Dissertationen zum Thema „Chromatius“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Chromatius" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Besnard, Emilie. „Modifications de l'organisation de la chromatine liées à l’entrée en sénescence et son impact sur la réplication du génome“. Thesis, Montpellier 1, 2010. http://www.theses.fr/2010MON1T008.
Der volle Inhalt der QuelleSenescence entry, considered as an irreversible cell cycle arrest, is characterized by modifications of chromatin organization forming specific heterochromatin foci (SAHF) coordinated to modification of gene expression and the progressive loss of capacity to replicate the genome. During my PhD, we investigated whether these changes in genome organization might induce modifications in the distribution and the activity of replication origins during replicative senescence entry and in prematurely induced senescence by inhibition of a chromatin modulator, the Histone AcetylTransferase p300. To study these regulations, we used the replicating DNA combing allowing to follow the progression of replication forks and to evaluate the mean distribution of origins. By using the nascent strand purification assay coupled to deep sequencing, we mapped the position of replication origins in the whole human genome and studied some factors which could be involve d with this determinism. Thanks to this study, we followed finely the modifications of activity of replication origins associated to senescence entry. Moreover, in order to better understand the mechanisms of activation of origins, we studied in collaboration with Dr Fisher's team, the role of Cdk1 and Cdk2, in the activity of replication origins in the Xenopus model
Beurton, Flore. „Étude de l’interaction physique et fonctionnelle entre le complexe histone méthyltransférase SET-2/SET1 et le complexe histone déacétylase SIN-3S dans l’embryon de C. elegans“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN017.
Der volle Inhalt der QuelleThe highly conserved SET1 family complexes are targeted by CFP1/CXXC protein to promoter regions through multivalent interactions to implement methylation of histone H3 Ly4 (H3K4me), a modification that correlates with gene expression depending on the chromatin context. The presence of distinct SET1 complexes in multiple eukaryotic model systems has hampered studies aimed at identifying the complete array of functions of SET1/MLL regulatory networks in a developmental context. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RBBP5, ASH2, WDR5, DPY30 and CFP1. The biochemical composition of the complex however, has not been described. Through the use of co-immunoprecipitation coupled to mass spectrometry-based proteomics, I identified the SET-2/SET1 complex in C. elegans embryos. Most importantly, I showed that the SET-2/SET1 complex also co-immunoprecipitates another conserved chromatin-modifying complex and I highlighted the interactions involved between these two complexes. My genetic analysis revealed that loss of function mutants of the two complex subunits share common phenotypes, consistent with common developmental functions. The laboratory has also undertaken transcriptomic and chromatin immunoprecipitation experiments showing that CFP-1 has a role in the binding of this complex at specific chromatin regions
Jurisic, Anamarija. „Développement d'une approche méthodologique basée sur la biotinylation in vivo de protéines de la chromatine - Application à l’étude des interactions entre des domaines chromosomiques et une protéine de l'enveloppe nucléaire dans des cellules individuelles“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS349.
Der volle Inhalt der QuelleEvidence is rapidly accumulating that the architecture of interphase chromosomes is important for both gene regulation and genome maintenance. During interphase, chromosomes are nonrandomly positioned with respect to each other and thus they provide nuclear landmarks. Two kinds of interactions are likely to contribute to this nonrandom positioning: (i) subchromosomal domains interact with nuclear structures such as the nuclear envelope (NE) and ii) intrachromosomal interactions take place between linearly distant loci positioned in cis on the same chromosome. As a contribution to this expanding research domain, we have built upon an existing approach previously established in the laboratory to detect protein-protein interactions. The new technique was developed in human cells as part of the present PhD research. It is based on biotin labelling of chromatin components which are in close proximity with the nuclear envelope (NE) in interphase cells. Cells were made to express (i) the biotin ligase BirA fused to the NE protein emerin together with (ii) a fusion between a biotin acceptor peptide and macroH2A, a variant core histone. The biotin label deposited on the macroH2A histone during interphase is then detected by fluorescence microscopy on mitotic cells spread on slides. The biotin-labelled mitotic chromosomes can be further characterized using more classical karyotyping techniques. We refer to this new technique as “Topokaryotyping” since it can provide both topological and karyotypic information. Its step-by-step development has required the establishment of an ad hoc cell line and a fine protocol optimization. This PhD work could pave the way for biological questions explored at a single cell level. As an illustration, a comparative topokaryotyping analysis was performed on cells cultivated in vitro in various experimental stress conditions. It is envisioned that using this technique can provide valuable mechanistic insights relevant to the organization and dynamics of cell nuclei
Marie, Corentine. „The role of Chd7 & Chd8 chromatin remodelers in oligodendrogenesis and (re)myelination“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066365/document.
Der volle Inhalt der QuelleOligodendrocytes (OLs) are myelin-forming cells of the central nervous system wrapping axons and allowing the saltatory conduction of action potentials. In Multiple sclerosis (MS), myelin sheath is destroyed and effective remyelination by oligodendrocyte precursor cells (OPCs) diminishes with disease progression. Therefore, a better understanding of the mechanisms controlling OPC generation and differentiation is essential to develop efficient remyelinating therapies. Oligodendrogenesis, involving the steps of OPC generation, OPC differentiation and maturation of OLs, is a process controlled by specific transcription factors including Ascl1, Olig2 and Sox10 but the mechanisms involved are poorly understood. As it is known that chromatin remodelers are regulatory factors necessary in the formation of the promoter-enhancer loop prior to transcription, we focused our study on Chd7 (Chromodomain-Helicase-DNA-Binding 7), a member of the CHD protein family. In a first study, we showed that Chd7 is highly enriched in the oligodendroglial lineage cells with a peak of expression during OL differentiation and that Chd7 OPC-conditional deletion impairs OL differentiation during (re)myelination. In a second study, we used unbiased genome wide technics in purified OPCs to study Chd7 regulation of genes involved in OPC differentiation, proliferation and survival. To this aim, we have generated OPC-specific inducible Chd7 knock-out (Chd7-iKO) and analyse the transcriptome (RNA-seq) of purified OPCs from P7 mouse cortices compared to control littermates. We found that Chd7 promote the expression genes involved in OPC differentiation and myelination and inhibits apoptosis, without affecting OPC proliferation. Furthermore, we investigated Chd8, a paralog of Chd7, showing that it is expressed in the oligodendroglial lineage with a peak of expression in differentiating oligodendrocytes, similar to Chd7. Genome wide binding (ChIP-seq) profiling for Chd7 and Chd8 indicate that these two chromatin remodelers bind to common genes related to OPC differentiation, survival and proliferation. Integrating these datasets with other key transcriptional regulators of oligodendrogenesis (Olig2, Ascl1 & Sox10), we have built a model accounting for the time-controlled regulate expression of genes involved in each step of OL differentiation
Germier, Thomas. „Dynamique de la chromatine et transcription“. Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30376.
Der volle Inhalt der QuelleChromatin dynamics are affected by biological processes. To understand how physical behaviour of chromatin and biology work together, we need tools to analyse chromatin motion in living cells. Several systems exist to fluorescently label DNA loci and to effectively determine their position within the nucleus, but they have drawbacks in mammalian cells when it comes to studying chromatin motion in the context of biological processes. This is especially true when it comes to mechanisms where DNA needs to be processed in the vicinity of the labeling. To study chromatin dynamics in cellulo, the Bystricky group developed the ANCHOR DNA labelling system. ANCHOR relies on the insertion of a short, non-repetitive sequence (ANCH) in the host genome. This sequence contains binding sites for a protein (OR) which once bound, oligomerize and allow visualization of the tagged locus. ANCHOR is derived from the bacterial chromosome partitioning systems. The tool was successfully implemented in budding yeast (Saad et al. 2014) and more recently in Drosophila (H. Chen, Fujioka, and Gregor 2017; Gomez-Lamarca et al. 2018). One of my thesis projects was to apply the ANCHOR system in human cells. The ANCH3 sequence was inserted randomly and in one copy in the genome of breast cancer cell line MCF7 by Hafida Sellou (M2 student) and Fatima Moutahir (technician). To insert the ANCH3 sequence, MCF7 cells were first modified to insert a FRT site in the genome. Then, a plasmid containing ANCH3 coupled to Cyclin D1 transgene and a FRT site was transfected. Recombination between the two FRT site was promoted by Flipase. The fluorescently-tagged OR3 protein was either stably or transiently expressed to allow imaging of the CCND1 gene (see (Germier et al. 2017, 2018) for details). We wanted to establish a proof of principle for the use of ANCHOR in mammalian cells. MCF7 cells containing a CCND1 transgene, called G7-CCND1 (Germier et al. 2017) were stably transfected with OR3-Santaka and the CCND1 locus was followed using fast- time lapse microscopy over 24 h through one cell division in a single cell. We could effectively follow the transgene locus without much photobleaching. The presence of OR3-Santaka protein on the chromatin locus did not disturb replication and two loci were effectively observed in the two daughter cells (Germier et al. 2018). Using the ANCHOR3 system, we hence developed a powerful tool to study both rapid, short events such as transcription and long-term events taking place over days, such as cell division or differentiation
Galic, Hrvoje. „Heterochromatin dynamics upon release from stationary phase in budding yeast“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT006/document.
Der volle Inhalt der QuelleThe budding yeast SIR complex (Silent Information Regulator) is the principal actor in heterochromatin formation, which causes epigenetically regulated gene silencing phenotypes. The maternal chromatin bound SIR complex is disassembled during replication and then, if heterochromatin is to be restored on both daughter strands, the SIR complex has to be reformed on both strands to pre-replication levels. The dynamics of SIR complex maintenance and re-formation during the cell-cycle and in different growth conditions are however not clear. Understanding exchange rates of SIR subunits during the cell cycle and their distribution pattern to daughter chromatids after replication has important implications for how heterochromatic states may be inherited and therefore how epigenetic states are maintained from one cellular generation to the next. We therefore used the tag switch RITE system to measure genome wide turnover rates of the SIR subunit Sir3 before and after exit from stationary phase and show that maternal Sir3 subunits are completely replaced with newly synthesized Sir3 at subtelomeric regions during the first cell cycle after release from stationary phase. We propose that the observed “reset” of the heterochromatic complex is an adaptive mechanism that ensures the activation of subtelomeric stress response genes by transiently destabilizing heterochromatin structure
Clement, Camille. „Rôle du chaperon d'histone ASF1 dans le recyclage des histones parentales pendant la réplication de l'ADN“. Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2018. https://theses.hal.science/tel-02518693.
Der volle Inhalt der QuelleIn eukaryotes, DNA wraps around proteins called histones to form chromatin. This structure allows, first, the compaction of the genome in the nucleus, but also the regulation of its expression. Indeed, histones can be a source of information referred to as “epigenetic”: they exist under different forms, histone variants, and can have post-translational modifications. The presence of these variants and modifications organizes the genome into domains with different transcriptional status.DNA replication destabilizes chromatin structure and, therefore, represents a challenge for the cell, which must duplicate its genetic material while also transmitting its epigenetic landscape in order to maintain its identity. In this context, recycling parental histones is essential to faithfully transmit histone variants and their modifications.During my PhD, I tried to address the question: how are the histone variants H3.1 and H3.3 recycled during DNA replication? In particular, I investigated the role of the histone chaperone Anti-Silencing Function 1 (ASF1) in this process.My approach was to develop a super-resolution microscopy technique (STORM) to visualize parental histone variants precisely at replication sites. Using this technology, I could study the impact of ASF1 depletion on the recycling of parental histones, and further our understanding of fundamental mechanisms that transmit epigenetic information
Szabo, Quentin. „Étude du repliement tridimensionnel de la chromatine en domaines topologiques“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT064.
Der volle Inhalt der QuelleMy thesis project consisted in studying the mechanisms of the three-dimensional genome folding in eukaryotic cells. The organization of chromosomes is closely related to the regulation of many biological processes, such as gene expression control, DNA replication or genomic stability. The Hi-C "chromosome conformation capture" method, which allows the mapping of interactions between DNA regions, has revealed that the genome of many species is organized into domains enriched in chromatin interactions, the "Topologically Associating Domains" (TADs). TADs have emerged as major players of genome regulation by their ability to spatially define functional domains. However, chromosome conformation capture methods generate averaged interaction profiles that generally come from an ensemble of cells. Determining the nature and the folding of TADs in individual cells is therefore crucial to better understand the structure-function relationship of these domains. During my thesis, I used a combination of fluorescent DNA labeling and super-resolution microscopy to characterize the organization of chromosomes in single cells. In Drosophila, TADs coincide with the partitioning of the chromatin into distinct epigenetic domains. In this species, we could characterize the folding of the chromosomes into a series of discrete units that correspond to TADs, reflecting the mutual exclusion of transcriptionally active and inactive regions. These results indicate that Drosophila TADs form physical domains that characterize a higher-order layer of chromosome folding in individual cells. In mammals, the majority of TADs emerge through the action of the cohesin complex and the CCCTC-binding factor (CTCF) bound at their borders. The application of super-resolution imaging in mouse embryonic stem cells and neuronal progenitor cells revealed the high degree of cell-to-cell heterogeneity of TAD folding, ranging from condensed and globular objects to dispersed and stretched conformations. We were able to observe their organization into discrete subdomains which seem to represent a general property of the folding of the chromatin fiber at the nanoscale. Furthermore, our data indicate that the physical intermingling of the chromatin is highly favored within TADs in a large majority of cells. Depletion of CTCF abolishes the TAD-dependent spatial organization of the chromatin fiber, highlighting the role of this protein in generating physical barriers between adjacent TADs. Altogether, our results demonstrate that the dynamic folding of TAD is compatible with the establishment of chromosomal environments in which contacts are privileged, and thus reconcile the probabilistic nature of chromatin folding with the proposed role of TADs in the spatial definition of functional genomic units
Bourbousse, Clara. „Dynamiques chromatiniennes au cours de la photomorphogenèse chez Arabidopsis thaliana“. Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112097.
Der volle Inhalt der QuelleChromatin states can be studied both at the level of individual transcriptional units by molecular approaches or at the larger scale of heterochromatin by cytogenetic approaches. These two levels of chromatin organization are dynamic and influence all nuclear processes. The objective was to enhance the understanding of chromatin dynamics at these two scales in the model plant Arabidopsis thaliana, focusing on a major developmental transition, photomorphogenesis. The process of de-etiolation involves the reprogramming of the expression of hundreds of genes in response to the perception of light therefore constituting an excellent experimental system. The first part of the work shows that reprogramming of genome expression during photomorphogenesis is associated with heterochromatin dynamics that is differentially regulated in the hypocotyls and the cotyledons. These widespread dynamics have local consequences, as the decompacted states are associated with reactivation of heterochromatic repeat elements. In the second part, the transcriptional repressor DE-ETIOLATED-1 (DET1) was used to investigate the involvement of photomorphogenesis regulators in chromatin mechanisms. This major repressor of photomorphogenesis can bind histone H2B and influences the overall level of mono-ubiquitinated H2B (H2Bub). As part of my thesis, I uncovered the existence of genetic interactions between DET1 and the genes controlling H2Bub homeostasis and also a defect in the regulation of the chromatin around the 45S and 5S ribosomal genes in the mutant det1-1. These data have led me to propose a model involving DET1 in the differential regulation of H2Bub in heterochromatin and euchromatin, thus constituting for the first time a link between photomorphogenesis regulators and histone modifications. Because the H2Bub mark has been directly linked to transcriptional activity in a diverse range of eukaryotes, I analysed the impact of H2Bub on gene expression during photomorphogenesis in the third part of my thesis. The combination of transcriptomic and epigenomic approaches showed that the gain of H2Bub is associated with gene induction. The use of a hub1 mutant in which H2Bub deposition is abolished also revealed the role of this mark for the rapid control of many genes. In general terms, this work has revealed both dynamic chromatin changes that result in major genome reorganizations at the cytological scale and fine variations of histone modifications on euchromatic genes, as well as the role of DET1 in regulating these changes. My study paves the way for further studies on the connections between these two scales of dynamics and their function in the nuclear localization and changes in expression of genes in the overall context of light signaling
Acquaviva, Laurent. „L' intéraction entre SPP1 et MER 2 : Le chaînon manquant entre la triméthylation de H3K4 et la recombinaison méiotique chez Saccharomyces cerevisiae?“ Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4013.
Der volle Inhalt der QuelleIn Saccharomyces cerevisiae, the methylation of the lysine 4 of histone H3 (H3K4) is catalysed by the evolutionary conserved Set1 methyltransferase complex. During meiosis, the absence of Set1 leads to a delay of S-phase onset and to a defect in the formation of double-strand breaks (DSBs). Our work was intended to give some clues about these two phenotypic consequences of Set1 loss. We show that the replication delay is linked to the absence of H3K4 trimethylation but does not result from a defect of the kinases responsible for the activation of replication origins or the activation of the canonical DNA-damage checkpoints. The severe decrease of DSB levels at the majority of recombination hotspots in set1∆ has been correlated with the specific marking of DSB sites by H3K4 trimethylation at some loci. We have confirmed the role of H3K4 methylation by observing a general decrease in DSB frequency similar to that of set1∆ in mutants lacking various subunits of the Set1- associated complex (COMPASS) or expressing a nonmethylatable histone H3 (H3K4R). To test for a causal relationship between H3K4 methylation and DSB formation, we have fused different proteins of the COMPASS, such as Spp1 or Set1, with the DNA binding domain of Gal4, in order to target them to H3K4-unmethylated and DSB-cold regions. Remarkably, Gal4BD-Spp1 strongly stimulates DSB formation in naturally cold DSB regions, even in the H3K4R mutant context. Thus, the specific tethering of Spp1 to a chromosome site is sufficient to recruit and/or activate the DSB machinery
Diagouraga, Boubou. „Rôle de l'activité méthyltransférase de la protéine PRDM9 dans la recombinaison méiotique chez la souris“. Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS060.
Der volle Inhalt der QuelleIn sexually reproducing organisms, gametes are produced by a process comprising two successive division, called meiosis. During the first division, meiotic recombination enables a physical contact and an exchange of genetic material between homologous chromosomes. Meiotic recombination results from the repair, by homologous recombination, of programmed DNA double-strand breaks (DSBs) catalyzed by the SPO11 protein at the beginning of prophase I. In mammals, recombination events are localized in 1 to 2 kb-long regions called recombination hotspots. PRDM9, a PR/SET domain and zinc finger-containing protein, determines hotspot localization by targeting specific DNA sequences through its zinc finger array. Notably, PRDM9 PR/SET-domain possesses an H3K4 methyltransferase activity, while PRDM9-dependent H3K4me3 enrichment is found at hotspots in spermatocytes.We aimed at characterizing PRDM9 methyltransferase activity and studying its role in meiotic recombination initiation in mouse. The crystal structure of PRDM9 PR/SET domain, which we generated in complex with a histone H3 peptide, shows that this domain adopts a similar topology to that of classical SET domains and allowed us to identify key residues for its catalytic activity. PRDM9 PR/SET domain catalyzes not only mono-, di- and trimethylation of H3K4, but also of H3K9 and H3K36. We confirmed PRDM9 dependent H3K36 trimethylation in spermatocytes. Taking advantage of the distinct DNA binding specificity of two Prdm9 alleles, Prdm9b and Prdm9wm7, each activating its own set of hotspots, we generated transgenic mouse lines expressing either Prdm9wm7G278A or Prdm9wm7Y357F mutant allele together with the endogenous wild-type Prdm9b allele. Both G278A and Y357F mutations abolish PRDM9 catalytic activity. We show that PRDM9wm7Y357F binds normally to its genomic targets, but is not able to promote H3K4 nor H3K36 trimethylation at these sites. In addition, PRDM9wm7Y357F does not promote recombination at one Prdm9wm7-dependent hotspot, showing that PRDM9 catalytic activity is required for promoting recombination at hotspots. In mice expressing only the mutant allele (Prdm9wm7G278A or Prdm9wm7Y357F), spermatocytes display defects in homologous chromosome synapsis and DSBs repair, as well as an arrest of meiosis at the mid-prophase I. This phenotype is similar to that of Prdm9 KO mice. Overall, our results demonstrate the role of PRDM9 methyltransferase activity in determining recombination hotspots and more generally for meiotic progression and gametes formation
Kahli, Malik. „Implication des protéines HMGA et HMGA2 dans les changements du programme de réplication au cours de la sénescence cellulaire“. Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20059/document.
Der volle Inhalt der QuelleSenescence, considered as an irreversible cell cycle arrest, is characterized by dramatic changes in genes expression and chromatin organisation forming dense heterochromatic foci (SAHF). These changes are concomitant to a progressive decline of the capactity to replicate the genome. My PhD topic was to investigate whether the chromatin changes induced by SAHF formation could influence the replication program and modify the origin distribution along the genome at replicative senescence. We first compared the origin distribution of proliferative and pre-senescent primary fibroblasts by DNA molecular combing. Then, we mapped the origins positions in whole human genome by using the nascent strand purification assay coupled to deep sequencing.As HMGA1 and HMGA2 proteins are essential to induce SAHF formation, we designed inducible cell lines wich overexpress these proteins, triggering premature senescence. We made the same type of experiments in these cell lines in order to investigate the implication of these proteins on the changes of the replication program we observed during senescence
Hodimont, Elsie. „Etude des fonctions de Cdk8 dans la régulation de la chromatine, la réplication et la transcription“. Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20166.
Der volle Inhalt der QuelleThe Cdk8 kinase is involved intranscriptional regulation.This protein is found on chromatin during DNA replication in xenopus egg extract model when transcription is not active. My PhD project was to characterize Cdk8 functions on chromatin during replication.My results show that Cdk8 is involved in DNA replication.Cdk8 is not found at replication foci , but its recruitment on chromatin occurs at the same time as several components of the pre-replication complex.Moreover, Cdk8 depletion leads to DNA replication defects.These defects are not induced by collision between the replisome and transcriptional regulators (RNA polymerase II and transcription factors). Indeed, RNA polymerase II, which is on chromatin in an inactive form under normal conditions, is less abundant on chromatin in absence of Cdk8.Cdk8 depletion leads to a decrease in pre-replication complexes and pre-initiation complexes recruitment. This decrease induces a reduction in DNA replication rate without activating the intra-S checkpoint.My data show that Cdk8 is necessary for proper DNA replication. It seems that Cdk8 depletion involves several mechanisms : altered replication machinery recruitment, presence of Adenomatous Polyposis Coli (APC) protein on DNA, and post-traductional modifications of histones
Benyelles, Maname. „Le rôle de l'oncoprotéine INT6 dans la maintenance des télomères“. Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL0978/document.
Der volle Inhalt der QuelleThe INT6/EIF3E protein encoded by the mammalian integration site 6 (int-6) gene, has been implicated in mouse and human breast carcinogenesis. Although, INT6 is a subunit of the eIF3 translation initiation factor, it is not essential for bulk translation but for specific mRNAs expression as histone mRNA translation. It has also been implicated in DNA replication by stabilizing the DNA replication licensing factor MCM7, in DNA Damage Response (DDR) and in the Nonsense mRNA Decay (NMD) pathway. Relative to the latter activity, I investigated whether INT6 can specifically meddle in telomere homeostasis by acting on TERRA transcripts. Deletion of INT6 by RNA interference approach revealed an increase in the telomeric RNA TERRA levels which is depending on the chromosome and cellular type. Although INT6 is a NMD factor, it doesn’t change TERRA steady-state. DNA-FISH experiments showed an increase in Telomere Induced Foci (TIFs) in INT6 depleted cells. These aberrations correspond to Telomere Free Ends (TFE) and Multi-Telomeric signals (MTS) which implicate INT6 in DDR. By means of Microccocal Nuclease (MNase) mapping assay, we found a rapid accumulation of telomeric mono-nucleosomes in INT6-depleted cells, suggesting a role in telomeric chromatin structure. These findings evidenced that INT6 is a novel key player in telomere stability
Chen, Zhenhui. „Régulation épigénétique de la production de mycotoxines chez Fusarium graminearum“. Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0600.
Der volle Inhalt der QuelleContamination of food with mycotoxins is a significant risk to human and animal health. Reports from the European Food Safety Authority indicate that nearly half of the food derived from cereals and unprocessed grains collected between 2007 and 2012 in 21 European countries were contaminated with Type B trichothecenes, or TCTB, and especially deoxynivalenol, or DON. These mycotoxins are produced by fungal phytopathogens on growing kernels, before harvest. On account of the global climate change, this situation may become increasingly serious. Therefore, preventing the production of mycotoxins is a task which brooks no delay. In Europe, DON is predominantly produced by Fusarium graminearum. Even though the sequential steps of the TCTB biosynthetic pathway are fairly well described, the molecular events involved in regulating this pathway are complex and remain, so far, widely misunderstood.Recent studies highlighted post-translational modifications of canonical histones as well as their variants as critical players in the regulation of mycotoxin and other secondary metabolite biosyntheses in filamentous fungi, by altering chromatin structure. In F. graminearum, it was shown that the histone deacetylase HDF1 could be involved in the activation of DON production. In contrast, H3K27me3 histone mark represses 14 % of its genome, including genes involved in secondary metabolic pathways. Histone variant H2A.Z is ubiquitous in eukaryotes and is involved in a diverse range of biological processes, including genome stability, DNA repair, transcriptional regulation and telomere silencing. However, the underlying mechanisms of these functions remain unclear. In some species, the function of H2A.Z appears to be essential. Up to now, the only one study targeted directly on the function of H2A.Z in filamentous fungi was carried out on Neurospora crassa, and identifying a role in oxidative stress response.Here, we hypothesized that H2A.Z may be involved in important biological processes of F. graminearum including those involved in the production of secondary metabolism. Therefore, this project aims to characterize the roles played by the histone variant H2A.Z in controlling development, metabolism and virulence in F. graminearum.Using a reverse genetics approach, we created six H2A.Z deleted mutants in three different F. graminearum strains. All mutants exhibit deficiency in sporulation, germination, radial growth and DON production; however, intensities in the observed effects depend on the considered genetic background. Additionally, adding back wild-type H2A.Z could not rescue mutant phenotypes. Whole-genome sequencing showed that, although H2A.Z has been totally removed from the genome, compensatory mutations occur at other sites in each mutant regardless of the genetic background, in genes involved in chromatin remodeling. Strikingly, one extra mutation was detected in the H2A.Z add-back mutants. H2A.Z overexpressed mutants have also been constructed, but no significant difference in phenotype can be observed with wild type. Considering our results as a whole, we draw the conclusion that H2A.Z is essential in F. graminearum. It is the occurrence of compensatory mutations that rescued part of the lethality caused by H2A.Z deletion. We hypothesize that profound reorganizations of gene networks allow such plasticity, with certain consequences in terms of evolution and adaptation
Teano, Gianluca. „Functional interplays between linker histone H1 variants and chromatin landscape in Arabidopsis thaliana“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASB003.
Der volle Inhalt der QuelleBeing capable of rapid phenotypic adaptations in response to environmental cues, plants are characterized by a remarkable developmental plasticity. Specifically, plants have the ability to sense light conditions by multiple photosensory receptors and to use this crucial information to adapt their morphology and physiology to a changing environment. For example, the first perception of light by young plantlets emerging from the soil induces deep changes in gene expression that launch growth and photosynthetic activity. During this transition, genome expression reprogramming is accompanied by massive rearrangements of chromatin sub-nuclear organization. In the Arabidopsis thaliana plant species, a large part of heterochromatin containing silent and condensed repeated elements is scattered within multiple foci in the nucleoplasm of most cotyledon cells when grown in darkness. Upon exposure to light, cotyledon de-etiolation triggers the rapid condensation of heterochromatic domains into 8-to-10 large chromocenters that form around centromeres. This phenomenology has led us to the identification of histone H1 variants as key molecular players in triggering chromocenter dynamics. These inter-nucleosomal linker histones are conserved structural components of eukaryotic chromatin that contribute to both local and higher-order chromatin organization and condensation, notably restricting DNA accessibility to multiple factors such as RNA polymerases. In this thesis cytological and genomic approaches were used to investigate the influence of the three Arabidopsis thaliana H1 variants in the definition of the genome and the 3D chromatin structure in cotyledon cells. The combination of Assay for Transposase-Accessible Chromatin (ATAC) and Chromosome Conformation Capture (Hi-C) allowed dissecting how H1 histones impact genome topology and the adaptation of the chromatin landscape for a new transcriptional program. The analysis of histone marks abundance and their genome-wide profiling using quantitative chromatin immunoprecipitation (ChIP-Rx) further enhances current knowledge. We uncovered the functional impact of histones H1 in defining chromatin repressive landscape on many genes and repeated elements, potentially by restricting access to transcription factors on specific sequence motifs. Collectively, this work has allowed deciphering the specific and redundant functional implications of histone H1 variants as key molecular regulators of the chromatin landscape in plants
Boubacar, Ali Nabiya. „Etude des fonctions transcriptionnelles de la lysine methyltransférase PR-Set7 et de l’effet des enzymes de méthylation de la Lysine 20 de l’Histone H4 sur la radiosensibilité des cellules cancéreuses“. Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT032.
Der volle Inhalt der QuelleChromatin is a dynamic nucleoprotein structure that requires remodeling for all nuclear processes such as replication, transcription and DNA damage. Several factors have been characterized to modulate chromatin structure and include ATP-dependent remodeling complexes and histone-modifying enzymes. We are interested in the laboratory in the methylation pathway of lysine 20 on histone H4 tail. The first level of methylation is induced by the monomethyltransferase PR-Set7 and the di/tri methylation are deposited by the SUV4-20H enzymes. To better characterize the role of dPR-Set7 during development, I wanted to study the function of Drosophila PR-Set7 (dPR-Set7). The first part of my thesis aimed to unravel the role of dPR-Set7 in transcription. Interestingly, transcriptional regulation mediated by PR-Set7 requires its enzymatic SET domain but not H4K20me, suggesting the existence of other non-histone substrates. We demonstrated a functional interaction between PR-Set7 and ISWI, the catalytic subunit of chromatin remodeling complexes (CRC). Interestingly, ISWI contains a basic patch identical to the histone H4 tail suggesting that it could be a substrate for dPR-Set7. The second part of my thesis consisted in combining inhibitors of H4K20 methyltransferase and radiation in ovarian and pancreatic cancer cell lines. I wanted to know if the decrease of H4K20me levels by inhibiting either PR-Set7 or SUV4-20H enzymes, contribute to better X-ray treatments. Our results show that the overall decrease of H4K20me2/3 marks following the inhibition of SUV4-20H enzymes has a low impact on cell survival and the combining effects of both treatments sensitize cancer cells
Boskovic, Ana. „Study of histone variants and chromatin dynamics in the preimplantation mouse embryo“. Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ034/document.
Der volle Inhalt der QuelleHow the zygote acquires totipotency from two differentiated cells, and how cell fate decisions are made later in development is a pivotal biological question. The studies conducted during the first part of my doctorate contributed to the annotation of embryonic chromatin composition with regards to histone variants and PTMs, and more specifically those correlated with active chromatin regions. The histone variant H2A.Z was shown to be present on embryonic chromatin in a stage-specific manner. Ectopic expression of H2A.Z after fertilization reduced developmental progression, suggesting that absence of H2A.Z at the onset of development might be important for the organization of the newly formed embryonic chromatin. Secondly, I investigated histone dynamics in the developing mouse embryo. Our work represents the first report on histone mobility during early mouse embryogenesis. My thesis contributed to the understanding of the dynamic events affecting embryonic chromatin during epigenetic remodeling after fertilization
Tissot, Louis-Jean. „L'Ouvrage incomplet sur Matthieu (Opus imperfectum in Matthaeum) et les commentaires en latin sur l'évangile de Matthieu de l'Antiquité. Comparaison exégétique et stylistique ciblée sur la partie A (Mt. 1-8)“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUL158.
Der volle Inhalt der QuelleAs part of the critical edition project of the Incomplete Work on Matthew (Opus imperfectum in Matthaeum, OIM), the present thesis analyzes the links between this anonymous commentary on the Gospel of Matthew, coming from a Riminian subordinationist environment (i.e. “Homean”), and other Latin exegetical works on the same gospel. After recalling, in a state of research, the main characteristics of the corpus taken into account, we carried out a continued exegetical comparison relating to the section Mt 1-8, corresponding to the first part of the OIM, with the fragments remains of the commentary on Matthew by Origen (3rd century), the commentaries on Matthew by Fortunatian of Aquileia and Hilary of Poitiers (mid-4th century), those of Jerome and Chromatius of Aquileia (late 4th century), and the texts by an anonymous Latin author from late Antiquity known as pseudo-Origen. This study was accompanied by a stylistic comparison on certain aspects (appellations of Christ, exegetical vocabulary, personal marks), highlighting the profound originality of the OIM in this regard. The results of this double comparison confirm the deep link of the OIM with Origen's Commentary on Matthew, an influence that the anonymous author shares with Jerome. Furthermore, our study shows for the first time the use in the OIM of the Commentary on Matthew by Chromatius of Aquileia. Finally, the results of the stylistic comparison, accompanied by a theological analysis of the translator's positions, tend to confirm that it is indeed to the author of the OIM that we owe the ancient Latin translation of the Commentary on Matthew of Origen
Ignatyeva, Maria. „Identification et caractérisation de HIRIP3 comme nouveau chaperon d'histone H2A“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ028.
Der volle Inhalt der QuelleThe genome of eukaryotic cells is packaged into chromatin, which establishment and maintenance require mechanisms of assembly and remodelling. This thesis work was dedicated to the characterization of two factors of chromatin assembly machinery. The first factor studied in this work was HIRIP3, a mammalian homologue of yeast H2A.Z chaperone Chz1. We aimed to test whether HIRIP3 is a histone chaperone by itself. At first, we established HIRIP3 interaction with histones in vivo. After then, we studied the structural specificity of this interaction in vitro. We have characterized HIRIP3 as a novel H2A histone chaperone that utilizes the CHZ motif for its function. The second part of this work was focused on SRCAP chromatin remodelling complex. We aimed to decipher its interaction network and to describe its sub-complexes. We have reconstituted YL1, SRCAP, TIP49A, TIP49B and H2A.Z/H2B core complex using baculovirus expression system. Our protocol allowed us to purify core complex suitable for future structural studies by cryo-electron microscopy
Stadelmayer, Bernd. „Le noyau cellulaire et la régulation génique par les protéines du groupe Polycomb“. Thesis, Montpellier 1, 2010. http://www.theses.fr/2010MON13507/document.
Der volle Inhalt der QuellePolycomb- and trithorax-Group proteins are highly conserved epigenetic regulators which maintain cell identities by maintaining states of gene expression. They act on their target genes through /cis/ regulatory elements, named Polycomb Response Elements (PREs). In transgene assays it has been shown that two copies of the same PRE are frequently found clustered in nuclear space and for one particular PRE named Fab-7 clustering is correlated with its repressive function. In the course of this thesis I tried to clone a two colour real-time tool which allows distinguishing in 4D two /Fab-7/s stably integrated into the genome of Drosophila melanogaster. Additionally, I improved the DNA-FISH protocol of the lab and identified vestigial and apterous as potential gene loci forming nuclear associations dependent on transcription in Drosophila melanogaster
Montibus, Bertille. „Régulation et fonction de la chromatine bivalente chez les mammifères : l'emprunte parentale comme modèle“. Thesis, Clermont-Ferrand 1, 2016. http://www.theses.fr/2016CLF1MM23.
Der volle Inhalt der QuelleFine-tuned regulation of gene expression is required for cell fate determination anddevelopment. Epigenetics modifications are well documented to be instrumental in thisprocess. Among them, bivalent chromatin, an unusual chromatin signature, which associatesthe permissive mark H3K4me2/3 and the repressive mark H3K27me3, is believed to arbitrategene expression during cell commitment. To study its precise role in development, we haveundertaken to study bivalency in the context of genomic imprinting. This well-defineddevelopmental frame is a process restricting expression of some genes to one parental alleleonly. The constitutive differential DNA methylation at the key region called ICR (ImprintingControl Region), is absolutely required but not sufficient to explain the complexity of themono-allelic expression pattern of imprinted genes, indicating that other mechanisms couldbe involved. Specifically, on 15 maternally methylated ICR, we showed that bivalentchromatin is acquired by default on the unmethylated allele of ICR when it istranscriptionally inactive whatever the developmental stage or the tissue studied and thuscontribute to tissue-specific expression from these regions. Altogether, our results revealthat chromatin bivalency is much less dynamic than proposed. In the context of genomicimprinting, it seems to plays more a safeguard function at ICR by protecting theunmethylated allele against DNA methylation acquisition while keeping it silent in a subsetof tissues. To complete this study, I studied the regulation of JMJD3, a histone demethylasefor H3K27me3, candidate to regulate bivalency dynamic. Our results suggest that theinduction of Jmjd3 expression observed during neural differentiation rely on the dynamic ofthe tridimensional architecture at the locus which could be regulated by the transcription ofan eRNA (enhancer RNA) and by hydroxymethylation. This model highlight a complex way ofregulation for this new epigenetics actor, involving intragenic regions and could help tounderstand how Jmjd3 expression is deregulated in a pathological context such as in cancer
Hoghoughi, Naghmeh. „Base moléculaire de la programmation post-méiotique du génome mâle Transcription factor dimerization activates the p300 acetyltransferase Histone variants: essential actors in the male genome programing“. Thesis, Université Grenoble Alpes (ComUE), 2019. https://thares.univ-grenoble-alpes.fr/2019GREAV054.pdf.
Der volle Inhalt der QuelleSpermatogenic cell chromatin undergoes a drastic reorganisation during spermiogenesis. This phenomenon occurs for two principles reasons: first, to establish a highly compact genome through protamine incorporation, in order to protect the sperm genome before and upon fertilization. Second, in order to successfully transfer the paternal information carried by the sperm genome, to the next generation. Recently, our laboratory identified various actors and molecular mechanisms, which are at the heart of this drastic genome reorganisation. A genome-wide histone hyperacetylation initiates the process of histone replacement by transition proteins and protamines. Our laboratory identified NUT (Nuclear protein in Testis) as the main player of histone hyperacetylation at the onset of histone-to-protamine transition process. NUT through recruitment of histone acetyltransferase CBP/p300, induces histone H4 hyperacetylation mainly at lysine 5 and lysine 8 residues. Next, first bromodomain of BRDT (Bromodomain containing Testis-specific factor) recognizes histone acetylation and initiates the process of histone removal. Previously identified testis-specific H2A variant, H2A.L.2 (H2A.Like 2), forms dimer with histone H2B variant TH2B at the time of histone eviction in elongating spermatids. The dimer H2A.L.2-TH2B then incorporates into the chromatin and opens the nucleosome structure, which allows the invasion of histones by transition proteins as well as pre-protamine processing. Protamines finally displace histone-TPs complexes and re-package the genome. Previously, our laboratory reported that a fraction of H2A.L.2 is associated with pericentric heterochromatin regions in mature spermatozoa. During my PhD, first we discovered the structural and molecular basis of the activation of CBP/p300. We speculate that the same mechanisms could lead to the Nut-p300-dependent induced histone acetylation, leading to the initiation of histone removal in post-meiotic phases of spermatogenesis. Second, we demonstrated that nucleosome dissociation following H2A.L.2 incorporation provides an opportunity for H2A.L.2-TH2B dimer to associate to DNA in a stable manner, while H3-H4 tetramer is being displaced. This leads to the generation of H2A.L.2-TH2B dimer-based structures, which persist in mature sperm. In addition, we deciphered the molecular basis of the intrinsic ability of H2A.L.2 to target the pericentric heterochromatin regions. We also identified a critical role for RNA in regulating and in controlling the turnover and localisation of H2A.L.2 in pericentric heterochromatin regions. In conclusion, our work highlights the presence of dimer-based structures within the sperm chromatin, as well as a specific re-programming of the male pericentric heterochromatin, which might bear crucial information transmittable to the next generation
Goutte-Gattat, Damien. „Etude des fonctions mitotiques du domaine amino-terminal de CENP-A“. Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENV079/document.
Der volle Inhalt der QuelleThe histone variant CENP-A is the epigenetic factor responsible for centromere deter- mination. It allows the recruitment of a handful of centromeric proteins, and thus acts as the primary foundation for the kinetochore. It comprises an unstructured amino-terminal domain to which no precise function has yet been assigned, although it is established in some species that the mere presence of that domain is required for proper centromere func- tion and thus successful completion of mitosis. We have established several human cell lines stably expressing GFP-tagged CENP-A constructs, allowing us to perform pseudoge- netic experiments by siRNA-mediated silencing of the endogenous CENP-A. Our results show a dramatic increase of mitotic defects and plurinuclear cells when cells express only the globular domain of CENP-A; this is in accordance with the litterature and confirms the importance of the amino-terminal tail. More importantly, a similar increase of mitotic defects is observed when cells express a full-length, but non-phosphatable, CENP-A. Our results show the involvement of the phosphatable serine 7 of CENP-A in the successful completion of mitosis, and may suggest that the role of the whole amino-terminal tail of CENP-A could be reduced to this single phosphorylation event
Bellegarde, Fanny. „Rôle de la régulation chromatinienne dans le contrôle de l’expression des gènes en réponse aux variations nutritionnelles en azote chez Arabidopsis“. Thesis, Montpellier, SupAgro, 2017. http://www.theses.fr/2017NSAM0037/document.
Der volle Inhalt der QuelleNitrate is an essential source of nitrogen for plants. Root nitrate transporters are subjected to transcriptional regulations that allow a fine control of nitrate uptake capacities. NRT2.1, an essential and major nitrate transporter in roots, is strongly expressed under limiting nitrate condition, and repressed under high nitrogen nutrition. This repression is correlated with an enrichment in chromatin mark H3K27me3, which seems to be dependent on the chromatin regulator HNI9. H3K27me3 is a chromatin mark repressive for gene expression, catalysed by the PRC2 complex, and involved in developmental regulation. However, the role of H3K27me3 and PRC2 in the adaptation to fluctuating nitrogen environments remains to be understood. My project was to study, in Arabidopsis, the contribution of H3K27me3 in the regulation of NRT2.1 gene in response to nitrogen provision.We demonstrate that H3K27me3 is not the major determinant of NRT2.1 repression by high nitrogen status, but that H3K27me3 directly regulates NRT2.1, in a context where NRT2.1 is strongly expressed, to temper its expression. We also show that the absence of limitation of NRT2.1 promoter hyperactivity can lead to a switch to full silencing by DNA methylation.This reveals an unexpected function of PRC2 as a safeguard for the expression of highly expressed genes. We also show that HNI9 is involved in the activation of oxidative stress responsive genes, which occurs under N-rich nutrition, and that PRC2 and NRT2.1 play independent roles in the regulation of root architecture. This work has highlighted new functions of chromatin dynamic in the regulation of genes with major significance for plant nutrition
Ciabrelli, Filippo. „Stable transgenerational inheritance of alternative chromatin states in Drosophila melanogaster“. Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT034.
Der volle Inhalt der QuelleTransgenerational epigenetic inheritance is a hotly debated phenomenon whereby a non-genetically determined phenotype can be transmitted to the next generation. So far, this mode of inheritance has been described in few cases and it was suggested that chromatin components might be involved, including Polycomb group proteins, which act as repressors of key developmental genes and coordinate cell differentiation and proliferation. The molecular mechanisms linking Polycomb-mediated silencing to transgenerational epigenetic inheritance are far from being understood. Therefore, I developed an experimental system in Drosophila melanogaster to induce stable transgenerational epigenetic inheritance, in which alternative gene expression states can be transmitted in the presence of the same DNA sequence. Starting from these highly stable “epilines”, I could dissect some of the genetic properties of the induced epialleles, such as their quantitative inheritance and their ability to trans-communicate. Moreover, the epialleles displayed synergy in their expression and transmission. One of the molecular signatures of the epialleles is the differential presence of the Polycomb repressive complexes and their related epigenetic marks. This different distribution is independent of the transcriptional activity of the downstream genes, at least in an early developmental stage, and could influence the three-dimensional organization of the locus involved. Intriguingly Ago2, an RNAi pathway component, has been found to genetically interact with the epialleles and to be directly bound on their chromatin, indicating a possible role for the ncRNAs in the expression of the epialleles and possibly in their transmission. These results make a case for strong and stable transgenerational epigenetic inheritance in metazoan and provide a model that is amenable for the molecular dissection of this phenomenon
Kirstein, Nina Danielle. „Chromatin-dependent pre-replication complex positioning and activation in mammals“. Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT005/document.
Der volle Inhalt der QuelleWith every cell division, the genome needs to be faithfully duplicated. Tens of thousands of DNA replication initiation sites (origins of replication) are involved in replicating the human genome. Origin activation is precisely regulated and extensive genome-wide studies found association of origin activation to several different genomic features. The pre-replication complex (pre RC) is the basis for replication initiation and consists of two major subcomponents: the origin recognition complex (ORC) binds DNA and is required for loading of the second component, Mcm2-7 helicases, which initiate DNA replication. Regulation of pre-RC assembly is well studied, however, chromatin features driving pre RC positioning on the human genome remain largely unknown. Genome-wide pre-RC chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) studies are rare and so far only performed for ORC. As Mcm2-7 can translocate from their initial loading site, information about Mcm2-7 positioning are required for full understanding of DNA replication regulation.This work presents the first genome-wide ChIP-seq analysis of the two major pre-RC subcomponents ORC and Mcm2-7 in the Epstein-Barr virus (EBV) infected Burkitt’s lymphoma cell line Raji. Successful ChIPs were validated on the EBV genome by comparing obtained pre RC positions with already existing pre-RC ChIP-on chip data. On the human genome, pre-RC sequencing results nicely correlated with zones of active replication. Interestingly, zones of replication termination were specifically depleted from pre-RC components, especially from Mcm2 7. Active DNA replication is known to correlate with active transcription. Indeed, strong pre-RC assembly preferentially occurred at sites of active transcriptional regulation, presumably determined by chromatin accessibility. Strong Mcm2-7 binding thereby fluctuated cell cycle-dependently, arguing for Mcm2-7 translocations during G1, possibly depending on the active transcriptional machinery. These results indicate ORC and Mcm2-7 positions being mainly dependent on chromatin accessibility in active chromatin, with Mcm2-7 being the major determinant of replication initiation. In heterochromatin, ORC was enriched at H4K20me3 sites, while Mcm2-7 enrichment was less prominent. Employing a plasmid-based replication system, ORC association to H4K20me3 was proven to promote successful pre-RC assembly and replication initiation, situating direct ORC-chromatin interactions being the major determinant for DNA replication regulation in heterochromatin. Taken together, this study proposes two different modes of pre-RC assembly regulation depending on chromatin environment
Barthes, Pauline. „Modifications de la chromatine associées à l'initiation de la recombinaison méiotique, chez la souris“. Thesis, Montpellier 1, 2010. http://www.theses.fr/2010MON1T007.
Der volle Inhalt der QuelleMeiosis is a specialized cell division to produce haploid gametes from a diploid cell. It segregates parental genomes by two successive divisions. The faithful segregation of homologous chromosomes is achieved during the first unique division via formation of crossovers (COs). COs establish physical connections between homologs by the reciprocal exchange of genetic material and require the formation and subsequent repair of SPO11-dependent DNA double-strand breaks (DSBs). Studies in many organisms revealed that COs are distributed in highly localized regions (1-2Kb) of genomes called recombination hotspots. The mechanisms of COs regulation are elusive and a main question in the field is to understand how the frequency and distribution of CO are regulated, because either absence or defects of recombination can lead to aneuploidy or reduced fertility. In the present study, for the very first time in mammals, we investigate whether recombination hotspots are associated with any chromatin modifications. We performed chromatin immunoprecipitation (ChIP) on spermatocytes isolated from different mice strains harbouring either active or inactive hotspots. Comparison of hot and cold spots revealed that a specific histone modification i.e. trimethylation of the lysine 4 of histone H3 (H3K4Me3) is enriched at two tested hotspots in mice. Temporal and functional analysis show that H3K4Me3 is not dependent on SPO11 and appears before DSBs formation. Furthermore, we demonstrate here that H3K4Me3 is methylated via the histone methyltransferase activity of PRDM9, recently identified as a major determinant of recombination hotspots in mammals. We propose a model that H3K4Me3 and other unknown chromatin features may specify recruitment of SPO11 initiation machinery to initiate meiotic recombination at the hotspots
Dai, Dingli. „Caractérisation des interactions physiques et fonctionnelles entre le facteur d’assemblage de la chromatine, CAF-1, et des facteurs de la recombinaison homologue au cours de la réparation de l’ADN“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS498/document.
Der volle Inhalt der QuelleDNA is constantly exposed to both endogenous and exogenous genotoxic insults. Multiple DNA repair mechanisms are exploited to guard the genome and epigenome stability. Homologous recombination (HR) plays a major role in repairing DNA double strand breaks (DSBs) and restarting stalled replication forks under replicative stress. These two processes are both coupled to chromatin assembly. Chromatin assembly factor 1 (CAF-1) is a highly conserved histone chaperone known to function in a network of nucleosome assembly coupled to DNA repair and replication, by depositing newly synthesized histone (H3-H4)2 tetramers onto the DNA. The fission yeast CAF-1 complex consists of three subunits Pcf1, Pcf2 and Pcf3. CAF-1 has been previously reported to act at the DNA synthesis step during the process of recombination-dependent replication (RDR) and protects the D-loop from disassembly by the RecQ helicase family member, Rqh1. In this study, we addressed the role of CAF-1 during homologous-recombination-mediated DNA repair in fission yeast.Using in vivo and in vitro approaches, we validated interactions within a complex containing Rqh1, CAF-1, PCNA, and Histone H3. We showed that Rqh1 interacts with both Pcf1 and Pcf2 independently of each other, and the Pcf1-Rqh1 interaction is stimulated by DNA damage. We developed an in vivo chromatin binding assay to monitor the association of CAF-1 to the chromatin upon DNA damage. We observed that replication stress but not double strand break favors CAF-1 association to the chromatin. We identified that several HR factors are required for CAF-1 association to the chromatin upon replication stress. In support of this, we have identified physical interactions between Pcf1 and HR factors, including RPA and Rad51. Our data suggest that CAF-1 would associate with the site of recombination-dependent DNA synthesis through physical interactions with HR factors. Put together, this work contributes to strengthening the role of CAF-1 coupled to DNA repair, and reveals the crosstalk between HR factors and chromatin assembly
Walter, Marius. „Transposon regulation upon dynamic loss of DNA methylation“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066672/document.
Der volle Inhalt der QuelleTransposons are DNA sequences that can duplicate autonomously in the genome, posing a threat for genome stability and integrity. To prevent their potentially harmful mobilization, eukaryotes have developed numerous mechanisms that control transposon expression, among which DNA methylation plays a particularly important role. In mammals, DNA methylation patterns are stable for life, at the exception of two key moments during embryonic development, gametogenesis and early embryogenesis. After a phase a global loss of genomic methylation accompanying the acquisition of pluripotent states, DNA methylation patterns are re- established de novo during differentiation. This work attempted to elucidate how the genome copes with the rapid loss of DNA methylation, in particular regarding the control of transposons in absence of this essential protective mark. Using an embryonic cellular model of induced methylation reprogramming, I showed that various chromatin-based mechanisms can compensate for the progressive loss of DNA methylation. In particular, my results suggest that the Polycomb machinery acquires a critical role in transposon silencing, providing a mechanistic relay specifically when DNA methylation patterns are erased. In a second phase, this work analyzed the contribution of the DNA methyltransferase cofactor DNMT3l during events of embryonic de novo methylation. Overall, these findings shed light onto the processes by which genome regulation adapts during DNA methylation reprogramming
Meyer, Sam. „Multiscale modeling of DNA, from double-helix to chromatin“. Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00756315.
Der volle Inhalt der QuelleGaucher, Jonathan. „Rôle de la protéine à double bromodomaine BRDT dans le remodelage de la chromatine au cours de la spermatogenèse“. Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENV088/document.
Der volle Inhalt der QuelleInvolvement of BRDT in chromatin reorganization during spermatogenesisDuring spermiogenesis, the haploid phase of male gametogenesis, the male genome undergoes a major chromatin reorganization, during which most histones are removed and replaced by transition proteins (TP) and protamines. This process led to the extreme compaction of the genome in the male sperm nucleus.In elongating spermatids, histones are hyperacetylated just before their eviction. We have hypothesized that acetylation of histones mass could be a signal for the removal of histones and recruitment of chromatin remodeling machinery. BRDT is a testis-specific protein, xhich belongs to the BET family, which has two bromodomains able to recognize acetylated histones and has the unique ability to compact hyperacetylated chromatin (Pivot-Pajot et al., 2003). The first of bromodomain BRDT appears crucial for these functions (Morinière et al., 2009). Mice carrying a deletion of the first bromodomaine BRDT, BD1, exhibit male sterility associated with abnormalities occurring during spermiogenesis (Shang et al, 2007). We were able to characterize the physiological function of the first bromodomaine BRDT and demonstrate its crucial role in the replacement of hyperacetylated histones by TP and protamines during spermiogenesis.To explore the potential functions of other domains of the BRDT protein, we have studied mice with invalidation of the Brdt gene. This loss of BRDT also produces male sterility, but the phenotype shows a complete lack of post-meiotic cells. A third mouse model was obtained following our attempt to produce mice with a version of taggued protein. The exploration of these models has demonstrated a role of BRDT, independent of the presence of BD1, in regulating the program of gene expression during entry into meiosis.BRDT has both functions in meiotic and post-meiotic meiotic with the involvement of different protein domains
Tardat, Mathieu. „Contrôles épigénétiques du cycle cellulaire : fonctions et régulation de la lysine méthyltransférase PR-Set7“. Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20102.
Der volle Inhalt der QuelleThe lysine methyltransferase PR-Set7 is responsible of the monomethylation of lysine 20 of histone H4 (H4K20me1). Its expression is cell-cycle regulated. With weak levels in S phase, this enzyme reach a peak level during mitosis. My PhD project was to characterize the functions of PR-Set7 and the reasons underlying its cell-cycle regulation. Presented as publications, my results show that PR-Set7 induces H4K20me1 on replication origins during mitosis, which allows recruitment of pre-replication complexes (Pre-RC) containing all the factors required to create replication forks during the next S phase. Indeed, the presence of PR-Set7 on a specific DNA sequence is sufficient to induce the co-recruitment of Pre-RC complex proteins, whereas the inactivation of this enzyme leads to defects in the assembly of these complexes followed by a replicative stress. During S phase, PR-Set7 is degraded par the Cul4-DDB1 complex through its association with PCN A. This degradation induces the disappearance of H4K20me1 on origins and inhibition of Pre-RC complexes, ensuring that origins are activated only once per cell cycle. Mutations in the interaction domain with PCNA are sufficient to prevent PR-Set7 degradation, leading to the maintenance of H4K20me1 and a multiple activation of origins during S phase (over-replication phenotype). My results establish PR-Set7 and H4K20me1 as a new epigenetic mechanism to control replication origins in mammals
Durut, Nathalie. „Etudes fonctionnelles des protéines nucléaires dupliquées chez Arabidopsis thaliana“. Thesis, Perpignan, 2014. http://www.theses.fr/2014PERP1208/document.
Der volle Inhalt der QuelleIn eukaryotes, 45S rRNA genes are highly repeated and localize in chromosomal regions known as NOR for “Nucleolus Organizer Regions”. However, only a small proportion of these genes is transcriptionally active and their activation and/or repression depends on epigenetic mechanisms. One of the factors involved in rDNA expression is nucleolin, a major nucleolar protein. In A. thaliana, nucleolin protein NUC1 is required to maintain rDNA methylation and control expression of specific rDNA variants. Interestingly, in contrast to animals and yeast, plants encode a second nucleolin gene: NUC2. Here, we show that NUC1 and NUC2 genes are both required for plant survival. Analysis of nuc2 mutant plants reveals that NUC2 protein is required for rDNA organization and expression but with mechanisms antagonistic to those described for its homologue NUC1. In fact, loss of NUC2 induces rDNA hypermethylation and a spatial reorganization of rRNA genes with changes in copy numbers of rDNA variants. Moreover, NUC1 protein binds transcriptionally active rRNA genes while NUC2 protein associates with condensed chromatin in the periphery of the nucleolus. Furthermore, we show that rRNA gene expression is affected in response to heat shock and that the NUC2 gene is strongly induced. Altogether, our results suggest a potential role of NUC2 protein in rDNA repression during development and/or in response to stress
Taty, Taty Gemael Cedrick. „Rôle des modifications de la chromatine dans la réparation des cassures double-brin de l'ADN et la stabilité génétique“. Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30190/document.
