Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Chromosome contacts“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chromosome contacts" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Chromosome contacts"
Matveevsky, Sergey, Oxana Kolomiets, Aleksey Bogdanov, Elena Alpeeva und Irina Bakloushinskaya. „Meiotic Chromosome Contacts as a Plausible Prelude for Robertsonian Translocations“. Genes 11, Nr. 4 (02.04.2020): 386. http://dx.doi.org/10.3390/genes11040386.
Der volle Inhalt der QuelleGeorge, Phillip, Nicholas A. Kinney, Jiangtao Liang, Alexey V. Onufriev und Igor V. Sharakhov. „Three-dimensional Organization of Polytene Chromosomes in Somatic and Germline Tissues of Malaria Mosquitoes“. Cells 9, Nr. 2 (01.02.2020): 339. http://dx.doi.org/10.3390/cells9020339.
Der volle Inhalt der QuelleMiermans, Christiaan A., und Chase P. Broedersz. „Bacterial chromosome organization by collective dynamics of SMC condensins“. Journal of The Royal Society Interface 15, Nr. 147 (Oktober 2018): 20180495. http://dx.doi.org/10.1098/rsif.2018.0495.
Der volle Inhalt der QuelleSocol, Marius, Renjie Wang, Daniel Jost, Pascal Carrivain, Cédric Vaillant, Eric Le Cam, Vincent Dahirel et al. „Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes“. Nucleic Acids Research 47, Nr. 12 (22.05.2019): 6195–207. http://dx.doi.org/10.1093/nar/gkz374.
Der volle Inhalt der QuelleBenedetti, Fabrizio, Julien Dorier, Yannis Burnier und Andrzej Stasiak. „Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes“. Nucleic Acids Research 42, Nr. 5 (22.12.2013): 2848–55. http://dx.doi.org/10.1093/nar/gkt1353.
Der volle Inhalt der QuelleKranas, Hanna, Irina Tuszynska und Bartek Wilczynski. „HiCEnterprise: identifying long range chromosomal contacts in Hi-C data“. PeerJ 9 (26.04.2021): e10558. http://dx.doi.org/10.7717/peerj.10558.
Der volle Inhalt der QuelleOrlov, Y. L., O. Thierry, A. G. Bogomolov, A. V. Tsukanov, E. V. Kulakova, E. R. Galieva, A. O. Bragin und G. Li. „Computer methods of analysis of chromosome contacts in the cell nucleus based on sequencing technology data“. Biomeditsinskaya Khimiya 63, Nr. 5 (2017): 418–22. http://dx.doi.org/10.18097/pbmc20176305418.
Der volle Inhalt der QuelleLoidl, Josef. „The initiation of meiotic chromosome pairing: the cytological view“. Genome 33, Nr. 6 (01.12.1990): 759–78. http://dx.doi.org/10.1139/g90-115.
Der volle Inhalt der QuelleStodola, Timothy J., Pengyuan Liu, Yong Liu, Andrew K. Vallejos, Aron M. Geurts, Andrew S. Greene und Mingyu Liang. „Genome-wide map of proximity linkage to renin proximal promoter in rat“. Physiological Genomics 50, Nr. 5 (01.05.2018): 323–31. http://dx.doi.org/10.1152/physiolgenomics.00132.2017.
Der volle Inhalt der QuelleJian, Xing, und Gary Felsenfeld. „Insulin promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism“. Proceedings of the National Academy of Sciences 115, Nr. 20 (30.04.2018): E4633—E4641. http://dx.doi.org/10.1073/pnas.1803146115.
Der volle Inhalt der QuelleDissertationen zum Thema "Chromosome contacts"
Conin, Brenna. „Genomic contacts reveal the control of sister chromosome decatenation in E. coli“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS376.
