Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Classification of network devices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Classification of network devices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Classification of network devices"
Mhetre, Nalini A., Arvind V. Deshpande und Parikshit Narendra Mahalle. „Device Classification-Based Context Management for Ubiquitous Computing using Machine Learning“. International Journal of Engineering and Advanced Technology 10, Nr. 5 (30.06.2021): 135–42. http://dx.doi.org/10.35940/ijeat.e2688.0610521.
Der volle Inhalt der QuelleGanesan, Elaiyasuriyan, I.-Shyan Hwang, Andrew Tanny Liem und Mohammad Syuhaimi Ab-Rahman. „SDN-Enabled FiWi-IoT Smart Environment Network Traffic Classification Using Supervised ML Models“. Photonics 8, Nr. 6 (04.06.2021): 201. http://dx.doi.org/10.3390/photonics8060201.
Der volle Inhalt der QuelleBezerra, Vitor Hugo, Victor Guilherme Turrisi da Costa, Sylvio Barbon Junior, Rodrigo Sanches Miani und Bruno Bogaz Zarpelão. „IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things Devices“. Sensors 19, Nr. 14 (19.07.2019): 3188. http://dx.doi.org/10.3390/s19143188.
Der volle Inhalt der QuelleLi, Xiu, Rujiao Long, Jiangpeng Yan, Kun Jin und Jihae Lee. „TANet: A Tiny Plankton Classification Network for Mobile Devices“. Mobile Information Systems 2019 (03.04.2019): 1–8. http://dx.doi.org/10.1155/2019/6536925.
Der volle Inhalt der QuelleNiewiadomska-Szynkiewicz, Ewa. „Localization in wireless sensor networks: Classification and evaluation of techniques“. International Journal of Applied Mathematics and Computer Science 22, Nr. 2 (01.06.2012): 281–97. http://dx.doi.org/10.2478/v10006-012-0021-x.
Der volle Inhalt der QuelleKim, Jiyeon, Minsun Shim, Seungah Hong, Yulim Shin und Eunjung Choi. „Intelligent Detection of IoT Botnets Using Machine Learning and Deep Learning“. Applied Sciences 10, Nr. 19 (08.10.2020): 7009. http://dx.doi.org/10.3390/app10197009.
Der volle Inhalt der QuelleLu, Peng, Yang Gao, Hao Xi, Yabin Zhang, Chao Gao, Bing Zhou, Hongpo Zhang, Liwei Chen und Xiaobo Mao. „KecNet: A Light Neural Network for Arrhythmia Classification Based on Knowledge Reinforcement“. Journal of Healthcare Engineering 2021 (24.04.2021): 1–10. http://dx.doi.org/10.1155/2021/6684954.
Der volle Inhalt der QuelleFeng, Kai, Xitian Pi, Hongying Liu und Kai Sun. „Myocardial Infarction Classification Based on Convolutional Neural Network and Recurrent Neural Network“. Applied Sciences 9, Nr. 9 (07.05.2019): 1879. http://dx.doi.org/10.3390/app9091879.
Der volle Inhalt der QuelleEt. al., Gopal Patil,. „REVIEW THE DEEP LEARNING TECHNIQUE FOR MISSING DATA CLASSIFICATION IN IOT APPLICATIONS FOR NETWORK PERFORMANCE IMPROVEMENT“. INFORMATION TECHNOLOGY IN INDUSTRY 9, Nr. 2 (25.03.2021): 365–69. http://dx.doi.org/10.17762/itii.v9i2.356.
Der volle Inhalt der QuelleCotrim, Jeferson Rodrigues, und João Henrique Kleinschmidt. „LoRaWAN Mesh Networks: A Review and Classification of Multihop Communication“. Sensors 20, Nr. 15 (31.07.2020): 4273. http://dx.doi.org/10.3390/s20154273.
Der volle Inhalt der QuelleDissertationen zum Thema "Classification of network devices"
Eis, Pavel. „Datová sada pro klasifikaci síťových zařízení pomocí strojového učení“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445543.
