Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Citrus Diseases and pests“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Citrus Diseases and pests" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Citrus Diseases and pests"
Lin, Yuke, Jin Xu und Ying Zhang. „Identification Method of Citrus Aurantium Diseases and Pests Based on Deep Convolutional Neural Network“. Computational Intelligence and Neuroscience 2022 (27.05.2022): 1–8. http://dx.doi.org/10.1155/2022/7012399.
Der volle Inhalt der QuelleLee, Saebom, Gyuho Choi, Hyun-Cheol Park und Chang Choi. „Automatic Classification Service System for Citrus Pest Recognition Based on Deep Learning“. Sensors 22, Nr. 22 (18.11.2022): 8911. http://dx.doi.org/10.3390/s22228911.
Der volle Inhalt der QuelleArif, Alfis. „A SISTEM PAKAR HAMA DAN PENYAKIT TANAMAN JERUK GERGA PAGAR ALAM MENGGUNAKAN METODE EUCLIDEAN DISTANCE BERBASIS WEBSITE“. Jurnal Teknologi Informasi Mura 11, Nr. 02 (16.12.2019): 68–75. http://dx.doi.org/10.32767/jti.v11i02.610.
Der volle Inhalt der QuelleMichael, Githae, George O. Ong’amo, John Nderitu, Gillian W. Watson und Wanja Kinuthia. „Diversity of scale insects (Hemiptera: Coccomorpha) attacking citrus trees in Machakos, Makueni, Kilifi and Kwale Counties, Kenya“. Journal of Agricultural Science and Practice 6, Nr. 3 (30.06.2021): 79–85. http://dx.doi.org/10.31248/jasp2021.275.
Der volle Inhalt der QuelleXing, Shuli, Marely Lee und Keun-kwang Lee. „Citrus Pests and Diseases Recognition Model Using Weakly Dense Connected Convolution Network“. Sensors 19, Nr. 14 (19.07.2019): 3195. http://dx.doi.org/10.3390/s19143195.
Der volle Inhalt der QuelleXing, Shuli, und Malrey Lee. „Classification Accuracy Improvement for Small-Size Citrus Pests and Diseases Using Bridge Connections in Deep Neural Networks“. Sensors 20, Nr. 17 (03.09.2020): 4992. http://dx.doi.org/10.3390/s20174992.
Der volle Inhalt der QuellePurba, Endang Christine, und Bambang S. Purwoko. „TEKNIK PEMBIBITAN, PEMUPUKAN, DAN PENGENDALIAN HAMA PENYAKIT TANAMAN KOMODITI JERUK SIAM (Citrus nobilis var. microcarpa) DI KECAMATAN SIMPANG EMPAT DAN KECAMATAN PAYUNG, KABUPATEN KARO, SUMATRA UTARA, INDONESIA“. Pro-Life 6, Nr. 1 (05.03.2019): 66. http://dx.doi.org/10.33541/pro-life.v6i1.940.
Der volle Inhalt der QuelleResiani, Ni Made Delly, Ni Putu Sutami und A. A. N. B. Kamandalu. „Innovations in healthy citrus garden management to reduce major pests and diseases and increase incomes of citrus farmers“. E3S Web of Conferences 361 (2022): 02007. http://dx.doi.org/10.1051/e3sconf/202236102007.
Der volle Inhalt der QuelleGairhe, Biwek, Ramdas Kanissery und Brent Sellers. „Citrus Nursery Production Guide, Chapter 8: Stock Plant and Tree Production: c) Weed Management in Citrus Nurseries“. EDIS 2019, Nr. 5 (24.10.2019): 7. http://dx.doi.org/10.32473/edis-hs1344-2019.
Der volle Inhalt der QuelleThomas, Michael B., Jonathan H. Crane, James J. Ferguson, Howard W. Beck und Joseph W. Noling. „Two Computer-based Diagnostic Systems for Diseases, Insect Pests, and Physiological Disorders of Citrus and Selected Tropical Fruit Crops“. HortTechnology 7, Nr. 3 (Juli 1997): 293–98. http://dx.doi.org/10.21273/horttech.7.3.293.
