Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Citrus Classification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Citrus Classification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Citrus Classification"
Yang, Taeyang, und Oh-Sang Kwon. „Sequential Effect on Visual Classification: The Citrus Classification Paradigm“. Journal of Vision 16, Nr. 12 (01.09.2016): 548. http://dx.doi.org/10.1167/16.12.548.
Der volle Inhalt der QuelleWAKATA, Tadayuki, und Miho SAITO. „Psychological classification of the citrus fragrance.“ Proceedings of the Annual Convention of the Japanese Psychological Association 76 (11.09.2012): 1AMA01. http://dx.doi.org/10.4992/pacjpa.76.0_1ama01.
Der volle Inhalt der QuelleHiri, A., M. De Luca, G. Ioele, A. Balouki, M. Basbassi, F. Kzaiber, A. Oussama und G. Ragno. „Chemometric classification of citrus juices of Moroccan cultivars by infrared spectroscopy“. Czech Journal of Food Sciences 33, No. 2 (03.06.2016): 137–42. http://dx.doi.org/10.17221/284/2014-cjfs.
Der volle Inhalt der QuelleDhiman, Poonam. „Contemporary Study on Citrus Disease Classification System“. ECS Transactions 107, Nr. 1 (24.04.2022): 10035–43. http://dx.doi.org/10.1149/10701.10035ecst.
Der volle Inhalt der QuelleSchaad, Norman W., Elena Postnikova, George Lacy, Aaron Sechler, Irina Agarkova, Paul E. Stromberg, Verlyn K. Stromberg und Anne K. Vidaver. „Emended classification of xanthomonad pathogens on citrus“. Systematic and Applied Microbiology 29, Nr. 8 (Dezember 2006): 690–95. http://dx.doi.org/10.1016/j.syapm.2006.08.001.
Der volle Inhalt der QuelleSilva, Alessandra F., Ana Paula Barbosa, Célia R. L. Zimback und Paulo M. B. Landim. „Geostatistics and remote sensing methods in the classification of images of areas cultivated with citrus“. Engenharia Agrícola 33, Nr. 6 (Dezember 2013): 1245–56. http://dx.doi.org/10.1590/s0100-69162013000600017.
Der volle Inhalt der QuelleDorj, Ulzii-Orshikh, Uranbaigal Dejidbal, Hongseok Chae, Lkhagvadorj Batsambuu, Altanchimeg Badarch und Shinebayar Dalkhaa. „CITRUS FRUIT QUALITY CLASSIFICATION BASED ON SIZE USING DIGITAL IMAGE PROCESSING“. Siberian Herald of Agricultural Science 48, Nr. 5 (09.01.2019): 95–101. http://dx.doi.org/10.26898/0370-8799-2018-5-12.
Der volle Inhalt der QuelleElaraby, Ahmed, Walid Hamdy und Saad Alanazi. „Classification of Citrus Diseases Using Optimization Deep Learning Approach“. Computational Intelligence and Neuroscience 2022 (10.02.2022): 1–10. http://dx.doi.org/10.1155/2022/9153207.
Der volle Inhalt der QuelleVarjão, Jonatha Oliveira Reis, Glenda Michele Botelho, Tiago da Silva Almeida, Glêndara Aparecida de Souza Martins und Warley Gramacho da Silva. „Citrus Fruit Quality Classification using Support Vector Machines“. International Journal of Advanced Engineering Research and Science 6, Nr. 7 (2019): 59–65. http://dx.doi.org/10.22161/ijaers.678.
Der volle Inhalt der QuelleLee, Saebom, Gyuho Choi, Hyun-Cheol Park und Chang Choi. „Automatic Classification Service System for Citrus Pest Recognition Based on Deep Learning“. Sensors 22, Nr. 22 (18.11.2022): 8911. http://dx.doi.org/10.3390/s22228911.
Der volle Inhalt der QuelleDissertationen zum Thema "Citrus Classification"
Ashari, Ir Sumeru. „Discrimination between citrus genotypes“. Title page, contents and summary only, 1989. http://web4.library.adelaide.edu.au/theses/09A/09aa819.pdf.
Der volle Inhalt der QuelleLe, Thanh Toan, Trong Ky Vo und Huy Hoang Nguyen. „Evaluation of two eco-friendly botanical extracts on fruit rot pathogens of orange (Citrus sinesis (L.) Osbeck)“. Technische Universität Dresden, 2018. https://tud.qucosa.de/id/qucosa%3A33345.
