Zeitschriftenartikel zum Thema „Cilia and ciliary motion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Cilia and ciliary motion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Dong, Xiaoguang, Guo Zhan Lum, Wenqi Hu, Rongjing Zhang, Ziyu Ren, Patrick R. Onck und Metin Sitti. „Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination“. Science Advances 6, Nr. 45 (November 2020): eabc9323. http://dx.doi.org/10.1126/sciadv.abc9323.
Der volle Inhalt der QuelleSears, Patrick R., Kristin Thompson, Michael R. Knowles und C. William Davis. „Human airway ciliary dynamics“. American Journal of Physiology-Lung Cellular and Molecular Physiology 304, Nr. 3 (01.02.2013): L170—L183. http://dx.doi.org/10.1152/ajplung.00105.2012.
Der volle Inhalt der QuelleValentine, Megan, und Judith Van Houten. „Using Paramecium as a Model for Ciliopathies“. Genes 12, Nr. 10 (24.09.2021): 1493. http://dx.doi.org/10.3390/genes12101493.
Der volle Inhalt der QuelleVanaki, Shayan M., David Holmes, Pahala Gedara Jayathilake und Richard Brown. „Three-Dimensional Numerical Analysis of Periciliary Liquid Layer: Ciliary Abnormalities in Respiratory Diseases“. Applied Sciences 9, Nr. 19 (26.09.2019): 4033. http://dx.doi.org/10.3390/app9194033.
Der volle Inhalt der QuelleSher Akbar, Noreen, und Z. H. Khan. „Heat transfer analysis of bi-viscous ciliary motion fluid“. International Journal of Biomathematics 08, Nr. 02 (25.02.2015): 1550026. http://dx.doi.org/10.1142/s1793524515500266.
Der volle Inhalt der QuelleYu, Yanan, Kyosuke Shinohara, Huanming Xu, Zhenfeng Li, Tomoki Nishida, Hiroshi Hamada, Yuanqing Xu et al. „The Motion of An Inv Nodal Cilium: a Realistic Model Revealing Dynein-Driven Ciliary Motion with Microtubule Mislocalization“. Cellular Physiology and Biochemistry 51, Nr. 6 (2018): 2843–57. http://dx.doi.org/10.1159/000496038.
Der volle Inhalt der QuelleFlaherty, Justin, Zhe Feng, Zhangli Peng, Y. N. Young und Andrew Resnick. „Primary cilia have a length-dependent persistence length“. Biomechanics and Modeling in Mechanobiology 19, Nr. 2 (09.09.2019): 445–60. http://dx.doi.org/10.1007/s10237-019-01220-7.
Der volle Inhalt der QuelleSareh, Sina, Jonathan Rossiter, Andrew Conn, Knut Drescher und Raymond E. Goldstein. „Swimming like algae: biomimetic soft artificial cilia“. Journal of The Royal Society Interface 10, Nr. 78 (06.01.2013): 20120666. http://dx.doi.org/10.1098/rsif.2012.0666.
Der volle Inhalt der QuellePeabody, Jacelyn E., Ren-Jay Shei, Brent M. Bermingham, Scott E. Phillips, Brett Turner, Steven M. Rowe und George M. Solomon. „Seeing cilia: imaging modalities for ciliary motion and clinical connections“. American Journal of Physiology-Lung Cellular and Molecular Physiology 314, Nr. 6 (01.06.2018): L909—L921. http://dx.doi.org/10.1152/ajplung.00556.2017.
Der volle Inhalt der QuelleIto, Hiroaki, Toshihiro Omori und Takuji Ishikawa. „Swimming mediated by ciliary beating: comparison with a squirmer model“. Journal of Fluid Mechanics 874 (12.07.2019): 774–96. http://dx.doi.org/10.1017/jfm.2019.490.
Der volle Inhalt der QuelleKupferberg, Stephen B., John P. Bent und Edward S. Porubsky. „The Evaluation of Ciliary Function: Electron versus Light Microscopy“. American Journal of Rhinology 12, Nr. 3 (Mai 1998): 199–202. http://dx.doi.org/10.2500/105065898781390172.
Der volle Inhalt der QuelleHoque, Mohammed, Eunice N. Kim, Danny Chen, Feng-Qian Li und Ken-Ichi Takemaru. „Essential Roles of Efferent Duct Multicilia in Male Fertility“. Cells 11, Nr. 3 (20.01.2022): 341. http://dx.doi.org/10.3390/cells11030341.