Der volle Inhalt der QuelleDissertationen zum Thema "Citrus Diseases and pests"
Wright, Glenn C., und John Begeman. „Diagnosing Home Citrus Problems“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2009. http://hdl.handle.net/10150/144796.
Der volle Inhalt der QuelleLow Desert Citrus Varieties; Irrigating Citrus Trees
Diagnosing Home Citrus Problems includes information on all the commonly encountered dooryard citrus problems encountered in Arizona. Problems/disorders are grouped into three catagories: problems with fruit, problems with leaves, and problems with stems, branches and entire tree. Symptoms, causes and control measures are given for each disorder.
Phiri, Zanele Penelope. „Creasing studies in citrus“. Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4219.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Creasing, also known as albedo breakdown, is a preharvest disorder that affects the albedo of citrus fruit causing creases on the surface of the fruit. It is a recurrent problem in Navel and Valencia oranges and can cause individual orchard losses which often exceed 50%. Although the contributing factors are known, the physiological basis of creasing development is unresolved and the current control measures do not prevent creasing satisfactory. Hence, better control measures and further understanding of the physiology of creasing development is required. The objective of this two-year study was to determine if the position of fruit in a tree, light and carbohydrate manipulation techniques, and albedo mineral nutrients influence creasing development. Furthermore, the most effective application timing of gibberellic acid (GA3) with the least negative effect on fruit rind colour development and the effectiveness of cytokinins, other products and different root biostimulants to reduce creasing incidence were evaluated. The position of fruit in the tree and light influenced the development of creasing and the distribution of mineral nutrients in the albedo. Creasing incidence was higher on the south side than on the north side of the tree and fruit from the inside sub-sectors had a greater creasing incidence compared to fruit from the outside sub-sectors. The shady part of outside fruit was more creased compared to the sunny part of the fruit and covering fruit with brown paper bags increased creasing severity. The light manipulation techniques used on the leaves and fruit increased the nitrogen (N), phosphorus (P), potassium (K) and manganese (Mn) concentrations in the albedo and differences in the albedo mineral nutrients amongst the sub-sectors evaluated were observed, but creasing severity or creasing incidence was not significantly correlated with the albedo mineral concentrations at harvest. Albedo mineral concentrations earlier in the season may play a role in creasing development, as creasing severity was significantly correlated with copper (Cu), K, and Mn concentrations in the albedo during stage II of fruit development. Creasing incidence and albedo mineral concentrations were not affected by any of the carbohydrate manipulation techniques used in this study. The incidence and severity of creasing was significantly reduced, with a minor negative effect on fruit rind colour development, by the application of GA3, from mid November to mid January. Localised fruit application of CPPU [N-(2-chloro-4-pyridyl)-N-phenylurea], MaxCel (6- Benzyladenine) and CPPU in combination with calcium after physiological fruit drop reduced the incidence and severity of creasing, although creasing incidence was not significantly different from the control. The application of Messenger®, AVG (aminoethoxyvinylglycine) and different root biostimulants did not reduce creasing incidence. The results showed that cytokinins could reduce creasing incidence and justify further studies on application and uptake efficiency. The use of different root biostimulants are not recommended, but it is suggested that treatment effects may be more pronounced over a longer period.