Der volle Inhalt der QuelleThối trái bởi Aspergillus niger và Colletotrichum sp. gây ra các thiệt hại nghiêm trọng trên cam. Biện pháp phòng trừ bệnh trên trái cam hiện nay chủ yếu dựa vào thuốc hóa học, dẫn đến tồn dư thuốc trên trái cây, ô nhiễm môi trường và gây độc cho con người. Một trong các phương pháp thay thế giúp giảm sử dụng thuốc hóa học là sử dụng dịch trích thực vật. Nghiên cứu này đã được thưc hiện để đánh giá hiệu quả in vivo của dịch trích ở nồng độ 6% của neem hoặc lược vàng đối với A. niger và Colletotrichum sp. Các trái cam đã lây nhiễm nhân tạo tác nhân gây thối trái thì được nhúng vào dịch trích ở nồng độ 6% của neem hoặc lược vàng trong 30 giây, và giữ đến 11 ngày để ghi nhận chiều dài vết bệnh ở nhiệt độ phòng. Cái trái cam được nhúng vào nước cất thì dùng như nghiệm thức đối chứng. Kết quả cho thấy ở 11 ngày sau khi chủng bệnh, dịch trích neem và lược vàng làm giảm đáng kể vết thối Aspergillus lần lượt là 109,08 và 124,00 mm. Bên cạnh đó, vết bệnh thán thư trên trái cam đã bị ức chế có ý nghĩa thống kê bởi các dịch trích neem và lược vàng, với đường kính trung bình các vết bệnh lần lượt là 160,00 và 154,75 mm, ở ngày 11 của thí nghiệm. Kết quả của nghiên cứu này đã chỉ ra rằng dịch trích neem và lược vàng ở nồng độ 6% có thể sử dụng như một biện pháp thay thế tự nhiên trong việc phòng trừ sự phát triển của tác nhân gây thối trái cam. Các loại dịch trích này có tương lai trong bảo vệ thực vật hiện đại, thay thế các loại thuốc hóa học tổng hợp truyền thống trong hệ sinh thái nông nghiệp.
von, Suffrin Dana. „Irit Amit-Cohen: Zionism and Free Enterprise. The Story of Private Entrepreneurs in Citrus Plantations in Palestine in the 1920s and 1930s“. HATiKVA e.V. – Die Hoffnung Bildungs- und Begegnungsstätte für Jüdische Geschichte und Kultur Sachsen, 2014. https://slub.qucosa.de/id/qucosa%3A35090.
Der volle Inhalt der QuelleSaldivar-Sali, Artessa Niccola D. 1980. „A global typology of cities : classification tree analysis of urban resource consumption“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61558.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 101-103).
A study was carried out to develop a typology of urban metabolic (or resource consumption) profiles for 155 globally representative cities. Classification tree analysis was used to develop a model for determining how certain predictor (or independent) variables are related to levels of resource consumption. These predictor variables are: climate, city GDP, population, and population density. Classification trees and their corresponding decision rules were produced for the following major categories of material and energy resources: Total Energy, Electricity, Fossil fuels, Industrial Minerals & Ores, Construction Minerals, Biomass, Water, and Total Domestic Material Consumption. A tree was also generated for carbon dioxide emissions. Data at the city level was insufficient to include municipal solid waste generation in the analysis. Beyond just providing insight into the effects of the predictor variables on the consumption of different types of resources, the classification trees can also be used to predict consumption levels for cities that were not used in the model training data set. Urban metabolic profiles were also developed for each of the 155 cities, resulting in 15 metabolic types containing cities with identical or almost identical levels of consumption for all of the 8 resources and identical levels of carbon dioxide emissions. The important drivers of the differences in profile for each type include the dominant industries in the cities, as well as the presence of abundant natural resources in the countries in which the cities are the main economic centers.
by Artessa Niccola D. Saldivar-Sali.
S.M.
Alsouda, Yasser. „An IoT Solution for Urban Noise Identification in Smart Cities : Noise Measurement and Classification“. Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-80858.
Der volle Inhalt der QuelleMokrenko, Valeria Igorevna. „Machine Learning Enabled Surface Classification and Knowledge Transfer for Accessible Route Generation for Wheelchair Users“. Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1596030215568784.
Der volle Inhalt der QuelleYang, Shiqi [Verfasser], Andreas [Akademischer Betreuer] Matzarakis und Rüdiger [Akademischer Betreuer] Glaser. „Analysis and evaluation of human thermal comfort conditions for Chinese cities, based on updated Köppen-Geiger classification“. Freiburg : Universität, 2017. http://d-nb.info/1136567194/34.
Der volle Inhalt der QuelleLuus, Martin. „Economic specialisation and diversity in South African cities / by Martin Luus“. Thesis, North-West University, 2005. http://hdl.handle.net/10394/803.
Der volle Inhalt der QuelleThesis (M.Com. (Economics))--North-West University, Potchefstroom Campus, 2006.
HUANG, KUAN-YU. „Fractal or Scaling Analysis of Natural Cities Extracted from Open Geographic Data Sources“. Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-19386.