Der volle Inhalt der QuelleHan, Jihun, und Charles S. Peskin. „Spontaneous oscillation and fluid–structure interaction of cilia“. Proceedings of the National Academy of Sciences 115, Nr. 17 (09.04.2018): 4417–22. http://dx.doi.org/10.1073/pnas.1712042115.
Der volle Inhalt der QuelleOhmura, Takuya, Yukinori Nishigami, Atsushi Taniguchi, Shigenori Nonaka, Junichi Manabe, Takuji Ishikawa und Masatoshi Ichikawa. „Simple mechanosense and response of cilia motion reveal the intrinsic habits of ciliates“. Proceedings of the National Academy of Sciences 115, Nr. 13 (12.03.2018): 3231–36. http://dx.doi.org/10.1073/pnas.1718294115.
Der volle Inhalt der QuelleKhaderi, S. N., J. M. J. den Toonder und P. R. Onck. „Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis“. Journal of Fluid Mechanics 688 (20.10.2011): 44–65. http://dx.doi.org/10.1017/jfm.2011.355.
Der volle Inhalt der QuelleShakib Arslan, Muhammad, Zaheer Abbas und Muhammad Yousuf Rafiq. „Biological flow of thermally intense cilia generated motion of non-Newtonian fluid in a curved channel“. Advances in Mechanical Engineering 15, Nr. 3 (März 2023): 168781322311571. http://dx.doi.org/10.1177/16878132231157179.
Der volle Inhalt der QuellePaff, Tamara, Heymut Omran, Kim G. Nielsen und Eric G. Haarman. „Current and Future Treatments in Primary Ciliary Dyskinesia“. International Journal of Molecular Sciences 22, Nr. 18 (11.09.2021): 9834. http://dx.doi.org/10.3390/ijms22189834.
Der volle Inhalt der QuelleYang, T. Tony, Minh Nguyet Thi Tran, Weng Man Chong, Chia-En Huang und Jung-Chi Liao. „Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia“. Molecular Biology of the Cell 30, Nr. 7 (21.03.2019): 828–37. http://dx.doi.org/10.1091/mbc.e18-10-0654.
Der volle Inhalt der QuellePatel-King, Ramila S., Miho Sakato-Antoku, Maya Yankova und Stephen M. King. „WDR92 is required for axonemal dynein heavy chain stability in cytoplasm“. Molecular Biology of the Cell 30, Nr. 15 (15.07.2019): 1834–45. http://dx.doi.org/10.1091/mbc.e19-03-0139.
Der volle Inhalt der QuelleGueron, Shay, und Konstantin Levit-Gurevich. „Computation of the Internal Forces in Cilia: Application to Ciliary Motion, the Effects of Viscosity, and Cilia Interactions“. Biophysical Journal 74, Nr. 4 (April 1998): 1658–76. http://dx.doi.org/10.1016/s0006-3495(98)77879-8.
Der volle Inhalt der QuelleFarooq, A. A., und A. M. Siddiqui. „Mathematical model for the ciliary-induced transport of seminal liquids through the ductuli efferentes“. International Journal of Biomathematics 10, Nr. 03 (20.02.2017): 1750031. http://dx.doi.org/10.1142/s1793524517500310.
Der volle Inhalt der QuelleKiyota, Kouki, Hironori Ueno, Keiko Numayama-Tsuruta, Tomofumi Haga, Yohsuke Imai, Takami Yamaguchi und Takuji Ishikawa. „Fluctuation of cilia-generated flow on the surface of the tracheal lumen“. American Journal of Physiology-Lung Cellular and Molecular Physiology 306, Nr. 2 (15.01.2014): L144—L151. http://dx.doi.org/10.1152/ajplung.00117.2013.
Der volle Inhalt der QuelleSalman, Huseyin Enes, Nathalie Jurisch-Yaksi und Huseyin Cagatay Yalcin. „Computational Modeling of Motile Cilia-Driven Cerebrospinal Flow in the Brain Ventricles of Zebrafish Embryo“. Bioengineering 9, Nr. 9 (28.08.2022): 421. http://dx.doi.org/10.3390/bioengineering9090421.
Der volle Inhalt der QuelleAkbar, Noreen Sher, und Adil Wahid Butt. „Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia“. International Journal of Biomathematics 07, Nr. 06 (November 2014): 1450066. http://dx.doi.org/10.1142/s1793524514500661.
Der volle Inhalt der QuelleSher Akbar, Noreen. „Biomathematical analysis of carbon nanotubes due to ciliary motion“. International Journal of Biomathematics 08, Nr. 02 (25.02.2015): 1550023. http://dx.doi.org/10.1142/s1793524515500230.