AFRIKAANSE OPSOMMING: Kraakskil is ‘n vooroes abnormalitiet wat die albedo van sitrusvrugte affekteer, deur krake op die oppervlak van vrugte te veroorsaak. Dit is ‘n algemene probleem in Navel en Valencia lemoene en kan boordverliese van tot 50% of soms hoër veroorsaak. Alhoewel die bydraende faktore bekend is, is die fisiologiese basis van kraakskil ontwikkeling onopgelos en die beskikbare beheermaatreëls is nie bevredigend nie. Dus, beter beheermaatreëls en ‘n beter begrip van die fisiologie van kraakskil ontwikkeling is nodig. Die doel van die twee-jaar studie was om te bepaal of die posisie van vrugte in ‘n boom, lig en koolhidraat manipulasie tegnieke en minerale elemente in die albedo, kraakskil ontwikkeling beïnvloed. Die mees effektiewe toedieningstyd van gibberelliensuur (GA3) sonder ‘n negatiewe effek op vrugkleur is bepaal en die effektiwiteit van sitokiniene, ander produkte en verskillende wortel biostimulante om kraakskil voorkoms te verminder, is geëvalueer. Die posisie van vrugte in ‘n boom en lig het kraakskil ontwikkeling en die verspreiding van minerale element in die albedo beïnvloed. Kraakskil voorkoms was hoër aan die suidekant van die boom as aan die noordekant en vrugte in die binnekant van die boom het ‘n groter kraakskil voorkoms as vrugte in die buitekant van die boom gehad. Die skadukant van buitevrugte het meer kraakskil gehad as die sonkant en die toemaak van vrugte met ‘n bruin papiersak het die graad van kraaksil verhoog. Die lig manipulasie tegnieke wat op die blare en vrugte gebruik is, het die stikstof (N), fosfaat (P), kalium (K) en mangaan (Mn) konsentasies in die albedo verhoog en verskille in die albedo minerale elemente tussen sub-sektore is waargeneem, maar betekenisvolle korrelasies is nie tussen die graad en voorkoms van kraakskil en die albedo minerale element konsentrasies by oestyd waargeneem nie. Albedo minerale element konsentrasies vroeër in die seisoen mag ‘n rol speel by kraakskil ontwikkeling, omdat die graad van kraakskil betekenisvol gekorreleer was met albedo koper (Cu), K, en Mn konsentrasies tydens fase II van vrugontwikkeling. Kraakskil voorkoms en albedo minerale element konsentrasies is nie deur enige van die koolhidraat manipulasie tegnieke geaffekteer nie. Die voorkoms en graad van kraakskil is betekenisvol verlaag, met ‘n geringe negatiewe effek op vrugkleur, deur die toediening van GA3 vanaf mid November tot mid Januarie. Gelokaliseerde vrugtoedienings van CPPU [N-(2-chloro-4-piridiel)-N-phenielureum], MaxCel (6- Bensieladenien) en CPPU saam met kalsium na fisiologiese vrugval het die voorkoms en graad van kraakskil verlaag, alhoewel kraakskil voorkoms nie betekenisvol van die kontrole verskil het nie. Die toediening van Messenger®, AVG (amino etoksievinielglisien) en veskillende wortel biostimulante het nie kraakskil voorkoms verlaag nie. Die resultate het getoon dat sitokiniene kraakskil voorkoms kan verlaag en verdere studies op die toediening en opname effektiwiteit word aanbeveel. Die gebruik van verskillende wortel biostimulante word nie aanbeveel nie, maar die effek behoort meer sigbaar te wees na ‘n langer periode van behandeling.
Van, der Walt Rachel. „Identifying volatile emissions associated with False Codling Moth infested citrus fruit“. Thesis, Nelson Mandela Metropolitan University, 2012. http://hdl.handle.net/10948/d1020056.
Der volle Inhalt der QuelleKnight, Toby George. „Investigation of the physiological basis of the rind disorder oleocellosis in Washington navel orange (Citrus sinensis [L.] Osbeck)“. Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09AHP/09ahpk71.pdf.
Der volle Inhalt der QuelleWakgari, Waktola (Waktola Muleta). „Biology, ecology and management of white wax scale, Ceroplastes destructor Newstead (Hemiptera: Coccidae), on citrus and syzygium“. Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51637.