Der volle Inhalt der QuellePapsdorf, Christian. „Chemnitzer Internet- und Techniksoziologie (CITS) : Working Papers“. Technische Universität Chemnitz, 2016. https://monarch.qucosa.de/id/qucosa%3A20442.
Der volle Inhalt der QuelleThe Working Paper Series „Chemnitz Sociology of the Internet and Technology“ focusses on current research issues in de realm of Internet studies and Sociology of Technology. Both theoretical and empirical contributions in the analysis of current technology use, technology development and computer-mediated communication are published. The focus is particularly on the the relationship between humans and technology while using qualitative social research methods.
Bücher zum Thema "Citrus Classification"
Massachusetts. Dept. of Education. A New classification scheme for communities in Massachusetts. [Quincy, Mass.]: Massachusetts Dept. of Education, 1985.
Den vollen Inhalt der Quelle findenWilson Sampaio de Azevedo Filho. Cigarrinhas de citros no Rio Grande do Sul: Taxonomia. Porto Alegre: EDIPUCRS, 2006.
Den vollen Inhalt der Quelle findenBasṭ, Salīm. Dalīl al-taṣnīf al-ʻashrī lil-mudun wa-al-qurá al-Filasṭīnīyah. al-Quds: Jamʻīyat al-Dirāsāt al-ʻArabīyah, Markaz al-Tawthīq wa-al-Maʻlūmāt, 1993.
Den vollen Inhalt der Quelle findenSzymańska, Daniela. Problemy klasyfikacji i typologii miast w geografii radzieckiej =: The classification and the typology of cities in Soviet Union geography. Toruń: TNT, 1989.
Den vollen Inhalt der Quelle findenK, Jain M. Functional classification of urban agglomerations/towns of India, 1991. New Delhi: Social Studies Division, Office of the Registrar General, India, Ministry of Home Affairs, 1994.
Den vollen Inhalt der Quelle findenMukherji, Shekhar. Functional classification of Indian towns by factor-cluster method, 1981 and 1991. Bombay, India: International Institute for Population Sciences, 1994.
Den vollen Inhalt der Quelle findenWilson Sampaio de Azevedo Filho. Guia para coleta & identificação de cigarrinhas em pomares de citros no Rio Grande do Sul. Porto Alegre: EDIPUCRS, 2004.
Den vollen Inhalt der Quelle findenWilson Sampaio de Azevedo Filho. Guia para coleta & identificação de cigarrinhas em pomares de citros no Rio Grande do Sul. Porto Alegre: EDIPUCRS, 2004.
Den vollen Inhalt der Quelle findenWilson Sampaio de Azevedo Filho. Guia para coleta & identificação de cigarrinhas em pomares de citros no Rio Grande do Sul. Porto Alegre: EDIPUCRS, 2004.
Den vollen Inhalt der Quelle findenTōkeikyoku, Japan Sōmuchō. Toshi bunrui. Tōkyō: Nihon Tōkei Kyōkai, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Citrus Classification"
Kato, Shigeru, Tomomichi Kagawa, Naoki Wada, Takanori Hino und Hajime Nobuhara. „Citrus Brand Classification by CNN Considering Load and Sound“. In Advances in Intelligent Systems and Computing, 1239–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44038-1_113.
Der volle Inhalt der QuelleLopez, Jose J., Emanuel Aguilera und Maximo Cobos. „Defect Detection and Classification in Citrus Using Computer Vision“. In Neural Information Processing, 11–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10684-2_2.
Der volle Inhalt der QuelleTorrens, Francisco, und Gloria Castellano. „Classification of Citrus: Principal Components, Cluster, and Meta-Analyses“. In Applied Physical Chemistry with Multidisciplinary Approaches, 217–34. Toronto : Apple Academic Press, 2018. | Series: Innovations in physical chemistry. Monograph series: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781315169415-9.
Der volle Inhalt der QuelleNegi, Alok, und Krishan Kumar. „Classification and Detection of Citrus Diseases Using Deep Learning“. In Data Science and Its Applications, 63–85. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003102380-4.
Der volle Inhalt der QuelleSingh, Harpreet, Rajneesh Rani und Shilpa Mahajan. „Detection and Classification of Citrus Leaf Disease Using Hybrid Features“. In Advances in Intelligent Systems and Computing, 737–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0751-9_67.
Der volle Inhalt der QuelleSharma, Parul, und Pawanesh Abrol. „Analysis of Multiple Component Based CNN for Similar Citrus Species Classification“. In Studies in Computational Intelligence, 221–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96634-8_20.
Der volle Inhalt der QuelleSenthilkumar, C., und M. Kamarasan. „An Effective Kapur’s Segmentation Based Detection and Classification Model for Citrus Diseases Diagnosis System“. In Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2019), 232–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43192-1_26.