Der volle Inhalt der QuelleSleem, Lama. „Design and implementation of lightweight and secure cryptographic algorithms for embedded devices“. Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD018.
Der volle Inhalt der QuelleLiving in an era where new devices are astonishing considering their high capabilities, new visions and terms have emerged. Moving to smart phones, Wireless Sensor Networks, high-resolution cameras, pads and much more, has mandated the need to rethink the technological strategy that is used today. Starting from social media, where apparently everything is being exposed, moving to highly powerful surveillance cameras, in addition to real time health monitoring, it can be seen that a high amount of data is being stored in the Cloud and servers. This introduced a great challenge for their storage and transmission especially in the limited resourced platforms that are characterized by: (a) limited computing capabilities, (b) limited energy and source of power and (c) open infrastructures that transmit data over wireless unreliable networks. One of the extensively studied platforms is the Vehicular Ad-hoc Networks which tends to have many limitations concerning the security field. In this dissertation, we focus on improving the security of transmitted multimedia contents in different limited platforms, while preserving a high security level. Limitations of these platforms are taken into consideration while enhancing the execution time of the secure cipher. Additionally, if the proposed cipher is to be used for images, the intrinsic voluminous and complex nature of the managed images is also taken into account. In the first part, we surveyed one of the limited platforms that is interesting for many researchers, which is the Vehicular Ad-hoc Networks. In order to pave the way for researchers to find new efficient security solutions, it is important to have one reference that can sum most of the recent works. It almost investigates every aspect in this field shedding the light over different aspects this platform possesses. Then, in order to propose any new security solution and validate its robustness and the level of randomness of the ciphered image, a simple and efficient test is proposed. This test proposes using the randomness tools, TestU01 and Practrand, in order to assure a high level of randomness. After running these tests on well known ciphers, some flaws were exposed. Proceeding to the next part, a novel proposal for enhancing the well-known ultra lightweight cipher scheme, Speck, is proposed. The main contribution of this work is to obtain a better version compared to Speck. In this proposal, 26 rounds in Speck were reduced to 7 rounds in Speck-R while enhancing the execution time by at least 50%. First, we validate that Speck-R meets the randomness tests that are previously proposed. Additionally, a dynamic substitution layer adds more security against key related attacks and highly fortifies the cipher. Speck-R was implemented on different limited arduino chips and in all cases, Speck-R was ahead of Speck. Then, in order to prove that this cipher can be used for securing images, especially in VANETS/IoV, where images can be extensively re/transmitted, several tests were exerted and results showed that Speck-R indeed possesses the high level of security desired in any trusted cipher. Extensive experiments validate our proposal from both security and performance point of views and demonstrate the robustness of the proposed scheme against the most-known types of attacks
Erlandsson, Niklas. „Utilizing machine learning in wildlife camera traps for automatic classification of animal species : An application of machine learning on edge devices“. Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-104952.
Der volle Inhalt der QuelleLuckhardt, Christoph [Verfasser]. „Development of thermo-analytical prediction and classification models for food in thermal devices using a multi sensor system and artificial neural networks / Christoph Luckhardt“. Kassel : Universitätsbibliothek Kassel, 2013. http://d-nb.info/1043361863/34.
Der volle Inhalt der QuelleAkarapu, Deepika. „Object Identification Using Mobile Device for Visually Impaired Person“. University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1628092619349812.
Der volle Inhalt der QuelleWolf, Robert, Niko Joram, Stefan Schumann und Frank Ellinger. „Dual-band impedance transformation networks for integrated power amplifiers“. Cambridge University Press, 2016. https://tud.qucosa.de/id/qucosa%3A70680.
Der volle Inhalt der QuelleKühnert, Wolfram. „Dynamic Devices Network Architecture“. [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10952962.
Der volle Inhalt der QuelleAlexander, David. „A Network Metadata Infrastructure for Locating Network Devices“. Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1088176648.
Der volle Inhalt der QuelleZenteno, Efrain. „Vector Measurements for Wireless Network Devices“. Licentiate thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-111863.