Der volle Inhalt der QuelleCui, Zhiwei, Ye Wang und Jaap M. J. den Toonder. „Metachronal Motion of Biological and Artificial Cilia“. Biomimetics 9, Nr. 4 (27.03.2024): 198. http://dx.doi.org/10.3390/biomimetics9040198.
Der volle Inhalt der QuellePang, Chuan, Fengwei An, Shiming Yang, Ning Yu, Daishi Chen und Lei Chen. „In vivo and in vitro observation of nasal ciliary motion in a guinea pig model“. Experimental Biology and Medicine 245, Nr. 12 (20.05.2020): 1039–48. http://dx.doi.org/10.1177/1535370220926443.
Der volle Inhalt der QuelleRamachandran, Saravana, Kuppalapalle Vajravelu, K. V. Prasad und S. Sreenadh. „Peristaltic-Ciliary Flow of A Casson Fluid through An Inclined Tube“. Communication in Biomathematical Sciences 4, Nr. 1 (07.05.2021): 23–38. http://dx.doi.org/10.5614/cbms.2021.4.1.3.
Der volle Inhalt der QuelleMorgan, Darrell D., und Anthony G. Moss. „The Effects of Cigarette Smoke on Porcine Airway Epithelium“. Microscopy and Microanalysis 4, S2 (Juli 1998): 1076–77. http://dx.doi.org/10.1017/s1431927600025502.
Der volle Inhalt der QuelleWyatt, Todd A., Mary A. Forgèt, Jennifer M. Adams und Joseph H. Sisson. „Both cAMP and cGMP are required for maximal ciliary beat stimulation in a cell-free model of bovine ciliary axonemes“. American Journal of Physiology-Lung Cellular and Molecular Physiology 288, Nr. 3 (März 2005): L546—L551. http://dx.doi.org/10.1152/ajplung.00107.2004.
Der volle Inhalt der QuelleFerguson, Jonathan L., Thomas V. McCaffrey, Eugene B. Kern und William J. Martin. „The Effects of Sinus Bacteria on Human Ciliated Nasal Epithelium in Vitro“. Otolaryngology–Head and Neck Surgery 98, Nr. 4 (April 1988): 299–304. http://dx.doi.org/10.1177/019459988809800405.
Der volle Inhalt der QuelleWU, Junlin, Jiaqi Yin, Zixiang Xu, Yingli Liu, Huanyong Qin und Xin Sheng. „The function of ciliopathy protein FOP on cilia and cortical microtubule cytoskeleton in Euplotes amieti“. Acta Protozoologica 62 (2023): 45–56. http://dx.doi.org/10.4467/16890027ap.23.005.18868.
Der volle Inhalt der QuelleStokes, M. „Larval locomotion of the lancelet“. Journal of Experimental Biology 200, Nr. 11 (01.01.1997): 1661–80. http://dx.doi.org/10.1242/jeb.200.11.1661.
Der volle Inhalt der QuelleUENO, Hironori, Takuji ISHIKAWA, Khanh Huy BUI, Kohsuke GONDA, Takashi ISHIKAWA und Takami YAMAGUCHI. „7G13 Analysis of ciliary motion and the axonemal structure in the mouse respiratory cilia“. Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2012.24 (2012): _7G13–1_—_7G13–2_. http://dx.doi.org/10.1299/jsmebio.2012.24._7g13-1_.
Der volle Inhalt der QuelleRoth, K. E., C. L. Rieder und S. S. Bowser. „Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9+0) cilia in cultured kidney epithelia“. Journal of Cell Science 89, Nr. 4 (01.04.1988): 457–66. http://dx.doi.org/10.1242/jcs.89.4.457.
Der volle Inhalt der QuelleSmith, D. J., E. A. Gaffney und J. R. Blake. „Mathematical modelling of cilia-driven transport of biological fluids“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, Nr. 2108 (02.06.2009): 2417–39. http://dx.doi.org/10.1098/rspa.2009.0018.
Der volle Inhalt der QuelleSiddiqui, A. M., A. A. Farooq und M. A. Rana. „An investigation of non-Newtonian fluid flow due to metachronal beating of cilia in a tube“. International Journal of Biomathematics 08, Nr. 02 (25.02.2015): 1550016. http://dx.doi.org/10.1142/s1793524515500163.