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The population density of the white wax scale, Ceroplastes destructor Newstead, has increased since 1994 in certain areas of Western and parts of Eastern Cape Provinces of South Africa where citrus is grown, particularly on Citrus reticulata (Blanco). A study was conducted to investigate its morphology, biology and ecology as contributions to the development of a sound integrated management programme. Characteristics of the immature stages and adult females were described and illustrated from field-collected and slide-mounted specimens. A key to the different stages and morphometeric characteristics useful for separating them are provided. No significant differences in female fecundity were found between orchards (P > 0.05). However, fecundity varied significantly between female size classes from the same orchard (P < 0.001). Female body-size also differed significantly between orchards (P < 0.05) and was significantly positively correlated with fecundity (P < 0.01). C. destructor has one discrete generation per year in South Africa. Oviposition commenced in November and continued through to the end of December with a few females ovipositing until mid January. Population density of the second instar peaked in February while the third instar extended from March to the end of July, followed by a peak population of adults in August. Seven primary and three secondary parasitoids, as well as four predator species attacking C. destructor were identified. Aprostocetus (= Tetrastichus) ceroplastae (Girault) was the dominant species, accounting for 78.87% of the total primary parasitoids reared. Peak numbers of parasitoids and predators were synchronized with peak emergence of susceptible scale stages, indicating that the host-parasitoid/predator system contained a density-dependent regulatory mechanism. Key mortality factors varied slightly between two of the orchards. Key stage mortality determined from a cohort life table was generally in the third instar (LIlI) and preovipositional female (POF) stage. Significant density-dependent mortality factors were demonstrated for the first instar (LI) and PDF stage. Dispersal of C. destructor is by first instar nymphs and the numbers caught on a series of yellow sticky traps varied significantly between crawler densities at the source, trap distances and trap directions from the source (P < 0.001). The numbers caught were positively correlated to the initial crawler density at the source (P < 0.01), suggesting that dispersal was density dependent. Trap distance and the numbers caught were inversely correlated (P < 0.01). Evaluation of effects of different densities of C. destructor on growth, survivorship and reproduction of scales as well as on leaf bearing ability of trees and area of leaf surface covered with sooty mould fungus was carried out on naturally infested Syzygium (= Eugenia) malaccensis (L.) plants. Scale body size and fecundity were inversely related to scale density (P < 0.01), suggesting density-dependent intraspecific competition. Scale survivorship generally declined with increasing density whereas scale parasitism and predation were positively correlated with density (P < 0.05). At high scale densities production of new leaves was significantly reduced (P < 0.01), reducing the resource base for subsequent generations of scale. Scale density and leaf area covered with sooty mould fungus were significantly positively correlated (P < 0.05). The toxicity of four synthetic insecticides against the three immature stages of C. destructor and of eight insecticides against the parasitoid A. ceroplastae was evaluated. Development of the first and second instars of C. destructor was completely arrested by the chemicals. Female fecundity, fertility and body sizes of survivors of treatments applied at the LIII stage were not significantly affected by any of the chemicals (P > 0.05). All the chemicals exhibited high toxicity to A. ceroplastae and hence are not recommended for integrated management of C. destructor in citrus orchards where A. ceroplastae plays an important role.
AFRIKAANSE OPSOMMING: Die populasiedigtheid van die witwasdopluis, Ceroplastes destructor Newstead, het sedert 1994 toegeneem in sekere gebiede van die Weskaap en Ooskaap provinsies van Suid-Afrika waar sitrus verbou word, veralop Citrus reticulata (Blanco). 'n Studie van hierdie insek se morfologie, biologie en ekologie is onderneem as bydrae tot die ontwikkeling van 'n geïntegreerde bestuursprogram. Die karaktertrekke van die onvolwasse stadia en die volwasse wyfies is beskryf en geïllustreer vanaf eksemplare wat in die veld versamel is en op g1asplaatjies gemonteer is. 