Der volle Inhalt der QuelleQC 20130204
Omer, Mahgoub Saied Khalid. „Network Latency Estimation Leveraging Network Path Classification“. Thesis, KTH, Network Systems Laboratory (NS Lab), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229955.
Der volle Inhalt der QuelleMed utvecklingen av Internet har nya nätverkstjänster med strikta fördröjningskrav möjliggjorts. Dessa tjänster är implementerade som distribuerade system spridda över flera geografiska platser. För att tillgodose låg svarstid kräver dessa tjänster kunskap om svarstiden i det nuvarande nätverket. Tyvärr ändras ofta nätverksfördröjningen bland geodistribuerade webbplatser, således är distribuerade tjänster beroende av kontinuerliga mätvärden för nätverksfördröjning. Ett mål med sådana mätningar är att skilja mellan momenta ökade svarstider från relativt långsiktiga förändringar av svarstiden. Differentieringen uppnås genom statistisk bearbetning av de samlade mätningarna. Denna högfrekventa insamling av mätningar av nätverksfördröjningen har höga overheadkostnader, identifierar ändringar långsamt och saknar noggrannhet. Vi föreslår ett nytt tillvägagångssätt för beräkningen av nätverksfördröjning genom att korrelera nätverksvägar till nätverksfördröjning. Vi visar att nätverksfördröjningen kan vara exakt uppskattad genom att man först mäter och identifierar den nätverksväg som används och sedan hämtar den förväntade fördröjningen för den nätverksvägen baserad på en tidigare uppsättning av mätningar. Baserat på dessa principer introducerar vi Sudan traceroute, ett Verktyg för att uppskatta nätverksfördröjning. Sudan traceroute kan användas för att både minska tiden att uppskatta fördröjningen samt att minska overhead för mätningarna i nätverket. Sudan traceroute använder en förbättrad vägdetekteringsmekanism som bara skickar några försiktigt valda prober för att identifiera den aktuella vägen i nätverket. Vi har utvecklat och utvärderat Sudan traceroute i en testmiljö och utvärderade genomförbarheten av Sudan traceroute i verkliga nätverk med hjälp av Amazon EC2. Med hjälp av Sudan traceroute har vi förkortat den tid det tar för värdar att identifiera nätverksfördröjnings förändringar jämfört med befintliga tillvägagångssätt.
Bücher zum Thema "Classification of network devices"
Interconnecting Cisco network devices. Indianapolis, IN: Cisco Press, 2008.
Den vollen Inhalt der Quelle findenRusen, Ciprian Adrian. Network your computers & devices step by step. Sebastopol, CA: O'Reilly Media, 2010.
Den vollen Inhalt der Quelle findenMcQuerry, Steve. Authorized self-study guide: Interconnecting Cisco network devices. 2. Aufl. Indianapolis, Ind: Cisco Press, 2008.
Den vollen Inhalt der Quelle findenErrington, Phillip Anthony. Application of neural network models to chromosome classification. Manchester: University of Manchester, 1995.
Den vollen Inhalt der Quelle findenWichert, Terry S. Feature based neural network acoustic transient signal classification. Monterey, Calif: Naval Postgraduate School, 1993.
Den vollen Inhalt der Quelle findenTodd, Ian K. A new neural network algorithm for classification problems. [s.l: The author], 1999.
Den vollen Inhalt der Quelle findenAdamski, M. Design of Digital Systems and Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenA modular and extensible network storage architecture. Cambrdige: Cambridge University Press, 1995.
Den vollen Inhalt der Quelle findenVarghese, George. Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked Devices. Burlington: Elsevier, 2004.
Den vollen Inhalt der Quelle findenNetwork algorithmics: An interdisciplinary approach to designing fast networked devices. Amsterdam: Elsevier/Morgan Kaufmann, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Classification of network devices"
Khatun, Ferdousi, und Pratikshya Sharma. „Strahler Order Classification and Analysis of Drainage Network by Satellite Image Processing“. In Advances in Communication, Devices and Networking, 915–22. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7901-6_98.