Der volle Inhalt der QuelleTopoisomerase IV, is responsible for the untangling of catenanes that are formed during the replication of the chromosome and has been shown to play an essential role in nucleoid segregation. Previous studies have shown that alterations in Topo IV result in a prolonged interaction between sister chromosomes leading to poor chromosome segregation and a loss in cell viability. Using chromosome conformation capture (Hi-C) and fluorescence microscopy, we have shown that the alteration of Topo IV affects the organisation of the entire chromosome. The most striking phenotype is the emergence of two distinct signals at 1.35Mb and 1.75Mb where loci in these regions are able to contact any loci of the origin-proximal part of the chromosome (butterfly wings). Furthermore, when compared to WT cells, the mutant cells showed a loss of contacts within the terminus domain, suggesting a change in the organisation of the ter domain. We also observed a general increase of short-range contacts along the diagonal. This phenotype was only observed in E. coli cells with a circular chromosome that was undergoing replication. Those observations suggest that in the absence of Topo IV, there is an accumulation of precatenanes throughout the chromosome, allowing loci on different siter chromosomes to interact (inter-chromosomal contacts). This hypothesis was further supported when we studied the interplay between Topo IV and Topo III, which showed that Topo III acts on precatenanes at a very short distances from the replication fork and cannot “reach” precatenanes responsible for the butterfly wing signals. We further showed that the butterfly wing positions are dependent on both matS and MatP. Interestingly, Hi-C of the matP parEts double mutant does not display the characteristic signals of the single parEts mutant at the border of the ter, but instead reveals that the ter domain itself is able to contact distant loci of the chromosome. This suggests that the precatenanes were unable to go passed the dif site probably because of the MatP-matS complex. In addition, previous NorFlIP experiments have showen that Topo IV is able to bind but not cleave at two sites positioned at 1.2Mb and 1.8Mb, which align with the centre of the butterfly wings. We thereby hypothesised that the matS-MatP complex and these Topo IV sites define a decatenation hub. Unresolved precatenanes would be “pulled” toward this hub, to be decatenated prior to cell division. In this hypothesis, the Ter linkage plays an essential role in the decatenation hub as it prevents precatenanes from passing through dif. The absence of a functional Topo IV will therefore disturb the decatenation hub, resulting in accumulation of precatenanes at the border of the crippled hub and this is turn would be represented as the butterfly wing signals seen on a Hi-C matrix. In regard to this hypothesis, we investigated the role of MukB that is able to condense the DNA, possibly by loop extrusion, and show that MukB defines the length and density of the butterfly wings
Girard, Fabien. „Tethering of molecular parasites on inactive chromatin in eukaryote nucleus“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS661.
Der volle Inhalt der QuelleNatural plasmids are common in prokaryotes but few have been documented in eukaryotes. The natural 2µ plasmid present in budding yeast Saccharomyces cerevisiae is one of the most well characterized. This highly stable genetic element coexists with its host for millions of years, efficiently segregating at each cell division through a mechanism that remains poorly understood. Using proximity ligation (Hi-C, MicroC) to map the contacts between the 2µ and yeast chromosomes under dozens of different biological conditions, we found that the plasmid tether preferentially on regions with low transcriptional activity, often corresponding to long inactive genes, throughout the cell cycle. Common players in chromosome structure such as members of the structural maintenance of chromosome complexes (SMC) are not involved in these contacts, and depend instead on a nucleosomal signal associated with a depletion of RNA Pol II. These contacts are highly stable, and can be established within minutes. Our data show that the plasmid segregates by binding to transcriptionally silent regions of the host chromosomes. This strategy may concern other types of DNA molecules and species beyond S. cerevisiae, as suggested by the binding pattern of the natural Ddp5 plasmid along Dictyostelium discoideum chromosomes’ silent regions
Carron, Léopold. „Analyse à haute résolution de la structure spatiale des chromosomes eucaryotes Boost-HiC : Computational enhancement of long-range contacts in chromosomal contact maps Genome supranucleosomal organization and genetic susceptibility to disease“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS593.