Der volle Inhalt der QuelleRoy, Kyamelia, Sheli Sinha Chaudhuri, Soumi Bhattacharjee und Srijita Manna. „Classification of Citrus Fruits and Prediction of Their Largest Producer Based on Deep Learning Architectures“. In Advances in Smart Communication Technology and Information Processing, 147–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9433-5_15.
Der volle Inhalt der QuelleSayed, Gehad Ismail, Aboul Ella Hassanien und Mincong Tang. „A Novel Optimized Convolutional Neural Network Based on Marine Predators Algorithm for Citrus Fruit Quality Classification“. In Lecture Notes in Operations Research, 682–92. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8656-6_60.
Der volle Inhalt der QuelleIbrahim, Israa Saeed, und Furkan Rabee. „Smart Cities Population Classification Using Hadoop MapReduce“. In Proceedings of Third Doctoral Symposium on Computational Intelligence, 165–79. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3148-2_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Citrus Classification"
Arivazhagan, S., R. Newlin Shebiah, S. Selva Nidhyanandhan und L. Ganesan. „Classification of citrus and non-citrus fruits using texture features“. In 2010 International Conference on Computing, Communication and Networking Technologies (ICCCNT'10). IEEE, 2010. http://dx.doi.org/10.1109/icccnt.2010.5591562.
Der volle Inhalt der QuelleMiller, William M. „Automated Inspection/Classification of Fruits and Vegetables“. In ASME 1987 Citrus Engineering Conference. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/cec1987-3305.
Der volle Inhalt der QuelleNuno-Maganda, Marco Aurelio, Yahir Hernandez-Mier, Cesar Torres-Huitzil und Josue Jimenez-Arteaga. „FPGA-based real-time citrus classification system“. In 2014 IEEE 5th Latin American Symposium on Circuits and Systems (LASCAS). IEEE, 2014. http://dx.doi.org/10.1109/lascas.2014.6820292.
Der volle Inhalt der QuelleKhan, Ejaz, Muhammad Zia Ur Rehman, Fawad Ahmed und Muhammad Attique Khan. „Classification of Diseases in Citrus Fruits using SqueezeNet“. In 2021 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, 2021. http://dx.doi.org/10.1109/icaem53552.2021.9547133.
Der volle Inhalt der QuelleSudharshan Duth, P., und Shreeharsha Gopalkrishna Bhat. „Disease Classification in Citrus Leaf using Deep Learning“. In 2022 IEEE International Conference on Data Science and Information System (ICDSIS). IEEE, 2022. http://dx.doi.org/10.1109/icdsis55133.2022.9915847.
Der volle Inhalt der QuelleKawashita Kobayashi, Felipe, Andrea Britto Mattos, Bruno H. Gemignani und Maysa M. G. Macedo. „Experimental Analysis of Citrus Tree Classification from UAV Images“. In 2019 IEEE International Symposium on Multimedia (ISM). IEEE, 2019. http://dx.doi.org/10.1109/ism46123.2019.00014.
Der volle Inhalt der QuelleSaini, Ashok Kumar, Roheet Bhatnagar und Devesh Kumar Srivastava. „Citrus Fruits Diseases Detection and Classification Using Transfer Learning“. In DSMLAI '21': International Conference on Data Science, Machine Learning and Artificial Intelligence. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3484824.3484893.
Der volle Inhalt der QuelleJianwei Qin, Thomas F Burks, Dae Gwan Kim und Duke M Bulanon. „Classification of Citrus Peel Diseases Using Color Texture Feature Analysis“. In Food Processing Automation Conference Proceedings, 28-29 June 2008, Providence, Rhode Island. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2008. http://dx.doi.org/10.13031/2013.24555.
Der volle Inhalt der QuelleKobayashi, Felipe Kawashita, Andrea Britto Mattos, Maysa M. G. Macedo und Bruno H. Gemignani. „Citrus Tree Classification from UAV Images: Analysis and Experimental Results“. In XV Workshop de Visão Computacional. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/wvc.2019.7624.
Der volle Inhalt der QuelleDang-Ngoc, Hanh, Trang N. M. Cao und Chau Dang-Nguyen. „Citrus Leaf Disease Detection and Classification Using Hierarchical Support Vector Machine“. In 2021 International Symposium on Electrical and Electronics Engineering (ISEE). IEEE, 2021. http://dx.doi.org/10.1109/isee51682.2021.9418680.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Citrus Classification"
Lee, W. S., Victor Alchanatis und Asher Levi. Innovative yield mapping system using hyperspectral and thermal imaging for precision tree crop management. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598158.bard.
Der volle Inhalt der Quelle