Der volle Inhalt der QuelleSelver, M. Alper, und Cüneyt Güzeliş. „Multilevel Data Classification and Function Approximation Using Hierarchical Neural Networks“. In Computational Methods for the Innovative Design of Electrical Devices, 147–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16225-1_8.
Der volle Inhalt der QuelleBassene, Avewe, und Bamba Gueye. „A Group-Based IoT Devices Classification Through Network Traffic Analysis Based on Machine Learning Approach“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 185–202. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70572-5_12.
Der volle Inhalt der QuelleGiannou, Olympia, Anastasios D. Giannou, Dimitra E. Zazara, Dörte Kleinschmidt, Tobias Mummert, Björn Ole Stüben, Michael Gerhard Kaul, Gerhard Adam, Samuel Huber und Georgios Pavlidis. „Liver Cancer Trait Detection and Classification Through Machine Learning on Smart Mobile Devices“. In Proceedings of the International Neural Networks Society, 95–108. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80568-5_8.
Der volle Inhalt der QuelleNajadat, Hassan, Maad Ebrahim, Mohammad Alsmirat, Obadah Shatnawi, Mohammed Nour Al-Rashdan und Ahmad Al-Aiad. „Investigating the Classification of Human Recognition on Heterogeneous Devices Using Recurrent Neural Networks“. In Sustainable and Energy Efficient Computing Paradigms for Society, 67–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51070-1_4.
Der volle Inhalt der QuelleRathinasabapathy, Ramadevi, Sheela Rani Balasubramaniam, Manoharan Narayanasamy, Prakash Vasudevan, Kalyasundaram Perumal und Baldev Raj. „Classification of Pressure Drop Devices of Proto Type Fast Breeder Reactor through Seven Layered Feed Forward Neural Network“. In Advances in Intelligent and Soft Computing, 157–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11282-9_17.
Der volle Inhalt der QuelleHolman, Blake A., Joy Hauser und George T. Amariucai. „Toward Home Area Network Hygiene: Device Classification and Intrusion Detection for Encrypted Communications“. In Advances in Security, Networks, and Internet of Things, 195–209. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71017-0_14.
Der volle Inhalt der QuelleRoopa, V., A. ChristyJeba Malar, R. Rekanivetha, R. Thanga Pradeep Kumar, R. Sarveshwaran und A. Prithiksha Parameshwari. „Customized Music Classification and Recommendation System Based on Classifiers of Neural Networks and Sensor Embedded on Smart Devices“. In Smart Computing Techniques and Applications, 805–16. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0878-0_79.
Der volle Inhalt der QuelleChowdhury, Dhiman Deb. „Timing Devices“. In NextGen Network Synchronization, 65–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71179-5_5.
Der volle Inhalt der QuelleRamamurthy, Byrav. „Optical Network Devices“. In Design of Optical WDM Networks, 9–31. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1675-0_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Classification of network devices"
Isuyama, Vivian Kimie, und Bruno De Carvalho Albertini. „Comparison of Convolutional Neural Network Models for Mobile Devices“. In Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/wperformance.2021.15724.
Der volle Inhalt der QuellePayvar, Saman, Mir Khan, Rafael Stahl, Daniel Mueller-Gritschneder und Jani Boutellier. „Neural Network-based Vehicle Image Classification for IoT Devices“. In 2019 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 2019. http://dx.doi.org/10.1109/sips47522.2019.9020464.
Der volle Inhalt der QuelleArora, Deepali, Kin Fun Li und Alex Loffler. „Big Data Analytics for Classification of Network Enabled Devices“. In 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA). IEEE, 2016. http://dx.doi.org/10.1109/waina.2016.131.
Der volle Inhalt der QuelleLelachaicharoeanpan, Jaroonwit, und Supachai Vongbunyong. „Classification of Surgical Devices with Artificial Neural Network Approach“. In 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2021. http://dx.doi.org/10.1109/iceast52143.2021.9426258.
Der volle Inhalt der QuelleCeron, Joao M., Christian Scholten, Aiko Pras und Jair Santanna. „MikroTik Devices Landscape, Realistic Honeypots, and Automated Attack Classification“. In NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2020. http://dx.doi.org/10.1109/noms47738.2020.9110336.