Der volle Inhalt der QuelleGenetic information is encoded in DNA, a huge-size nucleotidic polymer. In order to understand DNA folding mechanisms, an experimental technique is today available that quantifies distal genomic contacts. This high-throughput chromosome conformation capture technique, called Hi-C, reveals 3D chromosome folding in the nucleus. In the recent years, the Hi-C experimental protocol received many improvements through numerous studies for Human, mouse and drosophila genomes. Because most of these studies are performed at poor resolution, I propose bioinformatic methods to analyze these datasets at fine resolution. In order to do this, I present Boost-HiC, a tool that enhanced long-range contacts in Hi-C data. I will then used our extended knowledge to compare 3D folding in different species. This result provides the basis to determine the best method for obtaining genomic compartements from a chromosomal contact map. Finally, I present some other applications of our methodology to study the link between the borders of topologically associating domains and the genomic location of single-nucleotide mutations associated to cancer
Riley, Anthony David. „Probing chromosome structure using multidimensional scaling of DNA contact matrices“. Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7262/.
Der volle Inhalt der QuelleHeurteau, Alexandre. „Etude bioinformatique intégrative : déterminants et dynamique des interactions chromosomiques à longue distance“. Electronic Thesis or Diss., Toulouse 3, 2019. http://www.theses.fr/2019TOU30343.
Der volle Inhalt der QuelleInsulator Binding Proteins (IBPs) could be involved in the three-dimensional folding of genomes into topological domains (or "TADs"). In particular, TADs would help to separate the inactive/heterochromatin and active/euchromatin compartments. IBPs are also able to block specific contacts between the activator or enhancer elements of one TAD and target gene promoters present in another TAD. Thus, insulators may influence gene expression according to several regulatory modes that have yet to be characterized at genome level. The results obtained in the first part of my thesis show how IBPs influence gene expression according to a new regulatory mechanism, as shown at the scale of the Drosophila genome. Our bioinformatics analyses show that IBPs regulate the spread of repressive heterochromatin (H3K27me3) both in cis and trans. Trans regulations involve chromatin loops between insulators positioned at the heterochromatin boundary and distant insulators positioned at the edges of euchromatic genes. Trans spreading leads to the formation of "micro-domains" of heterochromatin, thereby repressing distant genes. In particular, an insulator mutant that prevents loop formation significantly reduces the establishment of micro-domains. In addition, these micro-domains would be formed during development suggesting a new insulator-dependent mechanism for gene regulation. Furthermore, we could uncover a novel function of cohesion, a key regulator of 3D loops in humans, in regulating non-coding RNAs (ncRNAs), including "PROMoters uPstream Transcripts" (PROMPTs) and enhancers RNAs (eRNAs). The MTR4 helicase is essential to the control of coding and noncoding RNA stability by the human nuclear-exosome targeting (NEXT) complex and pA-tail exosome targeting (PAXT) complex. Remarkably, ncRNAs could be detected upon depletion of the Mtr4 helicase of the human NEXT complex. Moreover, depletion of additional NEXT subunits, ZFC3H1 and ZCCHC8 (or Z1 and Z8), also led to uncover ncRNAs often produced from the same loci as upon MTR4 depletion. Curiously however, mapping of Mtr4 binding sites highlighted that Mtr4 binds to sites that are distant from PROMPTs. Rather than acting in cis, our data suggest that regulation of PROMPTs could involve specific long-distance contacts between these distant MTR4 binding sites and promoters bound by Z1/Z8. As such, integration of Hi-C data together with the detection of PROMPTS upon MTR4-, Z1- or Z8- depletions highlight possible role of long-range interactions in regulating PROMPTs, from distant MTR4-bound sites. This work may establish a new relationship between the 3D structure of genomes and the regulation of ncRNAs
Le, Treut Guillaume. „Models of chromosome architecture and connection with the regulation of genetic expression“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS411/document.
