Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Chromoplexie“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chromoplexie" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Chromoplexie"
Serbyn, Nataliia, Myrthe M. Smit, Vimathi S. Gummalla, Gregory J. Brunette und David S. Pellman. „Abstract 6105: Unravelling the mechanistic basis of chromoplexy, a mutational process driving early cancer genome evolution“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 6105. http://dx.doi.org/10.1158/1538-7445.am2023-6105.
Der volle Inhalt der QuelleBallas, Leslie K., Brian R. Hu und David I. Quinn. „Chromoplexy and hypoxic microenvironment drives prostate cancer“. Lancet Oncology 15, Nr. 13 (Dezember 2014): 1419–21. http://dx.doi.org/10.1016/s1470-2045(14)71114-3.
Der volle Inhalt der QuelleAshby, Cody, Michael A. Bauer, Yan Wang, Christopher P. Wardell, Ruslana G. Tytarenko, Purvi Patel, Erin Flynt et al. „Chromothripsis and Chromoplexy Are Associated with DNA Instability and Adverse Clinical Outcome in Multiple Myeloma“. Blood 132, Supplement 1 (29.11.2018): 408. http://dx.doi.org/10.1182/blood-2018-99-117359.
Der volle Inhalt der QuelleWang, Kendric, Yuzhuo Wang und Colin C. Collins. „Chromoplexy: a new paradigm in genome remodeling and evolution“. Asian Journal of Andrology 15, Nr. 6 (26.08.2013): 711–12. http://dx.doi.org/10.1038/aja.2013.109.
Der volle Inhalt der QuelleAshby, Cody, Eileen M. Boyle, Brian A. Walker, Michael A. Bauer, Katie Rose Ryan, Judith Dent, Anjan Thakurta, Erin Flynt, Faith E. Davies und Gareth Morgan. „Chromoplexy and Chromothripsis Are Important Prognostically in Myeloma and Deregulate Gene Function By a Range of Mechanisms“. Blood 134, Supplement_1 (13.11.2019): 3767. http://dx.doi.org/10.1182/blood-2019-130335.
Der volle Inhalt der QuellePham, Minh-Tam N., Michael C. Haffner, Heather C. Wick, Jonathan B. Coulter, Anuj Gupta, Roshan V. Chikarmane, Harshath Gupta, Sarah Wheelan, William G. Nelson und Srinivasan Yegnasubramanian. „Abstract 680: Topoisomerase 2 beta facilitates chromatin reorganization during Androgen Receptor induced transcription and contributes to chromoplexy in prostate cancer“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 680. http://dx.doi.org/10.1158/1538-7445.am2022-680.
Der volle Inhalt der QuelleAnderson, Nathaniel D., Richard de Borja, Matthew D. Young, Fabio Fuligni, Andrej Rosic, Nicola D. Roberts, Simon Hajjar et al. „Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors“. Science 361, Nr. 6405 (30.08.2018): eaam8419. http://dx.doi.org/10.1126/science.aam8419.
Der volle Inhalt der QuelleShen, Michael M. „Chromoplexy: A New Category of Complex Rearrangements in the Cancer Genome“. Cancer Cell 23, Nr. 5 (Mai 2013): 567–69. http://dx.doi.org/10.1016/j.ccr.2013.04.025.
Der volle Inhalt der QuelleZhang, Cheng-Zhong, und David Pellman. „Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division“. Annual Review of Cancer Biology 6, Nr. 1 (11.04.2022): 245–68. http://dx.doi.org/10.1146/annurev-cancerbio-070620-094029.
Der volle Inhalt der QuelleMustafin, R. N. „Participation of retroelements in chromoanagenesis in cancer development“. Siberian journal of oncology 23, Nr. 5 (15.11.2024): 146–56. http://dx.doi.org/10.21294/1814-4861-2024-23-5-146-156.
Der volle Inhalt der QuelleDissertationen zum Thema "Chromoplexie"
Heintzé, Maxime. „Rôles des mutations somatiques dans STAG2, TP53 et CDKN2A et de la chromoplexie dans l'oncogenèse du sarcome d'Ewing“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL093.
Der volle Inhalt der QuelleEwing sarcoma is the second most frequent pediatric cancer of the bones and soft tissues. It is characterized by the presence of a chromosomal translocation that fuses a gene from the FET family with a transcription factor from the ETS family. In 85% of cases, the t(11;22)(q24;q12) translocation fusing the EWSR1 and FLI1 genes is observed, and in 10% of cases, the t(21;22)(q22;q12) translocation fusing EWSR1 with ERG can be found. These fusion proteins exert an aberrant oncogenic role. Somatic mutations in the STAG2, TP53 and CDKN2A genes are frequently found in patient tumors. In particular, STAG2, a gene involved in the cohesin complex, is increasingly observed to be mutated or inactivated in cancers today. A recently described phenomenon of genomic instability, known as chromoplexy, is now found in 18% of cancers. Chromoplexy involves multiple, generally balanced, rearrangements between several chromosomes, forming complex translocation loops. Interestingly, tumors from patients positive for the EWSR1-ERG fusion are almost always associated with chromoplexy.Understanding the role of additional somatic mutations and chromoplexy in the initiation of oncogenesis in this sarcoma is necessary to decipher the mechanisms of cellular transformation in this disease. To generate new study models, we endogenously induce EWSR1-ETS translocations associated with additional mutations in primary human mesenchymal stem cells (MSCs), a potential cellular origin of this sarcoma, using CRISPR-Cas9. To better understand the mechanism of chromoplexy, we hypothesized that the orientation of the EWSR1 and ERG genes on their respective chromosomes leads to the formation of a theoretical dicentric chromosome. This highly unstable chromosome may promote the formation of rearrangement loops, such as chromoplexy, to stabilize the genome.In this way, we were able to generate a novel, innovative model of Ewing sarcoma from primary human MSCs. These models showed the ability to develop tumors and metastases when injected in vivo into mice. These tumors recapitulated all the typical characteristics of Ewing sarcoma, including its characteristic morphology and the membrane expression of the CD99 marker. Moreover, the transcriptomic profiles of the tumors were highly similar to those of patient tumors.Subsequently, we used the EWSR1-ERG fusion to study chromoplexy. Through the use of specific inhibitors targeting DNA double-strand break repair pathways, we were able to promote the formation of rearrangement loops in model cells. From our results, we generated entirely new, original models presenting the EWSR1-ERG fusion, with or without chromoplexy, from primary human MSCs.This work confirms a potential mesenchymal origin for this sarcoma. We have shown that the endogenous induction of EWSR1-ETS fusions enables complete cellular transformation when associated with additional somatic mutations in the STAG2, TP53, and CDKN2A genes. Finally, we were able to partially understand the role of chromoplexy in the initiation of oncogenesis in Ewing sarcoma
Baca, Sylvan Charles. „The landscape of somatic mutations in primary prostate adenocarcinoma“. Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10824.
Der volle Inhalt der QuelleBuchteile zum Thema "Chromoplexie"
Das, Bhaswatee, Bipasha Choudhury, Aditya Kumar und Vishwa Jyoti Baruah. „Genomic Instability and DNA Repair in Cancer“. In DNA - Damages and Repair Mechanisms. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95736.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Chromoplexie"
Demeulemeester, J., M. Tarabichi, MW Fittall, P. Van Loo, JO Korbel und PJ Campbell. „4 Patterns of clustered mutational processes: Pan-Cancer analysis of chromothripsis, chromoplexy and kataegis“. In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.4.
Der volle Inhalt der Quelle