Der volle Inhalt der QuelleIbrahimi, Memedhe, Hatef Abdollahi, Alessandro Giusti, Cristina Rottondi und Massimo Tornatore. „Machine Learning Regression vs. Classification for QoT Estimation of Unestablished Lightpaths“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/networks.2020.nem3b.1.
Der volle Inhalt der QuelleChang Chen, Liangwei Cai, Yang Xiang und Jun Li. „SwinTop: Optimizing memory efficiency of packet classification in network devices“. In 2015 IEEE International Conference on Communication Software and Networks (ICCSN). IEEE, 2015. http://dx.doi.org/10.1109/iccsn.2015.7296139.
Der volle Inhalt der QuelleHolm, Mikayle A., Alex Deakyne, Erik Gaasedelen, Weston Upchurch und Paul A. Iaizzo. „Classification of Left Atrial Appendage Morphology Using Deep Learning“. In 2020 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dmd2020-9018.
Der volle Inhalt der QuelleNazari, Najmeh, Seyed Ahmad Mirsalari, Sima Sinaei, Mostafa E. Salehi und Masoud Daneshtalab. „Multi-level Binarized LSTM in EEG Classification for Wearable Devices“. In 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE, 2020. http://dx.doi.org/10.1109/pdp50117.2020.00033.
Der volle Inhalt der QuelleHosseini, Morteza, Hirenkumar Paneliya, Utteja Kallakuri, Mohit Khatwani und Tinoosh Mohsenin. „Minimizing Classification Energy of Binarized Neural Network Inference for Wearable Devices“. In 2019 20th International Symposium on Quality Electronic Design (ISQED). IEEE, 2019. http://dx.doi.org/10.1109/isqed.2019.8697574.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Classification of network devices"
Chakraborty, I., B. Kelley, B. Gallagher und D. Merl. Performance Evaluation of Network Flow and Device Classification using Network Features and Device Embeddings. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1668490.
Der volle Inhalt der QuelleBradner, S., und J. McQuaid. Benchmarking Methodology for Network Interconnect Devices. RFC Editor, März 1999. http://dx.doi.org/10.17487/rfc2544.
Der volle Inhalt der QuelleBradner, S., und J. McQuaid. Benchmarking Methodology for Network Interconnect Devices. RFC Editor, Mai 1996. http://dx.doi.org/10.17487/rfc1944.
Der volle Inhalt der QuelleBradner, S. Benchmarking Terminology for Network Interconnection Devices. RFC Editor, Juli 1991. http://dx.doi.org/10.17487/rfc1242.
Der volle Inhalt der QuelleWilson, C. L., G. Candela, P. J. Grother, C. I. Watson und R. A. Wilkinson. Massively parallel neural network fingerprint classification system. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4880.
Der volle Inhalt der QuellePopoviciu, C., A. Hamza, G. Van de Velde und D. Dugatkin. IPv6 Benchmarking Methodology for Network Interconnect Devices. RFC Editor, Mai 2008. http://dx.doi.org/10.17487/rfc5180.
Der volle Inhalt der QuelleHawkins, Rupert S., K. F. Heideman und Ira G. Smotroff. Cloud Data Set for Neural Network Classification Studies. Fort Belvoir, VA: Defense Technical Information Center, Januar 1992. http://dx.doi.org/10.21236/ada256181.
Der volle Inhalt der QuelleWilson, Charles L., James L. Blue und Omid M. Omidvar. Improving neural network performance for character and fingerprint classification by altering network dynamics. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5695.
Der volle Inhalt der QuelleMu, Ruihui, und Xiaoqin Zeng. Improved Webpage Classification Technology Based on Feedforward Backpropagation Neural Network. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2018. http://dx.doi.org/10.7546/crabs.2018.09.11.
Der volle Inhalt der QuelleGrother, P. J. Comparison of FFT fingerprint filtering methods for neural network classification. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5493.
Der volle Inhalt der Quelle