'n Sleutel vir die verskillende stadia en morfometriese kenmerke wat nuttig is om hulle te onderskei, word voorsien. Geen beduidende verskille in die vrugbaarheid van wyfies van verskillende boorde is gevind nie (P < 0.05). Vrugbaarheid het egter betekenisvol verskil by die verskillende grootteklasse van wyfies uit dieselfde boord (P < 0.001). Die liggaamsgrootte van wyfies uit verskillende boorde het betekenisvol verskil (P < 0.05) en was betekenisvol positief gekorreleer met vrugbaarheid (P < 0.01). C. destructor het een generasie per jaar in Suid-Afrika. Eierlegging het in November begin en aangehou tot aan die einde van Desember, met enkele wyfies wat nog tot in middel Januarie eiers gelê het. Die populasiedigtheid van die tweede instar het 'n hoogtepunt in Februarie bereik, terwyl die derde instar van Maart tot aan die einde van Julie geduur het, gevolg deur 'n piekbevolking van volwassenes in Augustus. Sewe primêre en drie sekondêre parasitoïde asook vier predator spesies wat C destructor aanval, is geïdentifiseer. Aprostocetus (=Tetrastichus) ceroplastae (Girault) was die dominante spesies wat 78.87% van die totale aantal primêre parasitoïde wat uitgeteel is, uitgemaak het. Die pieke in die getalle van parasitoïde en predatore was gesinchroniseer met pieke in die verskyning van die gevoelige stadia, wat dui op die aanwesigheid van 'n digtheidsafhanklike regulatoriese meganisme. Die sleutel mortaliteitsfaktore het effens gevarieer tussen twee van die boorde. Die sleutelstadium van mortaliteit, soos bepaal m.b.v. 'n kohort lewenstabel, was gewoonlik die derde instar (LIlI) en die preoviposisionele wyfie (POW). Betekenisvolle digtheidsafhanklike mortaliteitsfaktore IS aangetoon vir die eerste instar (LI) en die POW. Die verspreiding van C.destructor vind plaas deur die eerste instar nimfe en die getalle wat op 'n reeks van taai geel valle gevang is, het betekenisvol gewissel volgens kruiperdigthede by die bron, asook die afstand en rigting van die valle vanaf die bron (P < 0.001). Die getalle wat gevang is, was positief gekorreleer met die aanvanklike kruiperdigtheid by die bron (P < 0.01), wat daarop dui dat verspreiding digtheidsafhanklik was. Die afstand van die valle en die aantal wat gevang is, was omgekeerd gekorreleer (P < 0.01). 'n Evaluering van die invloed van verskillende digthede van C. destructor op die groei, oorlewing en reproduksie van dopluise, asook die vermoë van bome om blare te dra en die area van die blaaroppervlak wat met roetskimmel besmet is, is uitgevoer op plante van Syzygium (= Eugenia) malaccensis (L.) met 'n natuurlike besmetting. Die liggaamsgrootte en vrugbaarheid van die dopluise was omgekeerd gekorreleer met hulle digtheid (P < 0.01), wat dui op digtheidsafhanklike intraspesifieke kompetisie. Die oorlewing van die dopluise het oor die algemeen afgeneem met toenemende digtheid, terwyl parasitisme en predasie positief gekorreleer was met digtheid (P < 0.05). By hoë dopluisdigthede het die produksie van nuwe blare betekenisvol afgeneem (P < 0.01), wat die hulpbronbasis vir daaropvolgende generasies van dopluise verswak. Die dopluisdigtheid en blaaroppervlak wat met roetskimmel bedek was, was positief gekorreleer (P < 0.05). Die toksisiteit van vier sintetiese insektemiddels teenoor die drie onvolwasse stadia van C. destructor en van agt insektemiddels teenoor die parasitoïd A. ceroplastae is geëvalueer. Die ontwikkeling van die eerste en tweede instars van C. destructor is heeltemal stopgesit deur die middels. Die fekunditeit, fertiliteit en liggaamsgrootte van wyfies wat toedienings op die LIIl stadium oorleef het, is nie betekenisvol ge-affekteer deur enige van die middels nie (P < 0.05). Al die middels was baie toksies teenoor A. ceroplastae en word dus nie aanbeveel vir die geïntegreerde bestuur van C. destructor waar A. ceroplastae 'n belangrike rol speel nie.
Ceballo, Flor Angel Aquino. „An investigation into why coccidoxenoides peregrinus (timberlake) (hymenoptera:encyrtidae) is an effective biological control agent in Queensland citrus /“. St. Lucia, Qld, 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16498.pdf.
Der volle Inhalt der QuelleFitzGerald, Véronique Chartier. „Screening of entomopathogenic fungi against citrus mealybug (Planococcus citri (Risso)) and citrus thrips (Scirtothrips aurantii (Faure))“. Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020887.
Der volle Inhalt der QuelleWright, Jacqueline Gilda. „The role of endophytes in citrus stem end rots“. Thesis, Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19736654.
Der volle Inhalt der QuelleMathewson, Johanna. „Die insekplaagkompleks op sitrus te Vaalharts“. Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51706.
Der volle Inhalt der QuelleFull text to be digitised and attached to bibliographic record.
