Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Circadian clock“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Circadian clock" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Circadian clock"
Xiao, Yangbo, Ye Yuan, Mariana Jimenez, Neeraj Soni und Swathi Yadlapalli. „Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms“. Proceedings of the National Academy of Sciences 118, Nr. 28 (07.07.2021): e2019756118. http://dx.doi.org/10.1073/pnas.2019756118.
Der volle Inhalt der QuelleCostello, Hannah M., und Michelle L. Gumz. „Circadian Rhythm, Clock Genes, and Hypertension: Recent Advances in Hypertension“. Hypertension 78, Nr. 5 (November 2021): 1185–96. http://dx.doi.org/10.1161/hypertensionaha.121.14519.
Der volle Inhalt der QuelleMyung, Jihwan, Mei-Yi Wu, Chun-Ya Lee, Amalia Ridla Rahim, Vuong Hung Truong, Dean Wu, Hugh David Piggins und Mai-Szu Wu. „The Kidney Clock Contributes to Timekeeping by the Master Circadian Clock“. International Journal of Molecular Sciences 20, Nr. 11 (05.06.2019): 2765. http://dx.doi.org/10.3390/ijms20112765.
Der volle Inhalt der QuelleClark, Amelia M., und Brian J. Altman. „Circadian control of macrophages in the tumor microenvironment.“ Journal of Immunology 208, Nr. 1_Supplement (01.05.2022): 165.06. http://dx.doi.org/10.4049/jimmunol.208.supp.165.06.
Der volle Inhalt der QuelleShakhmantsir, Iryna, und Amita Sehgal. „Splicing the Clock to Maintain and Entrain Circadian Rhythms“. Journal of Biological Rhythms 34, Nr. 6 (07.08.2019): 584–95. http://dx.doi.org/10.1177/0748730419868136.
Der volle Inhalt der QuelleFu, Minnie, und Xiaoyong Yang. „The sweet tooth of the circadian clock“. Biochemical Society Transactions 45, Nr. 4 (03.07.2017): 871–84. http://dx.doi.org/10.1042/bst20160183.
Der volle Inhalt der QuelleHelfrich-Förster, Charlotte, Michael N. Nitabach und Todd C. Holmes. „Insect circadian clock outputs“. Essays in Biochemistry 49 (30.06.2011): 87–101. http://dx.doi.org/10.1042/bse0490087.
Der volle Inhalt der QuelleWu, Yiyang. „The Evolutionary Pathways of the Circadian Rhythms through Phylogenetical Analysis of Basal Circadian Genes“. Highlights in Science, Engineering and Technology 54 (04.07.2023): 367–76. http://dx.doi.org/10.54097/hset.v54i.9795.
Der volle Inhalt der QuelleLi, Meina, Lijun Cao, Musoki Mwimba, Yan Zhou, Ling Li, Mian Zhou, Patrick S. Schnable, Jamie A. O’Rourke, Xinnian Dong und Wei Wang. „Comprehensive mapping of abiotic stress inputs into the soybean circadian clock“. Proceedings of the National Academy of Sciences 116, Nr. 47 (01.11.2019): 23840–49. http://dx.doi.org/10.1073/pnas.1708508116.
Der volle Inhalt der QuelleBailey, Shannon M. „Emerging role of circadian clock disruption in alcohol-induced liver disease“. American Journal of Physiology-Gastrointestinal and Liver Physiology 315, Nr. 3 (01.09.2018): G364—G373. http://dx.doi.org/10.1152/ajpgi.00010.2018.
Der volle Inhalt der QuelleDissertationen zum Thema "Circadian clock"
Brettschneider, Christian. „The cyanobacterial circadian clock“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16385.