Der volle Inhalt der QuelleUmlauf, Benjamin. „DDEL-13. CILIA INHIBITORS SYNERGIZE WITH TEMOZOLOMIDE TO DRAMATICALLY IMPROVE SURVIVAL IN ORTHOTOPIC MURINE MODELS OF GLIOBLASTOMA“. Neuro-Oncology 25, Supplement_5 (01.11.2023): v104. http://dx.doi.org/10.1093/neuonc/noad179.0392.
Der volle Inhalt der QuelleSatir, P. „Mechanism of Ciliary Movement - What's New?“ Physiology 4, Nr. 4 (01.08.1989): 153–57. http://dx.doi.org/10.1152/physiologyonline.1989.4.4.153.
Der volle Inhalt der QuelleBlanchon, Sylvain, Marie Legendre, Mathieu Bottier, Aline Tamalet, Guy Montantin, Nathalie Collot, Catherine Faucon et al. „Deep phenotyping, including quantitative ciliary beating parameters, and extensive genotyping in primary ciliary dyskinesia“. Journal of Medical Genetics 57, Nr. 4 (26.11.2019): 237–44. http://dx.doi.org/10.1136/jmedgenet-2019-106424.
Der volle Inhalt der QuelleSisson, J. H., D. J. Tuma und S. I. Rennard. „Acetaldehyde-mediated cilia dysfunction in bovine bronchial epithelial cells“. American Journal of Physiology-Lung Cellular and Molecular Physiology 260, Nr. 2 (01.02.1991): L29—L36. http://dx.doi.org/10.1152/ajplung.1991.260.2.l29.
Der volle Inhalt der QuelleMasuda, Tsukuru, Aya Mizutani Akimoto, Kenichi Nagase, Teruo Okano und Ryo Yoshida. „Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion“. Science Advances 2, Nr. 8 (August 2016): e1600902. http://dx.doi.org/10.1126/sciadv.1600902.
Der volle Inhalt der QuelleRiaz, Arshad, Elena Bobescu, Katta Ramesh und Rahmat Ellahi. „Entropy Analysis for Cilia-Generated Motion of Cu-Blood Flow of Nanofluid in an Annulus“. Symmetry 13, Nr. 12 (08.12.2021): 2358. http://dx.doi.org/10.3390/sym13122358.
Der volle Inhalt der QuelleKANEKO, Toshiyasu, Kazuki WATANABE, Kenji NAGAOKA und Kazuya YOSHIDA. „Motion Analysis of Ciliary Micro-Hopping Locomotion for an Asteroid Exploration Robot with Design Parameters of Cilia“. Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2016 (2016): 2A2–17a1. http://dx.doi.org/10.1299/jsmermd.2016.2a2-17a1.
Der volle Inhalt der QuelleHanasoge, Srinivas, Peter J. Hesketh und Alexander Alexeev. „Metachronal motion of artificial magnetic cilia“. Soft Matter 14, Nr. 19 (2018): 3689–93. http://dx.doi.org/10.1039/c8sm00549d.
Der volle Inhalt der QuelleIde, Takahiro, Wang Kyaw Twan, Hao Lu, Yayoi Ikawa, Lin-Xenia Lim, Nicole Henninger, Hiromi Nishimura et al. „CFAP53 regulates mammalian cilia-type motility patterns through differential localization and recruitment of axonemal dynein components“. PLOS Genetics 16, Nr. 12 (21.12.2020): e1009232. http://dx.doi.org/10.1371/journal.pgen.1009232.
Der volle Inhalt der QuelleMAXEY, MARTIN R. „Biomimetics and cilia propulsion“. Journal of Fluid Mechanics 678 (17.06.2011): 1–4. http://dx.doi.org/10.1017/jfm.2011.145.
Der volle Inhalt der QuelleMan, Yi, Feng Ling und Eva Kanso. „Cilia oscillations“. Philosophical Transactions of the Royal Society B: Biological Sciences 375, Nr. 1792 (30.12.2019): 20190157. http://dx.doi.org/10.1098/rstb.2019.0157.
Der volle Inhalt der QuelleHanasoge, Srinivas, Matthew Ballard, Peter J. Hesketh und Alexander Alexeev. „Asymmetric motion of magnetically actuated artificial cilia“. Lab on a Chip 17, Nr. 18 (2017): 3138–45. http://dx.doi.org/10.1039/c7lc00556c.
Der volle Inhalt der QuelleNakamura, S., und S. L. Tamm. „Calcium control of ciliary reversal in ionophore-treated and ATP-reactivated comb plates of ctenophores.“ Journal of Cell Biology 100, Nr. 5 (01.05.1985): 1447–54. http://dx.doi.org/10.1083/jcb.100.5.1447.
Der volle Inhalt der Quelle