Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cipher suites“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cipher suites" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cipher suites"
Lara, Evangelina, Leocundo Aguilar, Jesús García und Mauricio Sanchez. „A Lightweight Cipher Based on Salsa20 for Resource-Constrained IoT Devices“. Sensors 18, Nr. 10 (04.10.2018): 3326. http://dx.doi.org/10.3390/s18103326.
Der volle Inhalt der QuelleFan, Xin Xin, Teng Wu und Guang Gong. „An Efficient Stream Cipher WG-16 and its Application for Securing 4G-LTE Networks“. Applied Mechanics and Materials 490-491 (Januar 2014): 1436–50. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.1436.
Der volle Inhalt der QuelleAlamer, Ahmed, Ben Soh und David E. Brumbaugh. „MICKEY 2.0.85: A Secure and Lighter MICKEY 2.0 Cipher Variant with Improved Power Consumption for Smaller Devices in the IoT“. Symmetry 12, Nr. 1 (22.12.2019): 32. http://dx.doi.org/10.3390/sym12010032.
Der volle Inhalt der QuelleArunkumar, B., und G. Kousalya. „Secure and Light Weight Elliptic Curve Cipher Suites in SSL/TLS“. Computer Systems Science and Engineering 40, Nr. 1 (2022): 179–90. http://dx.doi.org/10.32604/csse.2022.018166.
Der volle Inhalt der QuelleFadhli, Muhamad, Fityan Ali Munshi und Taufik Adi Wicaksono. „Ancaman Keamanan pada Transport Layer Security“. Jurnal ULTIMA Computing 7, Nr. 2 (01.08.2016): 70–75. http://dx.doi.org/10.31937/sk.v7i2.234.
Der volle Inhalt der QuelleArunkumar, B., und G. Kousalya. „Nonce reuse/misuse resistance authentication encryption schemes for modern TLS cipher suites and QUIC based web servers“. Journal of Intelligent & Fuzzy Systems 38, Nr. 5 (29.05.2020): 6483–93. http://dx.doi.org/10.3233/jifs-179729.
Der volle Inhalt der QuelleSuárez-Albela, Manuel, Paula Fraga-Lamas, Luis Castedo und Tiago Fernández-Caramés. „Clock Frequency Impact on the Performance of High-Security Cryptographic Cipher Suites for Energy-Efficient Resource-Constrained IoT Devices“. Sensors 19, Nr. 1 (20.12.2018): 15. http://dx.doi.org/10.3390/s19010015.
Der volle Inhalt der QuelleYerukala, Nagendar, V. Kamakshi Prasad und Allam Apparao. „Performance and Statistical Analysis of Stream ciphers in GSM Communications“. Journal of communications software and systems 16, Nr. 1 (15.03.2020): 11–18. http://dx.doi.org/10.24138/jcomss.v16i1.892.
Der volle Inhalt der QuelleSuárez-Albela, Manuel, Paula Fraga-Lamas und Tiago Fernández-Caramés. „A Practical Evaluation on RSA and ECC-Based Cipher Suites for IoT High-Security Energy-Efficient Fog and Mist Computing Devices“. Sensors 18, Nr. 11 (10.11.2018): 3868. http://dx.doi.org/10.3390/s18113868.
Der volle Inhalt der QuelleHieu, Minh Nguyen, Duy Ho Ngoc, Canh Hoang Ngoc, Trung Dinh Phuong und Manh Tran Cong. „New primitives of controlled elements F2/4 for block ciphers“. International Journal of Electrical and Computer Engineering (IJECE) 10, Nr. 5 (01.10.2020): 5470. http://dx.doi.org/10.11591/ijece.v10i5.pp5470-5478.
Der volle Inhalt der QuelleDissertationen zum Thema "Cipher suites"
Kjell, Edvin, und Sebastian Frisenfelt. „Characterization of cipher suite selection, downgrading, and other weaknesses observed in the wild“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177184.
Der volle Inhalt der QuelleScola, Carlo Alberto. „Valutazione della sicurezza delle comunicazioni con i principali istituti di credito online“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14741/.
Der volle Inhalt der QuelleVignudelli, Andrea. „Filtraggio e censura dei servizi Internet Un'analisi sul protocollo SSL/TLS“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13204/.
Der volle Inhalt der QuelleWidyopratomo, Daniel Adrianto, und 魏丹尼. „Analysis of Security Protocols and Corresponding Cipher Suites Recommended in ETSI M2M Standards“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/93038423754970301425.