Der volle Inhalt der QuelleBiological activities in cyanobacteria are coordinated by an internal clock. The rhythm of the cyanobacterium Synechococcus elongatus PCC 7942 originates from the kai gene cluster and its corresponding proteins. In a test tube, the proteins KaiA, KaiB and KaiC form complexes of various stoichiometry and the average phosphorylation level of KaiC exhibits robust circadian oscillations in the presence of ATP. The characteristic cycle of individual KaiC proteins is determined by phosphorylation of serine 431 and threonine 432. Differently phosphorylated KaiC synchronize due to an interaction with KaiA and KaiB. However, the details of this interaction are unknown. Here, I quantitatively investigate the experimentally observed characteristic phosphorylation cycle of the KaiABC clockwork using mathematical modeling. I thereby predict the binding properties of KaiA to both KaiC and KaiBC complexes by analyzing the two most important experimental constraints for the model. In order to reproduce the KaiB-induced dephosphorylation of KaiC a highly non-linear feedback loop has been identified. This feedback originates from KaiBC complexes, which are exclusively phosphorylated at the serine residue. The observed robustness of the KaiC phosphorylation level to concerted changes of the total protein concentrations demands an inclusion of two KaiC binding sites to KaiA in the mathematical model. Besides the formation of KaiAC complexes enhancing the autophosphorylation activity of KaiC, the model accounts for a KaiC binding site, which constantly sequestrates a large fraction of free KaiA. These theoretical predictions have been confirmed by the novel method of native mass spectrometry, which was applied in collaboration with the Heck laboratory. The mathematical model elucidates the mechanism by which the circadian clock satisfies three defining principles. First, the highly non-linear feedback loop assures a rapid and punctual switch to dephosphorylation which is essential for a precise period of approximately 24 h (free-running rhythm). Second, the dissociation of the protein complexes increases with increasing temperatures. These perturbations induce opposing phase shifts, which exactly compensate during one period (temperature compensation). Third, a shifted external rhythm of low and high temperature affects only a part of the three compensating phase perturbations, which leads to phase shifts (phase entrainment). An in silico evolution analysis shows that the existing second phosphorylatable residue of KaiC is not necessary for the existence of sustained oscillations but provides an evolutionary benefit. The analysis demonstrates that the distribution of four phosphorylated states of KaiC is optimized in order for the organism to uniquely distinguish between dusk and dawn. Consequently, this thesis emphasizes the importance of the four phosphorylated states of KaiC, which assure the outstanding performance of the core oscillator.
Smith, Karen Lynn. „Entrainment of the circadian clock“. Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624358.
Der volle Inhalt der QuelleGalvanin, Silvia. „Circadian Clock Study Through Frequency-Encoded Entrainment Stimulations“. Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3422301.
Der volle Inhalt der QuelleI ritmi circadiani sono meccanismi biologici di organizzazione temporale intrinseci e autosostenuti, che consentono agli organismi di anticipare i cambiamenti ambientali e permettono loro di adattare il loro comportamento e la loro fisiologia nell’arco della giornata. L’orologio circadiano è sincronizzato dai cicli luce/buio e dall’ora dei pasti. La funzione biologica essenziale del ritmo circadiano è mantenere lo stato fisiologico dell’organismo e la sua sincronia comportamentale e metabolica con l’ambiente esterno. Recentemente è stato dimostrato che l’orologio circadiano garantisce il mantenimento dell’omeostasi metabolica, e che una distruzione del ritmo circadiano è causa di numerose malattie. L’approccio sperimentale convenzionale per lo studio dell’orologio circadiano in vitro è basato su una singola stimolazione di un solo metabolita o ormone, mentre in vivo i tessuti sono esposti in continuo a stimoli oscillatori periodici di una grande vastità di metaboliti e ormoni, le cui variazioni sono spesso interconnesse, come nel caso di glucosio e insulina. Inoltre, nell’analisi sperimentale convenzionale, sono studiati solo uno o pochi geni noti per essere implicati nell’orologio circadiano, mentre è noto che un elevato numero di geni sono espressi in modo circadiano. Lo scopo di questo progetto di ricerca è quindi sviluppare tecnologie e metodi di analisi per studiare l’effetto di stimoli metabolici in frequenza sull’orologio circadiano di tessuti periferici. Questi stimoli riproducono infatti in vitro le oscillazioni metaboliche a cui i tessuti sono esposti in vivo. Tecnologie, e più nello specifico, microtecnologie sono state sviluppate per studiare gli effetti di stimoli metabolici oscillatori, ed è stato dimostrato che in fibroblasti murini l’espressione di Per2 (uno dei geni principali del meccanismo molecolare dell’orologio circadiano) è sincronizzata da stimoli metabolici oscillatori. Inoltre, è stato dimostrato che le oscillazioni metaboliche sono di per sé sufficienti per allineare l’orologio circadiano nei tessuti periferici. Per sviluppare un modello che riproducesse in vitro condizioni sia fisiologiche che patologiche, raggiungendo un controllo spazio-temporale preciso del microambiente cellulare, le stimolazioni in frequenza sono state automatizzate in un dispositivo microfluidico progettato in modo dedicato per studi del ritmo circadiano. Infine, per estendere lo studio ai geni espressi con un pattern temporale circadiano, un nuovo metodo di analisi è stato proposto e caratterizzato. Il metodo permette di identificare geni circadiani da dati di trascrittomica, di suddividere i geni basandosi sulla fase della loro espressione, di visualizzare dati di trascrittomica nel loro complesso e di individuare rapidamente e in modo semplice modifiche a livello trascrizionale da una condizione biologica ad un’altra.
