graft polymerization with acrylonitrile“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/3guwct.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Clay catalyzed vinyl polymerization"

1

Delfosse, Sébastien, Aurore Richel, Lionel Delaude, Albert Demonceau und Alfred F. Noels. „Controlled Radical Polymerization of Vinyl Monomers Catalyzed by RutheniumN-Heterocyclic Carbene Complexes“. In ACS Symposium Series, 40–55. Washington, D C: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0944.ch004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kang, Myeongsoon, Ayusman Sen, Lev Zakharov und Arnold L. Rheingold. „Trends in Alkene Insertion in Late- and Early-Transition Metal Compounds: Relevance to Transition Metal-Catalyzed Polymerization of Polar Vinyl Monomers“. In ACS Symposium Series, 143–53. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0857.ch011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie