Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Classical oscillator“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Classical oscillator" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Classical oscillator"
Li, Minggen, und Jingdong Bao. „Effect of Self-Oscillation on Escape Dynamics of Classical and Quantum Open Systems“. Entropy 22, Nr. 8 (30.07.2020): 839. http://dx.doi.org/10.3390/e22080839.
Der volle Inhalt der QuelleAdhikari, Sondipon. „Qualitative dynamic characteristics of a non-viscously damped oscillator“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, Nr. 2059 (16.06.2005): 2269–88. http://dx.doi.org/10.1098/rspa.2005.1485.
Der volle Inhalt der QuelleWang, Wei-Ping. „Binary-Oscillator Networks: Bridging a Gap between Experimental and Abstract Modeling of Neural Networks“. Neural Computation 8, Nr. 2 (15.02.1996): 319–39. http://dx.doi.org/10.1162/neco.1996.8.2.319.
Der volle Inhalt der QuelleKhan, Kamran-ul-Haq, und Suhaib Masroor. „Numerical simulation along with the experimental work for an underdamped oscillator using fourth order Runge–Kutta method. An undergraduate experiment“. Physics Education 58, Nr. 6 (31.08.2023): 065006. http://dx.doi.org/10.1088/1361-6552/acede4.
Der volle Inhalt der Quelleda Costa, Bruno G., Ignacio S. Gomez und Biswanath Rath. „Exact solution and coherent states of an asymmetric oscillator with position-dependent mass“. Journal of Mathematical Physics 64, Nr. 1 (01.01.2023): 012102. http://dx.doi.org/10.1063/5.0094564.
Der volle Inhalt der QuelleFrolov, Andrei V., und Valeri P. Frolov. „Classical Mechanics with Inequality Constraints and Gravity Models with Limiting Curvature“. Universe 9, Nr. 6 (10.06.2023): 284. http://dx.doi.org/10.3390/universe9060284.
Der volle Inhalt der QuellePOPOV, I. P. „MULTI–INERT OSCILLATORY MECHANISM“. Fundamental and Applied Problems of Engineering and Technology 2 (2020): 19–25. http://dx.doi.org/10.33979/2073-7408-2020-340-2-19-25.
Der volle Inhalt der QuelleNEŠKOVIĆ, P. V., und B. V. UROŠEVIĆ. „QUANTUM OSCILLATORS: APPLICATIONS IN STATISTICAL MECHANICS“. International Journal of Modern Physics A 07, Nr. 14 (10.06.1992): 3379–88. http://dx.doi.org/10.1142/s0217751x92001496.
Der volle Inhalt der QuelleMurakami, Shintaro, Okuto Ikeda, Yusuke Hirukawa und Toshiharu Saiki. „Investigation of Eigenmode-Based Coupled Oscillator Solver Applied to Ising Spin Problems“. Symmetry 13, Nr. 9 (19.09.2021): 1745. http://dx.doi.org/10.3390/sym13091745.
Der volle Inhalt der QuelleKordahl, David. „Complementarity and entanglement in a simple model of inelastic scattering“. American Journal of Physics 91, Nr. 10 (01.10.2023): 796–804. http://dx.doi.org/10.1119/5.0141389.
Der volle Inhalt der QuelleDissertationen zum Thema "Classical oscillator"
Bystrik, Y. „Driven anharmonic oscillator: classical and quantum analysis“. Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46814.
Der volle Inhalt der QuelleTran, Viet-Dung. „Modélisation du dichroïsme circulaire des protéines : modèle simple et applications“. Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2076.
Der volle Inhalt der QuelleCircular dichroism (CD) spectroscopy is one of the fundamental techniques in structural biology that allows us to investigate the secondary structure of proteins. Synchrotron radiation has considerably increased the usefulness of the method because it allows to work with a wider range of spectrum and much greater signal-to-noise ratios. The development of a theoretical model to establish a relationship between the structure of a protein and its CD spectra in an efficient manner proved to be a complex task. The calculation of the CD spectra of large molecules, such as protein, remains a challenge, due to the size and flexibility of the molecules. In this context, we have developed a “minimal” model to explain the CD spectroscopy of proteins, which associates each C-alpha position on the protein backbone with a classical Lorentz oscillator i.e. a mobile charge attaches to a corresponding atom by a quadratic potential. The coupling between charges is through the Coulomb potential and their displacements follow the direction of the respective local tangents to the Calpha space curve. This system is coupled to a planar electromagnetic wave describing the light source and the absorption phenomenon is modeled by frictional forces. We show that the model correctly reproduces the CD phenomenon of a helical polypeptide chain and in particular its sign depending on the orientation of the chain. At first, we have fitted a model to CD spectra of a polypeptide chain of 15 residues folded into alpha helix. The transferability of these parameters is then evaluated with myoglobin, a protein of 153 residues containing eight alpha helices
Burks, Sidney. „Towards A Quantum Memory For Non-Classical Light With Cold Atomic Ensembles“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00699270.
Der volle Inhalt der QuelleArmstrong, Craig Keith. „Hamilton-Jacobi Theory and Superintegrable Systems“. The University of Waikato, 2007. http://hdl.handle.net/10289/2340.
Der volle Inhalt der QuelleBharath, Ranjeetha. „Nonlinear observer design and synchronization analysis for classical models of neural oscillators“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83684.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 37-38).
This thesis explores four nonlinear classical models of neural oscillators, the Hodgkin- Huxley model, the Fitzhugh-Nagumo model, the Morris-Lecar model, and the Hindmarsh-Rose model. Analysis techniques for nonlinear systems were used to develop a set of observers and perform synchronization analysis on the aforementioned neural systems. By using matrix analysis techniques, a study of biological background and motivation, and MATLAB simulation with mathematical computation, it was possible to do a preliminary contraction and nonlinear control systems structural study of these classical neural oscillator models. Neural oscillation and signaling models are based fundamentally on the biological function of the neuron, with behavior mediated through the channeling of ions across a cell membrane. The variable assumed to be measured for this study is the voltage or membrane potential, which could be measured empirically through the use of a neuronal force-clamp system. All other variables were estimated by using the partial state and full state observers developed here. Preliminary observer rate convergence analysis was done for the Fitzhugh-Nagumo system, and preliminary synchronization analysis was done for both the Fitzhugh-Nagumo and the Hodgkin- Huxley systems. It was found that by using a variety of techniques and mathematical matrix analyses methods (e.g. diagonal dominance or other norms), it was possible to develop a case-by-case nonlinear control systems approach to each particular system as a biomathematical entity.
by Ranjeetha Bharath.
S.B.
Conte, Riccardo. „A dynamical approach to the calculation of thermal reaction rate constants“. Doctoral thesis, Scuola Normale Superiore, 2008. http://hdl.handle.net/11384/85794.
Der volle Inhalt der QuelleJason, Peter. „Comparisons between classical and quantum mechanical nonlinear lattice models“. Licentiate thesis, Linköpings universitet, Teoretisk Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105817.
Der volle Inhalt der QuelleEllis, Jason Keith. „Emergent Phenomena in Classical and Quantum Systems: Cellular Dynamics in E. coli and Spin-Polarization in Fermi Superfluids“. [Kent, Ohio] : Kent State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1256932939.
Der volle Inhalt der QuelleDarling, Ryan Daniel. „Single Cell Analysis of Hippocampal Neural Ensembles during Theta-Triggered Eyeblink Classical Conditioning in the Rabbit“. Miami University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=miami1225460517.
Der volle Inhalt der QuelleZhang, Kuanshou. „Intracavity optical nonlinear devices using X(2) quasi-phase-matched material : classical and quantum properties and application to all-optical regeneration“. Paris 6, 2002. http://www.theses.fr/2002PA066553.
Der volle Inhalt der QuelleBücher zum Thema "Classical oscillator"
Introduction to classical and quantum harmonic oscillators. New York: Wiley, 1997.
Den vollen Inhalt der Quelle finden1953-, Kurths J., und Zhou Changsong, Hrsg. Synchronization in oscillatory networks. Berlin: Springer, 2007.
Den vollen Inhalt der Quelle findende Sá Caetano, Elsa. Cable Vibrations in Cable-Stayed Bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2007. http://dx.doi.org/10.2749/sed009.
Der volle Inhalt der QuelleBloch, Sylvan C. Introduction to Classical and Quantum Harmonic Oscillators. Wiley & Sons, Incorporated, John, 2013.
Den vollen Inhalt der Quelle findenBloch, S. C. Introduction to Classical and Quantum Harmonic Oscillators. Wiley & Sons, Incorporated, John, 2013.
Den vollen Inhalt der Quelle findenKurths, Jürgen, Grigory V. Osipov und Changsong Zhou. Synchronization in Oscillatory Networks. Springer, 2010.
Den vollen Inhalt der Quelle findenKurths, Jürgen, Grigory V. Osipov und Changsong Zhou. Synchronization in Oscillatory Networks (Springer Series in Synergetics). Springer, 2007.
Den vollen Inhalt der Quelle findenTiwari, Sandip. Semiconductor Physics. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198759867.001.0001.
Der volle Inhalt der QuelleGill, Denise. Melancholic Modes, Healing, and Reparation. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190495008.003.0006.
Der volle Inhalt der QuelleGoswami, B. N., und Soumi Chakravorty. Dynamics of the Indian Summer Monsoon Climate. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.613.
Der volle Inhalt der QuelleBuchteile zum Thema "Classical oscillator"
Grozin, Andrey. „Classical Nonlinear Oscillator“. In Introduction to Mathematica® for Physicists, 145–51. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00894-3_19.
Der volle Inhalt der QuelleGreene, Ronald L. „The Harmonic Oscillator“. In Classical Mechanics with Maple, 107–40. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4236-9_4.
Der volle Inhalt der QuelleCushman, Richard H., und Larry M. Bates. „The harmonic oscillator“. In Global Aspects of Classical Integrable Systems, 3–32. Basel: Springer Basel, 2015. http://dx.doi.org/10.1007/978-3-0348-0918-4_1.
Der volle Inhalt der QuelleCushman, Richard H., und Larry M. Bates. „The harmonic oscillator“. In Global Aspects of Classical Integrable Systems, 1–36. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8891-2_1.
Der volle Inhalt der QuelleDittrich, W., und Martin Reutera. „Linear Oscillator with Time-Dependent Frequency“. In Classical and Quantum Dynamics, 227–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56430-7_21.
Der volle Inhalt der QuelleDittrich, W., und Martin Reutera. „Partition Function for the Harmonic Oscillator“. In Classical and Quantum Dynamics, 281–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56430-7_26.
Der volle Inhalt der QuelleDittrich, W., und Martin Reutera. „Berry Phase and Parametric Harmonic Oscillator“. In Classical and Quantum Dynamics, 357–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56430-7_34.
Der volle Inhalt der QuelleDittrich, Walter, und Martin Reuter. „Linear Oscillator with Time-Dependent Frequency“. In Classical and Quantum Dynamics, 259–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36786-2_21.
Der volle Inhalt der QuelleDittrich, Walter, und Martin Reuter. „Partition Function for the Harmonic Oscillator“. In Classical and Quantum Dynamics, 317–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36786-2_26.
Der volle Inhalt der QuelleDittrich, Walter, und Martin Reuter. „Berry Phase and Parametric Harmonic Oscillator“. In Classical and Quantum Dynamics, 409–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36786-2_34.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Classical oscillator"
Li, Wei, Gen-xiang Chen, Xun Li und Wei-ping Huang. „Active Mode Locking: Quantum Oscillator vs. Classical Coupled Oscillators“. In 2006 IEEE International Conference on Electro/Information Technology. IEEE, 2006. http://dx.doi.org/10.1109/eit.2006.252106.
Der volle Inhalt der QuelleDUBOIS, DANIEL M. „Hyperincursive Algorithms of Classical Harmonic Oscillator Applied to Quantum Harmonic Oscillator Separable Into Incursive Oscillators“. In Unified Field Mechanics: Natural Science Beyond the Veil of Spacetime. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719063_0005.
Der volle Inhalt der QuelleYuan, Jian-Min, und Mingwhei Tung. „Dissipative quantum and classical dynamics: driven molecular vibration“. In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thb4.
Der volle Inhalt der QuelleRashkovskiy, S. A. „Quantum-like behavior of nonlinear classical oscillator“. In QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6. AIP, 2012. http://dx.doi.org/10.1063/1.4773166.
Der volle Inhalt der QuelleApfel, Joseph H. „Classical oscillator dispersion model for optical coatings“. In The Hague '90, 12-16 April, herausgegeben von Reinhard Herrmann. SPIE, 1990. http://dx.doi.org/10.1117/12.20368.
Der volle Inhalt der QuelleKar, Susmita, und S. P. Bhattacharyya. „Tunneling control using classical non-linear oscillator“. In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872931.
Der volle Inhalt der QuelleHirakawa, K. „Dispersive terahertz gain of non-classical oscillator: Bloch oscillation in semiconductor superlattices“. In 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1548339.
Der volle Inhalt der QuelleAudenaert, K., M. Cramer, J. Eisert und M. B. Plenio. „Entanglement scaling in classical and quantum harmonic oscillator lattices“. In QUANTUM COMPUTING: Back Action 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2400881.
Der volle Inhalt der QuelleXu, Yufeng, und Om P. Agrawal. „Numerical Solutions of Generalized Oscillator Equations“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12705.
Der volle Inhalt der QuelleFörtsch, Michael, G. Schunk, J. U. Fürst, D. V. Strekalov, A. Aiello, U. L. Andersen, Ch Marquardt und G. Leuchs. „Non-classical light generated in a Whispering Gallery Mode Parametric Oscillator“. In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i822.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Classical oscillator"
Glimm, Tilmann. On the Supersymmetry Group of the Classical Bose-Fermi Oscillator. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-4-2005-45-58.
Der volle Inhalt der Quelle