ENGLISH ABSTRACT: The cultivation of citrus in the Vaalharts region is a fairly recent development. With the introduction of this crop, an insect pest complex has also developed in this region. The presence of these pests was studied in eleven orchards, planted with three citrus cultivars and of varying ages, distributed in the 300 square kilometer cultivation area. Each orchard was inspected for the presence of pests by making use of two weekly sampling techniques. Ten of the most important insect pests of citrus in the Vaalharts region are briefly described by refering to their general appearance, life cycles, feeding and pest status and economic threshold. For every pest various control options, including operational systems, crop cultivation, biological and chemical control, are discussed and, where applicable, illustrated by means of graphic presentations. The seasonal presence of the cirtrus pests in the Vaalharts region is tabulated and discussed individually. With these details as background, an insect pest management programme for citrus in the Vaalharts region is compiled.
AFRIKAANSE OPSOMMING: Die verbouing van sitrus in die Vaalhartsgebied is 'n redelik onlangse ontwikkeling. Gepaard met die nuwe gewas het daar ook 'n insekplaagkompleks in die gebied ontstaan. Die voorkoms van die plae is in elt .boorde, beplant met drie sitruskultivars en van verskillende ouderdomme, verspreid in die 300 vierkante kilometer verbouingsareaal, bestudeer. Elk van die boorde is weekliks ondersoek vir die aanwesigheid van plae deur van twee moniteringstegnieke gebruik te maak. Die tien belangrikste insekplae van sitrus in die Vaalhartsgebied word kortliks beskryf deur na hulle algemene voorkoms, lewenssiklus, voeding en plaagstatus en ekonomiese drempelwaardes asook die moniteringsmetodes wat gebruik is, te verwys. Vir elke plaag word beheeropsies, wat operasionele stelsels, gewasverbouing, bloloqlese en chemiese beheer insluit, bespreek wat, waar toepaslik, aan die hand van grafiese voorstellings gemustreer word. Die seisoenale aanwesigheid van die sitrusplae word in 'n tabel aangedui en individueel bespreek. Met die gegewens as agtergrond is 'n insekplaagbestuurprogram vir sitrus in die Vaalhartsgebied opgestel.
Opoku-Debrah, John Kwadwo. „Geographic variation in the susceptibility of false colding Moth, Thaumatotibia Leucotreta, populations to a granulovirus (CrleGV-SA)“. Thesis, Nelson Mandela Metropolitan University, 2008. http://hdl.handle.net/10948/984.
Der volle Inhalt der QuelleBücher zum Thema "Citrus Diseases and pests"
Whitmore, Susan. Citrus canker disease. Beltsville, Md: U.S. Dept. of Agriculture, National Agricultural Library, 1985.
Den vollen Inhalt der Quelle findenWhitmore, Susan. Citrus canker disease. Beltsville, Md: U.S. Dept. of Agriculture, National Agricultural Library, 1985.
Den vollen Inhalt der Quelle findenWhitmore, Susan. Citrus canker disease. Beltsville, Md: U.S. Dept. of Agriculture, National Agricultural Library, 1985.
Den vollen Inhalt der Quelle findenUniversity of California (System). Division of Agriculture and Natural Resources, Hrsg. Citrus production manual. Oakland, California: University of California, Agriculture and Natural Resources, 2014.
Den vollen Inhalt der Quelle findenKarasev, Alexander V., und Mark E. Hilf. Citrus tristeza virus complex and tristeza diseases. St. Paul, Minn: American Phytopathological Society, 2010.
Den vollen Inhalt der Quelle findenVacante, Vincenzo. Citrus mites: Identification, bionomy and control. Cambridge, MA: CABI North American Office, 2010.
Den vollen Inhalt der Quelle findenUnited States. Animal and Plant Health Inspection Service. Help us find citrus greening disease. 2. Aufl. [Riverdale, Md.?]: U.S. Dept. of Agriculture, Animal and Plant Health Inspection Service, 2010.
Den vollen Inhalt der Quelle findenVacante, Vincenzo. Citrus mites: Identification, bionomy and control. Cambridge, MA: CABI North American Office, 2010.
Den vollen Inhalt der Quelle findenVacante, Vincenzo. Citrus mites: Identification, bionomy and control. Cambridge, MA: CABI North American Office, 2010.