Gegnaw, Shumet T. „The connection between circadian clock impairment and retinal disease“. Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ120.
Der volle Inhalt der QuelleThis thesis investigated how circadian clock misregulation, which has not been clearly associated with retinal genetic disease so far, could contribute to degeneration and influence development and function in the retina. The rod-specific knockout of Bmal1 clock gene (rod-Bmal1KO) from the mouse line carrying the P23H mutation of rhodopsin exacerbated the retinal degeneration phenotypes, such as reduction in ERG response and rods loss, induced by the P23H mutation alone. These observations were corroborated by RNA-Seq analysis, where we found major changes in expression of genes related to phototransduction and metabolic processes, between the (rod-Bmal1KO/P23H) double mutant and P23H retinas. We showed that during development, Per1 and Per2 clock genes deficiency in mice significantly affects gene expression of phototransduction and cell cycle components. We found that adult mice deficient for Per1 and Per2 genes lack a daily modulation of light sensitivity, under scotopic and mesopic conditions. We also found an impaired daily modulation of light sensitivity in mice deficient for Bmal1 clock gene in rods. Additionally, we investigated how rod degeneration could impact on the global rhythmic capacity of the retina by measuring PER2::LUC bioluminescence rhythms in P23H mice. We showed that the retinal clock in P23H/+ heterozygous mice displays circadian rhythms with significantly increased robustness and amplitude. These effects likely involve activation of glial cells
Gesto, João Silveira Moledo. „Circadian clock genes and seasonal behaviour“. Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/10266.
Der volle Inhalt der QuelleCurran, Jack. „Ageing and the Drosophila circadian clock“. Thesis, University of Bristol, 2019. http://hdl.handle.net/1983/7b02ec7c-f6a2-4640-b50f-ce97a66a5a11.
Der volle Inhalt der QuelleBeynon, Amy Louise. „Neuroimmune modulation of the circadian clock“. Thesis, Swansea University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678517.
Der volle Inhalt der QuelleJaeger, Cassie Danielle. „Chronic Circadian Misalignment Disrupts the Circadian Clock and Promotes Metabolic Syndrome“. OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1081.
Der volle Inhalt der QuelleCotter, Sean. „Characterisation of the circadian clock in barley“. Thesis, University of Liverpool, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548780.
Der volle Inhalt der QuelleReddy, Akhilesh Basi. „Molecular Neurobiology of the mammalian circadian clock“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619684.
Der volle Inhalt der QuelleBücher zum Thema "Circadian clock"
Albrecht, Urs, Hrsg. The Circadian Clock. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1262-6.
Der volle Inhalt der QuelleEngmann, Olivia, und Marco Brancaccio, Hrsg. Circadian Clock in Brain Health and Disease. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81147-1.
Der volle Inhalt der QuelleBjörn, Lemmer, und Rensing Ludger, Hrsg. From the biological clock to chronopharmacology. Stuttgart: Medpharm, 1996.