Der volle Inhalt der Quelle國立交通大學
電機資訊國際學程
103
Security is one of the fundamental aspects one needs to carefully design and implement for IoT systems. Fortunately, ETSI, as a standard body in telecommunication industry, has defined a comprehensive set of common security mechanisms to protect the IoT system including the corresponding security protocols that we can utilize. For TLS protocols, ETSI also suggests a set of cipher suite algorithms. Those options are categorized into two types, access-dependent and access-independent, based on the relationship between the M2M Service Provider and the Access Network Provider. According to this categorization, ETSI allows the M2M Service Provider to select the one that is the most suitable for their M2M applications. The standards do not describe in what condition a particular protocol will be the best among the others. Although M2M Service Providers can easily choose one out of many options, it is most ideal if some analytic methods can be defined for selecting a protocol that is the most secure and the least resource demanding one according to the characteristics and the traffic patterns of IoT applications. In this research we examine which conditions are most suitable for a security protocol and a cipher suite algorithm. We focus only on access-independent protocols which do not require any relationship between the M2M Service Provider and the Access Network Provider, because these protocols are most applicable in the industry. Also, the whole end-to-end system can be simulated easily by assuming no support from access networks. In TS 102 690, ETSI defines three levels of security mechanisms: Service Bootstrapping, Connection, and mId security. • M2M Service Bootstrapping mechanism aims to mutually authenticate the M2M Service Provider and the M2M Device or Gateway. EAP-IBAKE over EAP/PANA, EAP-TLS over EAP/PANA and TLS over TCP will be analyzed with regard to this study. The result of M2M Service Bootstrapping is an M2M Root Key (Kmr). • M2M Connection mechanism uses the M2M Root Key to set up a secure data session between a Network M2M Node and an M2M Device / Gateway. EAP-GPSK over EAP/PANA and TLS-PSK are the objects to be analyzed. This mechanism generates M2M Connection Key (Kmc) which will be used for the last mechanism, mId security. • The mId security protects the data transmission over the mId interface. Although there are three ways to secure the interface: access network layer security, channel security, and object security, we will focus on the channel security in our study. To proceed with our analysis, we develop these security mechanisms on top of the OpenMTC platform, which is an ETSI-M2M-compliant system. We use people management system in a factory as the use case for our testing samples, in particular, testing the situation where a large amount of small data traffic is generated in a very short time. Based on the result, we analyze what is the most suitable protocol for the type of traffic pattern in this use case. Several parameters can be utilized to determine the most suitable protocol, such as efficiency, cost, and effectiveness. In order to measure efficiency, we record the processing time, CPU usage, and memory usage. To measure the cost, we use the number of sent and received messages, including their total sizes, as the parameters for comparison. For the effectiveness of a particular protocol, we use the degree of security guarantee from a protocol / cipher suite such as very strong, strong, average, weak, or very weak.
Buchteile zum Thema "Cipher suites"
Arunkumar, B., und G. Kousalya. „Analysis of AES-GCM Cipher Suites in TLS“. In Advances in Intelligent Systems and Computing, 102–11. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68385-0_9.
Der volle Inhalt der QuelleMoura, Ricardo, David R. Matos, Miguel L. Pardal und Miguel Correia. „MultiTLS: Secure Communication Channels with Cipher Suite Diversity“. In ICT Systems Security and Privacy Protection, 64–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58201-2_5.
Der volle Inhalt der QuellePoupard, Guillaume, und Serge Vaudenay. „Decorrelated Fast Cipher: An AES Candidate Well Suited for Low Cost Smart Cards Applications“. In Lecture Notes in Computer Science, 254–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10721064_24.
Der volle Inhalt der QuellePrinz, Stefan, Silvie Schmidt, Manuel Koschuch, Alexander Glaser, Taro Fruhwirth und Matthias Hudler. „What a Difference a Year Makes: Long Term Evaluation of TLS Cipher Suite Compatibility“. In E-Business and Telecommunications, 58–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30222-5_3.
Der volle Inhalt der QuelleRenner, Sebastian, Enrico Pozzobon und Jürgen Mottok. „A Hardware in the Loop Benchmark Suite to Evaluate NIST LWC Ciphers on Microcontrollers“. In Information and Communications Security, 495–509. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61078-4_28.
Der volle Inhalt der QuelleBryan, Simms. „Secret Programs with Twelve Tones, 1925–27“. In Berg, 255–88. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190931445.003.0008.
Der volle Inhalt der QuelleBudiansky, Stephen. „Colossus, Codebreaking, and the Digital Age“. In Colossus. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780192840554.003.0011.
Der volle Inhalt der QuelleSmith, Michael. „How It Began: Bletchley Park Goes to War“. In Colossus. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780192840554.003.0009.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cipher suites"
Albrecht, Martin R., Jean Paul Degabriele, Torben Brandt Hansen und Kenneth G. Paterson. „A Surfeit of SSH Cipher Suites“. In CCS'16: 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2976749.2978364.
Der volle Inhalt der QuelleSimos, Dimitris E., Kristoffer Kleine, Artemios G. Voyiatzis, Rick Kuhn und Raghu Kacker. „TLS Cipher Suites Recommendations: A Combinatorial Coverage Measurement Approach“. In 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS). IEEE, 2016. http://dx.doi.org/10.1109/qrs.2016.18.