Den vollen Inhalt der Quelle findenUnited States. Animal and Plant Health Inspection Service. Huanglongbing, or citrus greening. 2. Aufl. [Riverdale, Md.?]: U.S. Dept. of Agriculture, Animal and Plant Health Inspection Service, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Citrus Diseases and pests"
Neves, Marcos Fava, Vinícius Gustavo Trombin, Frederico Fonseca Lopes, Rafael Kalaki und Patrícia Milan. „Pests and diseases in the Brazil’s citrus belt“. In The orange juice business, 67. Wageningen: Wageningen Academic Publishers, 2011. http://dx.doi.org/10.3920/978-90-8686-739-4_17.
Der volle Inhalt der QuelleKaramaouna, Filitsa, Panagiotis Mylonas, Dimitrios Papachristos, Dimitrios Kontodimas, Antonios Michaelakis und Eleftheria Kapaxidi. „Main Arthropod Pests of Citrus Culture and Pest Management in Greece“. In Integrated Management of Arthropod Pests and Insect Borne Diseases, 29–59. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8606-8_2.
Der volle Inhalt der QuelleZappalà, Lucia. „Citrus Integrated Pest Management in Italy“. In Integrated Management of Arthropod Pests and Insect Borne Diseases, 73–100. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8606-8_4.
Der volle Inhalt der QuelleThanassoulopoulos, C. C. „Diseases“. In Integrated Pest Control in Citrus-Groves, 583–85. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003079279-92.
Der volle Inhalt der QuelleCampos-Herrera, Raquel, Robin J. Stuart, Fahiem El-Borai, Carmen Gutierrez und Larry Duncan. „Entomopathogenic Nematode Ecology and Biological Control in Florida Citrus Orchards“. In Integrated Management of Arthropod Pests and Insect Borne Diseases, 101–30. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8606-8_5.
Der volle Inhalt der QuelleJacas, Josep Anton, Filitsa Karamaouna, Rosa Vercher und Lucia Zappalà. „Citrus Pest Management in the Northern Mediterranean Basin (Spain, Italy and Greece)“. In Integrated Management of Arthropod Pests and Insect Borne Diseases, 3–27. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8606-8_1.
Der volle Inhalt der QuelleJacas, Josep Anton, und Alberto Urbaneja. „Biological Control in Citrus in Spain: From Classical to Conservation Biological Control“. In Integrated Management of Arthropod Pests and Insect Borne Diseases, 61–72. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8606-8_3.
Der volle Inhalt der QuelleSalemo, M., und G. Cutuli. „Fungal and bacterial diseases of citrus in the Mediterranean region“. In Integrated Pest Control in Citrus-Groves, 243–48. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003079279-38.
Der volle Inhalt der QuelleAlbrigo, L. G., L. L. Stelinski und L. W. Timmer. „Arthropod pests.“ In Citrus, 183–213. Wallingford: CABI, 2019. http://dx.doi.org/10.1079/9781845938154.0183.
Der volle Inhalt der QuelleCatara, A., M. Davino, F. Russo und G. Terranova. „Virus and virus-like diseases of citrus, plant quarantine regulation, clonal and sanitary programs in the Mediterranean area and criteria for handling virus-free clones“. In Integrated Pest Control in Citrus-Groves, 295–304. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003079279-45.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Citrus Diseases and pests"
Laisheng, Xiao, Wang Zhengxia, Peng Xiaohong, Wu Min und Yu Guangzhou. „Remote Diagnosis and Control Expert System for Citrus Agricultural Diseases and Insect Pests Based on BP Neural Network and WebGIS“. In 2009 Second International Conference on Intelligent Computation Technology and Automation. IEEE, 2009. http://dx.doi.org/10.1109/icicta.2009.738.
Der volle Inhalt der QuelleMunkvold, Gary P. „Managing Diseases and Pests with Seed Treatments“. In Proceedings of the 16th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2007. http://dx.doi.org/10.31274/icm-180809-893.
Der volle Inhalt der QuelleHunter, Wayne B. „Topical RNAi in citrus tree crops to control hemipteran pests“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.93851.
Der volle Inhalt der QuelleAllan, Sandra A. „Citrus pests on olives in Florida: Should we be worried?“ In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.93472.
Der volle Inhalt der QuelleSchall, Kelsey A. „Implications of Argentine ant management for biological control of the Asian citrus psyllid and other citrus pests“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.114044.
Der volle Inhalt der QuelleTumang, Gina S. „Pests and Diseases Identification in Mango using MATLAB“. In 2019 5th International conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2019. http://dx.doi.org/10.1109/iceast.2019.8802579.