Den vollen Inhalt der Quelle findenC, Klein D., Moore Robert Y und Reppert Steven M, Hrsg. Suprachiasmatic nucleus: The mind's clock. New York: Oxford University Press, 1991.
Den vollen Inhalt der Quelle findenCsernus, Valér. The avian pineal gland: A model of the biological clock. Budapest: Akadémiai Kiadó, 2004.
Den vollen Inhalt der Quelle findenDerek, Chadwick, Ackrill Kate und Symposium on Circadian Clocks and Their Adjustment (1993 : Ciba Foundation), Hrsg. Circadian clocks and their adjustment. Chichester: Wiley, 1995.
Den vollen Inhalt der Quelle findenHirota, Tsuyoshi, Megumi Hatori und Satchidananda Panda, Hrsg. Circadian Clocks. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2577-4.
Der volle Inhalt der QuelleBrown, Steven A., Hrsg. Circadian Clocks. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0381-9.
Der volle Inhalt der QuelleKramer, Achim, und Martha Merrow, Hrsg. Circadian Clocks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-25950-0.
Der volle Inhalt der QuelleS, Takahashi Joseph, Turek Fred W und Moore Robert Y, Hrsg. Circadian clocks. New York: Kluwer Academic/Plenum Publishers, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Circadian clock"
Levesque, Roger J. R. „Circadian Clock“. In Encyclopedia of Adolescence, 421. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1695-2_460.
Der volle Inhalt der QuelleThiriet, Marc. „Circadian Clock“. In Control of Cell Fate in the Circulatory and Ventilatory Systems, 329–56. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0329-6_5.
Der volle Inhalt der QuelleLevesque, Roger J. R. „Circadian Clock“. In Encyclopedia of Adolescence, 598–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-33228-4_460.
Der volle Inhalt der QuelleMichel, Stephan, Gene D. Block und Johanna H. Meijer. „The Aging Clock“. In Circadian Medicine, 321–35. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118467831.ch22.
Der volle Inhalt der QuelleDaniel Rudic, R. „The Cardiovascular Clock“. In Circadian Medicine, 119–33. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118467831.ch8.
Der volle Inhalt der QuelleHerzog, Erik D., und Paul H. Taghert. „Circadian Neural Networks“. In The Circadian Clock, 179–94. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_8.
Der volle Inhalt der QuelleDaan, Serge. „A History of Chronobiological Concepts“. In The Circadian Clock, 1–35. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_1.
Der volle Inhalt der QuelleFeillet, Céline, und Urs Albrecht. „Clocks, Brain Function, and Dysfunction“. In The Circadian Clock, 229–82. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_10.
Der volle Inhalt der Quelled’Eysmond, Thomas, und Felix Naef. „Systems Biology and Modeling of Circadian Rhythms“. In The Circadian Clock, 283–93. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_11.
Der volle Inhalt der QuelleRipperger, Jürgen A., und Steven A. Brown. „Transcriptional Regulation of Circadian Clocks“. In The Circadian Clock, 37–78. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1262-6_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Circadian clock"
AXMANN, ILKA M., STEFAN LEGEWIE und HANSPETER HERZEL. „A MINIMAL CIRCADIAN CLOCK MODEL“. In Proceedings of the 7th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2007). IMPERIAL COLLEGE PRESS, 2007. http://dx.doi.org/10.1142/9781860949920_0006.
Der volle Inhalt der QuelleO’Reilly, Steven. „04.22 Circadian clock and fibrosis“. In 37th European Workshop for Rheumatology Research 2–4 March 2017 Athens, Greece. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2016-211051.22.
Der volle Inhalt der QuelleNaik, A., K. Forrest, S. Gavronski, U. Valekunja, A. Reddy und S. Sengupta. „Circadian Clock Modulates Lung Repair and Regeneration“. In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4525.
Der volle Inhalt der QuelleLewis, R. D. „A feedback model for an insect circadian clock“. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95054.