Der volle Inhalt der QuelleIncreasing evidences suggest that chromosome folding and genetic expression are intimately connected. For example, the co-expression of a large number of genes can benefit from their spatial co-localization in the cellular space. Furthermore, functional structures can result from the particular folding of the chromosome. These can be rather compact bundle-like aggregates that prevent the access to DNA, or in contrast, open coil configurations with several (presumably) globular clusters like transcription factories. Such phenomena have in common to result from the binding of divalent proteins that can bridge regions sometimes far away on the DNA sequence. The physical system consisting of the chromosome interacting with divalent proteins can be very complex. As such, most of the mechanisms responsible for chromosome folding and for the formation of functional structures have remained elusive.Using methods from statistical physics, we investigated models of chromosome architecture. A common denominator of our approach has been to represent the chromosome as a polymer with bending rigidity and consider its interaction with a solution of DNA-binding proteins. Structures entailed by the binding of such proteins were then characterized at the thermodynamical equilibrium. Furthermore, we complemented theoretical results with Brownian dynamics simulations, allowing to reproduce more of the biological complexity.The main contributions of this thesis have been: (i) to provide a model for the existence of transcrip- tion factories characterized in vivo with fluorescence microscopy; (ii) to propose a physical basis for a conjectured regulatory mechanism of the transcription involving the formation of DNA hairpin loops by the H-NS protein as characterized with atomic-force microscopy experiments; (iii) to propose a physical model of the chromosome that reproduces contacts measured in chromosome conformation capture (CCC) experiments. Consequences on the regulation of transcription are discussed in each of these studies
Moran, Peter. „A behavioural and genomic approach to studying the evolution of reproductive isolation : a contact zone between closely related field crickets in the genus Teleogryllus“. Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/10260.
Der volle Inhalt der QuelleZaborowski, Rafał. „Computational methods for differential analysis of chromatin contact matrices“. Doctoral thesis, 2021. https://depotuw.ceon.pl/handle/item/3868.
Der volle Inhalt der QuelleProblem zrozumienia relacji pomiędzy strukturą chromatyny, a regulacją genów ma kluczowe znaczenie w genetyce. Niestety przez wiele lat możliwe były wyłącznie badania architektury genomu w niskiej rozdzielczości lub małej skali. Sytuacja zmieniła się w ciągu ostatnich dwóch dekad głównie ze względu na postęp w rozwoju technologii NGS, która dała początek metodom 3C (ang. Chromosome Conformation Capture). Dostępność technik 3C umożliwiła badania organizacji genomu na niespotykaną dotąd skalę. W szczególności wysoko-rozdzielczy wariant metody 3C - protokół Hi-C pozwala uzyskać dane dotyczące milionów interakcji pomiędzy parami regionów chromatyny w całym genomie. Jednym z głównych zastosowań protokołu Hi-C jest analiza różnicowa, która ma na celu zidentyfikowanie różnic w strukturze chromatyny wpływających na procesy regulacji genów w różnych typach komórek, warunkach eksperymentalnych lub gatunkach. W tej pracy koncentrujemy się na problemie porównywania macierzy kontaktów Hi-C. Po pierwsze, badamy problem oceny podobieństwa między segmentacjami chromosomów wynikającymi z identyfikacji domen topologicznych (TAD) - nieodłącznej cechy map Hi-C organizmów ssaków, które, jak wykazano, kształtują krajobraz regulacyjny genomu. Prezentujemy nową miarę odległości o nazwie BP-score, dostosowaną do porównania segmentacji TAD oraz dowodzimy, że nasza miara jest metryką. Przykładowe analizy porównawcze przeprowadzone na danych symulowanych i rzeczywistych pokazują, że odległość BP jest konkurencyjna w stosunku do innych metryk wykorzystywanych dotychczas podczas badania podobieństwa segmentacji. Dodatkowo wprowadzamy lokalne miary rearanżacji domen topologicznych i pokazujemy, że pomiary rearanżacji uzyskane przy użyciu wprowadzonych przez nas miar korelują z pomiarami ekspresji genów lub metylacji. Po drugie, opracowujemy metodę do wykrywania różnicowych oddziaływań HiC o nazwie DiADeM działającą na danych nieznormalizowanych. Nasza metoda wprowadza intuicyjną definicję interakcji różnicowych, która uwzględnia podobieństwo profili kontaktów pomiędzy zestawami danych. Na koniec oceniamy zdolność naszej metody do wykrywania interakcji różnicowych przy użyciu symulowanych map kontaktów i pokazujemy, że osiąga konkurencyjne wyniki w porównaniu z innymi dostępnymi metodami służącymi do analizy różnicowej Hi-C. Podsumowując, opracowane przez nas narzędzia mogą pomóc badaczom w odkrywaniu nieznanych zmian strukturalnych wpływających na mechanizmy regulacji genów.