Der volle Inhalt der QuelleKhan, Ejaz, Muhammad Zia Ur Rehman, Fawad Ahmed und Muhammad Attique Khan. „Classification of Diseases in Citrus Fruits using SqueezeNet“. In 2021 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, 2021. http://dx.doi.org/10.1109/icaem53552.2021.9547133.
Der volle Inhalt der QuelleChen, Quan, Xin Liu, Caixia Dong, Tong Tong, Changcai Yang, Riqing Chen, Tengyue Zou und Xiaolang Yang. „Deep Convolutional Network for Citrus Leaf Diseases Recognition“. In 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2019. http://dx.doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00215.
Der volle Inhalt der QuelleWang, Qiyao, Guiqing He, Feng Li und Haixi Zhang. „A novel database for plant diseases and pests classification“. In 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2020. http://dx.doi.org/10.1109/icspcc50002.2020.9259502.
Der volle Inhalt der QuellePatel, Pruthvi P., und Dineshkumar B. Vaghela. „Crop Diseases and Pests Detection Using Convolutional Neural Network“. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, 2019. http://dx.doi.org/10.1109/icecct.2019.8869510.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Citrus Diseases and pests"
Bar-Joseph, Moshe, William O. Dawson und Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Der volle Inhalt der QuelleWilson, Charles, und Edo Chalutz. Biological Control of Postharvest Diseases of Citrus and Deciduous Fruit. United States Department of Agriculture, September 1991. http://dx.doi.org/10.32747/1991.7603518.bard.
Der volle Inhalt der QuelleSolomon, J. D., T. D. Leininger, A. D. Wilson, R. L. Anderson, L. C. Thompson und F. I. McCracken. Ash pests: a guide to major insects, diseases, air pollution injury, and chemical injury. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1993. http://dx.doi.org/10.2737/so-gtr-096.
Der volle Inhalt der QuelleSolomon, J. D., T. D. Leininger, A. D. Wilson, R. L. Anderson, L. C. Thompson und F. I. McCracken. Ash pests: a guide to major insects, diseases, air pollution injury, and chemical injury. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1993. http://dx.doi.org/10.2737/so-gtr-96.
Der volle Inhalt der QuelleKosiba, Alexandra, Emma Tait, Gene Desideraggio, Alyx Belisle, Clarke Cooper und James Duncan. Threats to the Urban Forest: The potential economic impacts of invasive forest pests and diseases in the Northeast. Forest Ecosystem Monitoring Cooperative, Juni 2020. http://dx.doi.org/10.18125/8w9j42.
Der volle Inhalt der QuelleDavis, Cristina, Amots Hetzroni, Alexander Aksenov, Michael J. Delwiche, Victoria Soroker und Victor Alchanatis. Development of a universal volatile compound detection technology for early recognition of pests and diseases in fruit trees. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600016.bard.
Der volle Inhalt der QuelleAmanor, Kojo, Joseph Yaro, Joseph Teye und Steve Wiggin. Ghana’s Cocoa Farmers Need to Change Gear: What Policymakers Need to Know, and What They Might Do. Institute of Development Studies (IDS), März 2022. http://dx.doi.org/10.19088/apra.2022.008.
Der volle Inhalt der QuelleChalutz, Edo, Michael Wisniewski, Samir Droby, Yael Eilam und Ilan Chet. Mode of Action of Yeast Biocontrol Agents of Postharvest Diseases of Fruits. United States Department of Agriculture, Juni 1996. http://dx.doi.org/10.32747/1996.7613025.bard.
Der volle Inhalt der QuelleDawson, William O., und Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, Januar 2004. http://dx.doi.org/10.32747/2004.7586540.bard.
Der volle Inhalt der QuelleChalutz, Edo, Charles Wilson, Samir Droby, Victor Gaba, Clauzell Stevens, Robert Fluhr und Y. Lu. Induction of Resistance to Postharvest Diseases and Extension of Shelf-Life of Fruits and Vegetables by Ultra-Violet Light. United States Department of Agriculture, Februar 1994. http://dx.doi.org/10.32747/1994.7568093.bard.
Der volle Inhalt der Quelle