Der volle Inhalt der QuelleKurosawa, Gen, Kazuyuki Aihara und Yoh Iwasa. „Bifurcation analyses in the cyanobacterial circadian clock model“. In 2006 IEEE/NLM Life Science Systems and Applications Workshop. IEEE, 2006. http://dx.doi.org/10.1109/lssa.2006.250394.
Der volle Inhalt der QuelleSorkin, Maria. „A Comprehensive Interactome for the Arabidopsis Circadian Clock“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.989669.
Der volle Inhalt der QuelleFigueiredo, Erika Ciconelli de, und Maria Augusta Justi Pisani. „Office building typologies and circadian potential“. In XVII ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO. ANTAC, 2023. http://dx.doi.org/10.46421/encac.v17i1.3878.
Der volle Inhalt der QuelleMerlin, Christine. „Circadian clock control of the monarch butterfly seasonal migration“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.92863.
Der volle Inhalt der QuelleFoo, Mathias, Hee Young Yoo und Pan-Jun Kim. „System identification of circadian clock in plant Arabidopsis thaliana“. In 2013 13th International Conference on Control, Automaton and Systems (ICCAS). IEEE, 2013. http://dx.doi.org/10.1109/iccas.2013.6703901.
Der volle Inhalt der QuelleNaik, A., Y. Issah, K. Forrest, D. B. Frank, A. Paris, A. Vaughan und S. Sengupta. „Role of Circadian Clock in Lung Repair and Regeneration“. In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5651.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Circadian clock"
Johnson, Carl H. Cell-permeable Circadian Clock Proteins. Fort Belvoir, VA: Defense Technical Information Center, Juni 2002. http://dx.doi.org/10.21236/ada405529.
Der volle Inhalt der QuelleCzeisler, Charles A., und Laura K. Barger. Clinical Trial of Exercise on Circadian Clock Resetting. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada387100.
Der volle Inhalt der QuelleVan Cauter, Eve. Phase-Shifting Effects of Light and Activity on the Human Circadian Clock. Fort Belvoir, VA: Defense Technical Information Center, Februar 1994. http://dx.doi.org/10.21236/ada281204.
Der volle Inhalt der QuelleVan Cauter, Eve. Phase-Shifting Effect of Light and Exercise on the Human Circadian Clock. Fort Belvoir, VA: Defense Technical Information Center, Februar 1992. http://dx.doi.org/10.21236/ada253012.
Der volle Inhalt der QuelleVan Cauter, Eve, Jeppe Sturis, Maria M. Byrne, John D. Blackman, Neal H. Scherberg, Rachel Leproult, Samuel Refetoff und Olivier Van Reeth. Phase-Shifting Effect of Light and Exercise on the Human Circadian Clock. Fort Belvoir, VA: Defense Technical Information Center, Mai 1993. http://dx.doi.org/10.21236/ada265732.
Der volle Inhalt der QuelleVan Cauter, Eve. Phase Shifting Effects of Light and Activity on the Human Circadian Clock. Fort Belvoir, VA: Defense Technical Information Center, Februar 1998. http://dx.doi.org/10.21236/ada337545.
Der volle Inhalt der QuelleCasey, Therese, Sameer J. Mabjeesh, Avi Shamay und Karen Plaut. Photoperiod effects on milk production in goats: Are they mediated by the molecular clock in the mammary gland? United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598164.bard.
Der volle Inhalt der QuelleGauger, Michele A. Determining the Effect of Cryptochrome Loss and Circadian Clock Disruption on Tumorigenesis in Mice. Fort Belvoir, VA: Defense Technical Information Center, März 2005. http://dx.doi.org/10.21236/ada435115.
Der volle Inhalt der QuelleGillette, Martha. AASERT-92 Augmentation of Research Training in Chronobiology: Regulation of the Mammalian Circadian Clock by Neurotransmitters. Fort Belvoir, VA: Defense Technical Information Center, Mai 1994. http://dx.doi.org/10.21236/ada288243.
Der volle Inhalt der QuelleWagner, D. Ry, Eliezer Lifschitz und Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, Mai 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Der volle Inhalt der Quelle