Bücher zum Thema "Chromosome contacts"
Tral’, Tat’yana, Gulrukhsor Tolibova, Igor Kogan und Anna Olina. Embryo losses. Atlas. ru: Publishing Center RIOR, 2023. http://dx.doi.org/10.29039/978-5-907218-78-9.
Der volle Inhalt der QuelleMcKinlay Gardner, R. J., und David J. Amor. Centromere Fissions, Complementary Isochromosomes, Telomeric Fusions, Balancing Supernumerary Chromosomes, Neocentromeres, Jumping Translocations, and Chromothripsis. Herausgegeben von R. J. McKinlay Gardner und David J. Amor. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199329007.003.0012.
Der volle Inhalt der QuelleChromosome-2023: Proceeding of the International Conference. September 5-10, 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1514-8.
Der volle Inhalt der QuelleCapone, George T. Down Syndrome. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0056.
Der volle Inhalt der QuellePeñagarikano, Olga, und Daniel H. Geschwind. CNTNAP2 and Autism Spectrum Disorders. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199744312.003.0016.
Der volle Inhalt der QuellePediatric ICD-10-CM. American Academy of Pediatrics, 2015. http://dx.doi.org/10.1542/9781581109016.
Der volle Inhalt der QuelleBuchteile zum Thema "Chromosome contacts"
Paro, Renato, Ueli Grossniklaus, Raffaella Santoro und Anton Wutz. „Biology of Chromatin“. In Introduction to Epigenetics, 1–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_1.
Der volle Inhalt der QuelleMcCauley, Micah J., Joha Joshi, Nicole Becker, Qi Hu, Maria Victoria Botuyan, Ioulia Rouzina, Georges Mer, L. James Maher und Mark C. Williams. „Quantifying ATP-Independent Nucleosome Chaperone Activity with Single-Molecule Methods“. In Single Molecule Analysis, 29–55. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3377-9_2.
Der volle Inhalt der QuelleMatthey-Doret, Cyril, Lyam Baudry, Shogofa Mortaza, Pierrick Moreau, Romain Koszul und Axel Cournac. „Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization“. In Methods in Molecular Biology, 1–15. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1390-0_1.
Der volle Inhalt der QuelleYu, Zulin, und Tamara A. Potapova. „Superresolution for Visualization of Physical Contacts Between Chromosomes at Nanoscale Resolution“. In Methods in Molecular Biology, 359–75. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2140-0_20.
Der volle Inhalt der QuelleEa, Vuthy, Franck Court und Thierry Forné. „Quantitative Analysis of Intra-chromosomal Contacts: The 3C-qPCR Method“. In Methods in Molecular Biology, 75–88. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/7651_2015_269.
Der volle Inhalt der QuelleShinohara, K., H. Nakano, M. Watanabe, Y. Kinjo, S. Kikuchi, Y. Kagoshima, K. Kobayashi und H. Maezawa. „X-Ray Contact Microscopy of Human Chromosomes and Human Fibroblasts“. In Springer Series in Optical Sciences, 429–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-540-39246-0_77.
Der volle Inhalt der QuelleMarbouty, Martial, und Romain Koszul. „Generation and Analysis of Chromosomal Contact Maps of Bacteria“. In The Bacterial Nucleoid, 75–84. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7098-8_7.
Der volle Inhalt der QuelleCournac, Axel, Martial Marbouty, Julien Mozziconacci und Romain Koszul. „Generation and Analysis of Chromosomal Contact Maps of Yeast Species“. In Methods in Molecular Biology, 227–45. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3079-1_13.
Der volle Inhalt der QuelleParo, Renato, Ueli Grossniklaus, Raffaella Santoro und Anton Wutz. „Genomic Imprinting“. In Introduction to Epigenetics, 91–115. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_5.