Der volle Inhalt der QuelleKoschuch, Manuel, Taro Fruhwirth, Alexander Glaser, Silvie Schmidt und Matthias Hudler. „Speaking in Tongues - Practical Evaluation of TLS Cipher Suites Compatibility“. In International Conference on Data Communication Networking. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005507900130023.
Der volle Inhalt der QuelleAdrianto, Daniel, und Fuchun Joseph Lin. „Analysis of security protocols and corresponding cipher suites in ETSI M2M standards“. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015. http://dx.doi.org/10.1109/wf-iot.2015.7389152.
Der volle Inhalt der QuelleYesiltepe, Mirsat, Gulsah Kose und Sinem Karadeniz. „Protocols of cipher suite“. In 2016 Elektrik-Elektronik, Bilgisayer, Biyomedikal Muhendislikleri Bilimsel Toplantisi (EBBT) [2016 Electrical, Electronic, Computer and Biomedical Engineering Meeting (EBBT)]. IEEE, 2016. http://dx.doi.org/10.1109/ebbt.2016.7483684.
Der volle Inhalt der QuelleNarayanan, Renuka, S. Jayashree, Nisha Deborah Philips, A. M. Saranya, Sahaya Beni Prathiba und Gunasekaran Raja. „TLS Cipher Suite: Secure Communication of 6LoWPAN Devices“. In 2019 11th International Conference on Advanced Computing (ICoAC). IEEE, 2019. http://dx.doi.org/10.1109/icoac48765.2019.246840.
Der volle Inhalt der QuelleLee, Yoonyoung, Soonhaeng Hur, Dongho Won und Seungjoo Kim. „Cipher Suite Setting Problem of SSL Protocol and it's Solutions“. In 2009 International Conference on Advanced Information Networking and Applications Workshops (WAINA). IEEE, 2009. http://dx.doi.org/10.1109/waina.2009.76.
Der volle Inhalt der QuelleFrost, Vanessa, Dave (Jing) Tian, Christie Ruales, Vijay Prakash, Patrick Traynor und Kevin R. B. Butler. „Examining DES-based Cipher Suite Support within the TLS Ecosystem“. In Asia CCS '19: ACM Asia Conference on Computer and Communications Security. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3321705.3329858.
Der volle Inhalt der QuelleBerthier, Paul-Edmond, Stephane Cauchie und Zonghua Zhang. „Secure PUFs-Based Cipher Suite for Enabling TLS to Authenticate Hardware Devices“. In ASIA CCS '15: 10th ACM Symposium on Information, Computer and Communications Security. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2714576.2714652.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cipher suites"
Popov, A. Prohibiting RC4 Cipher Suites. RFC Editor, Februar 2015. http://dx.doi.org/10.17487/rfc7465.
Der volle Inhalt der QuelleKato, A., M. Kanda und S. Kanno. Camellia Cipher Suites for TLS. RFC Editor, Juni 2010. http://dx.doi.org/10.17487/rfc5932.
Der volle Inhalt der QuelleYang, P. ShangMi (SM) Cipher Suites for TLS 1.3. RFC Editor, März 2021. http://dx.doi.org/10.17487/rfc8998.
Der volle Inhalt der QuelleBadra, M., und I. Hajjeh. ECDHE_PSK Cipher Suites for Transport Layer Security (TLS). RFC Editor, März 2009. http://dx.doi.org/10.17487/rfc5489.
Der volle Inhalt der QuelleMcGrew, D., und D. Bailey. AES-CCM Cipher Suites for Transport Layer Security (TLS). RFC Editor, Juli 2012. http://dx.doi.org/10.17487/rfc6655.
Der volle Inhalt der QuelleSalowey, J., A. Choudhury und D. McGrew. AES Galois Counter Mode (GCM) Cipher Suites for TLS. RFC Editor, August 2008. http://dx.doi.org/10.17487/rfc5288.
Der volle Inhalt der QuelleLangley, A., W. Chang, N. Mavrogiannopoulos, J. Strombergson und S. Josefsson. ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS). RFC Editor, Juni 2016. http://dx.doi.org/10.17487/rfc7905.
Der volle Inhalt der QuelleEronen, P., Hrsg. DES and IDEA Cipher Suites for Transport Layer Security (TLS). RFC Editor, Februar 2009. http://dx.doi.org/10.17487/rfc5469.
Der volle Inhalt der QuelleMoriai, S., A. Kato und M. Kanda. Addition of Camellia Cipher Suites to Transport Layer Security (TLS). RFC Editor, Juli 2005. http://dx.doi.org/10.17487/rfc4132.
Der volle Inhalt der QuelleLee, H. J., J. H. Yoon und J. I. Lee. Addition of SEED Cipher Suites to Transport Layer Security (TLS). RFC Editor, August 2005. http://dx.doi.org/10.17487/rfc4162.
Der volle Inhalt der Quelle