Der volle Inhalt der QuelleKinjo, Y., M. Watanabe und K. Shinohara. „Comparative Study by Soft X-Ray Contact Microscopy of the Images of Human Chromosomes Treated with Various Conditions“. In X-Ray Microscopy III, 442–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-46887-5_100.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Chromosome contacts"
„Computer tools for spatial chromosome contacts analysis by ChIA-PET and Hi-C data“. In SYSTEMS BIOLOGY AND BIOINFORMATICS. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/sbb-2019-07.
Der volle Inhalt der QuelleSilva, Bruno Custódio, Gisele Delazeri, Ana Luíza Kolling Konopka, Giulia Righetti Tuppini Vargas, Paulo Ricardo Gazzola Zen und Rafael Fabiano Machado Rosa. „Report of a family affected by fragile X syndrome and type 1 diabetes mellitus“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.076.
Der volle Inhalt der QuelleShinohara, Kunio. „Observation Of Human Chromosomes With Soft X-Ray Contact Microscopy“. In 1989 Intl Congress on Optical Science and Engineering, herausgegeben von Rene Benattar. SPIE, 1989. http://dx.doi.org/10.1117/12.961823.
Der volle Inhalt der QuelleRichardson, M., K. Shinohara, Y. Kinjo und K. A. Tanaka. „Contact x-ray microscopy of in vitro human chromosome fibers using pulsed laser-plasmas“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mp2.
Der volle Inhalt der QuelleShinohara, Kunio, Yasuhito Kinjo, Martin C. Richardson, Atsushi Ito, Noboru Morimoto, Yasuhiro Horiike, Makoto Watanabe, Keiji Yada und Kazuo A. Tanaka. „Observation of human chromosome fibers in a water layer by laser-plasma x-ray contact microscopy“. In San Diego '92, herausgegeben von Chris J. Jacobsen und James E. Trebes. SPIE, 1993. http://dx.doi.org/10.1117/12.138754.
Der volle Inhalt der QuelleGuttmann, G. D., und J. A. Cobble. „Soft x-ray imaging of biological materials at Los Alamos National Laboratory“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mp4.
Der volle Inhalt der QuellePloos van Amstel, J. K., A. L. van der Zanden, P. H. Reitsma und R. M. Bertina. „RESTRICTION ANALYSIS AND SOUTHERN BLOTTING OF TOTAL HUMAN DNA REVEALS THE EXISTENCE OF MORE THAN ONE GENE HOMOLOGOUS WITH PROTEIN S cDNA“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644639.
Der volle Inhalt der QuelleSadler, J. Evan. „THE MOLECULAR BIOLOGY OF VON WILLEBRAND FACTOR“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643930.
Der volle Inhalt der QuelleDousseau, Gabriella Corrêa, Julian Letícia de Freitas, Luíza Alves Corazza, Cristiane de Araújo Martins Moreno und Maria Sheila Guimarães Rocha. „Arginase 1 deficiency: a differential for progressive ataxia and intellectual disability“. In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.466.
Der volle Inhalt der QuelleHuber, P., J. Dalmon, M. Laurent, G. Courtois, D. Thevenon und G. Marguerie. „CHARACTERIZATION OFTHE 5’FLANKING REGION FOR THE HUMAN FIBRINOGEN β GENE“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642889.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Chromosome contacts"
Lindow, Steven, Isaac Barash und Shulamit Manulis. Relationship of Genes Conferring Epiphytic Fitness and Internal Multiplication in Plants in Erwinia herbicola. United States Department of Agriculture, Juli 2000. http://dx.doi.org/10.32747/2000.7573065.bard.
Der volle Inhalt der QuelleManulis-Sasson, Shulamit, Christine D. Smart, Isaac Barash, Laura Chalupowicz, Guido Sessa und Thomas J. Burr. Clavibacter michiganensis subsp. michiganensis-tomato interactions: expression and function of virulence factors, plant defense responses and pathogen movement. United States Department of Agriculture, Februar 2015. http://dx.doi.org/10.32747/2015.7594405.bard.
Der volle Inhalt der Quelle