Der volle Inhalt der QuelleThe human genome is constantly targeted by DNA damaging agents. These damages are many and varied, such as single and double strand breaks (DSBs). The DSB are highly toxic lesions whose origin can be multiple. Mammalian cells mainly use two DNA repair pathways to repair DSB, homologous recombination (RH), which is dependent on the presence of the intact homologous copy (the sister chromatid) and on the cell cycle stage and the non-homologous end joining (NHEJ) pathway, which is cell cycle independent and performs direct ligation of the two DNA ends. The repair of DNA damage takes place in a chromatin context that needs to be remodeled to give access to damaged sites. During my work, I studied the chromatin remodeler p400 and the histone variant H2A.Z both involved in chromatin remodeling, to understand their role in DSB repair and genome stability. p400, an ATPase of the SWI2/SNF2 family is involved in the incorporation of H2A.Z in chromatin. I have shown that H2A.Z depletion in the osteosarcoma cell line U2OS and in immortalized human fibroblasts did not alter DSB repair. These results are correlated with the lack of H2A.Z recruitment at DSB observed after local laser irradiation or Chromatin Immunoprecipitation. However, H2A.Z depletion affects cell proliferation and the cell cycle distribution. In addition, I have shown that the chromatin remodeler p400 is a brake to the use of alternative End Joining (alt-EJ) which is a highly mutagenic repair process. The increase in alt-EJ events observed in p400-depleted cells is dependent on CtIP- mediated resection of DNA ends. Moreover, p400 depletion leads to the recruitment of poly(ADP) ribose polymerase (PARP) and DNA ligase 3 at DSB, leading to selective cell killing by PARP inhibitors. Altogether these results show that p400 acts as a brake to prevent alt-EJ dependent genetic instability and underline its potential value as a clinical marker
Clemot, Marie. „Role of CAF-1 in the establishment and maintenance of cellular identity during development in Drosophila“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066149.
Der volle Inhalt der QuelleThe organization of DNA into chromatin is dynamic and plays important roles in the establishment and the maintenance of cellular identity. By virtue of its central role in replication-coupled chromatin assembly, the histone chaperone CAF-1 constitutes an interesting candidate in a search for molecular players involved in the inheritance of chromatin states in mitotic cells. In Drosophila, dCAF-1 is essential for viability at the larval stage. Yet, the genetic tools available in the fruit fly allow to analyze the function of dCAF-1 in specific tissues. Mainly, my thesis work shows that the large subunit of dCAF-1 (P180) is essential for oogenesis. I have shown that the early arrest of oogenesis observed upon depletion of P180 in germ cells results from the activation of checkpoints pathways and cell death, possibly in response to the accumulation of single-strand DNA as a consequence of replication defects. Strikingly, P180 plays an essential role in the female germline stem cells (GSCs), which upon depletion of P180 enter an “identity crisis” and harbor features of differentiating cyst cells, including incomplete abscission, while maintaining at the same time some GSCs features. In contrast, the loss of P180 does not seem to alter the identity of larval neuroblasts, another population of stem cells, which continue to divide in an asymmetric fashion in its absence. Finally, the cells of the imaginal discs, which divide symmetrically, are able to proliferate upon loss of P180, albeit at a slower rate. Further analyses are required to determine whether alternative chromatin assembly pathways compensate for the loss of dCAF-1 activity in these cells
Biedzinski, Stéphane. „Interplay between the nucleus and the microtubules : role in the regulation of chromatin organization in hematopoietic stem cells“. Thesis, Sorbonne Paris Cité, 2018. https://theses.md.univ-paris-diderot.fr/BIEDZINSKI_Stephane_2_complete_20181116.pdf.
Der volle Inhalt der QuelleHematopoietic stem cells are characterized, like every stem cells, by their self-renewal and differentiation ability so they can sustain mature blood cells populations. How stem cells engage in one or the other path is poorly understood but increasing number of evidence in different stem cell types highlight the importance of mechanical signal integration. Physical cues form the environment can be transduced to the nucleus via the cytoskeleton, to impact chromatin organization and therefore gene expression: this process is called mechanotransduction. Many studies bring light to the importance of the actin cytoskeleton in adherent cells in this process but very little is known about the contribution of microtubules in this process. Moreover, even less is known about mechanotransduction in non adherent cells, in which actin organization is likely to have smaller impact than in adherent cells. The present work show that microtubules can impact nuclear shape and chromatin organization in a system of non-adherent stem cells, the hematopoietic stem cells (HSCs)
Bonnell, Erin. „The role of Tbf1 in telomere homeostasis in Saccharomyces cerevisiae“. Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11077.
Der volle Inhalt der QuelleEn différenciant les extrémités chromosomiques des cassures d’ADN internes, les télomères empêchent l'activation de la signalisation d’un dommage à l'ADN et fournissent une protection contre des activités inappropriées qui sont associées à une réparation de l'ADN. Une telle réparation pourrait en fait créer une instabilité génomique. Chez Saccharomyces cerevisiae, un nombre de protéines sont impliquées dans la structure du télomère et / ou la fonction de la élomérase. On pense que la protection des télomères est gérée par les répétitions télomériques et les protéines associées, mais il y a de plus en plus d’indices que la région sous-télomérique joue également un rôle. Cette région contient des sites de liaison pour plusieures protéines, notamment pour Tbf1. TBF1 est un gène essentiel et la protéine est impliquée dans l'homéostasie des télomères et dans la réponse aux dommages de l’ADN. Toutefois, les mécanismes moléculaires restent à être précisés. Mon projet de Maîtrise est basé sur l’observation que dans les cellules qui ont un allèle thermosensible (tbf1-ts), les télomères sont anormalement courts. Malheureusement, les 4 allèles mutants de tbf1 connus présentent tous des mutations ponctuelles multiples ce qui rend leur analyse difficile. Pour clarifier l'origine des variations phénotypiques de ces mutations, la mutagenèse dirigée a été utilisée pour créer des allèles tbf1 avec une seule mutation. Mes résultats montrent que deux mutations spécifiques, tbf1-82 et tbf1-453, causent des défauts de croissance cellulaires, ainsi qu'une sensibilité aux drogues qui endommageant l'ADN. Une analyse détaillée de ces nouveaux allèles de tbf1 a montré que la protéine pourrait avoir un rôle direct dans le maintien de la stabilité des télomères. Par exemple, en absence de la télomérase qui est responsable du maintien des télomères, les cellules entrent en sénescence réplicative après environ 60 générations et arrêtent de se diviser. Par contre, une petite fraction de la population est capable de contourner cet arrêt de croissance car ces cellules maintiennent les télomères par un processus dépendant de la recombinaison homologue. L'introduction de mutations tbf1 dans des souches sans télomérase provoque une accélération d’entrée en sénescence; donc Tbf1 est un régulateur précédemment inconnu de la sénescence. Divers tests génétiques avec des gènes de recombinaison homologue et des régulateurs de chromatine ont été effectués pour aider à caractériser TBF1 et ses interactions. La caractérisation de ces nouveaux allèles a permis de mieux comprendre les multiples rôles de Tbf1.
Yung, Yuk Kwong. „Histone H3 Serine 28 is essential for efficient Polycomb-mediated gene repression in Drosophila“. Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTT001/document.
Der volle Inhalt der QuellePolycomb group (PcG) proteins maintain repression on key developmental genes to preserve cell fates. It is unknown on how PcG-mediated repressive chromatin is inherited across cell cycles. This project aims to study the chromatin-binding profile of PcG proteins and their cognate histone mark (H3K27me3) in mitosis. We observed that Polycomb (Pc) were dissociated from chromosomes during mitosis and reassociation begins from late anaphase onwards. In contrary, Ph, PSC and high level of H3K27me3 were detected on mitotic chromosomes. Importantly, drug-inhibition of Aurora B and hence depletion of H3S28ph retained Pc on mitotic chromosomes. To further understand how mitotic H3S28ph affects PcG proteins binding profile, a FACS-sorting protocol was optimized to isolate mitotic cells for ChIP-seq analyses. In parallel, Drosophila model of histone mutants (H3K27R and H3S28A) were established to assess the importance of these modifications on PcG-mediated epigenetics inheritance across mitoses
Delamarre, Axel. „Etude des rôles et du mécanisme de chargement des complexes SMC dans la réponse au stress réplicatif chez S.cerevisiae“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT040/document.
Der volle Inhalt der QuelleThe three SMC complexes Cohesin, Condensin and SMC5/6 are mainly studied for their role in mitosis, nevertheless they all localize at replication forks in replicative stress conditions. During this thesis, we focused on Cohesin and Condensin. In the first part we describe a new role for the condensin complex in response to replicative stress. In the presence of Hydroxyurea (HU) and Methyl-Methan-Sulfonate (MMS), condensin is required for cell growth and replication fork progression. Moreover, our results show that condensin limits the accumulation of the specific single-strand DNA (ssDNA) binding protein RPA (Replication Protein A) in the vicinity of replication forks under HU treatment, revealing that condensin limits ssDNA accumulation during replicative stress. In this way, Condensin could protect replication fork integrity and genome stability in response to replicative stress. In the second part, we decipher the cohesin recruitment mechanisms at replication fork under replicative stress. In that context, cohesin reinforces sister chromatid cohesion and facilitates homologous recombination (HR) dependent replication fork restart pathways. We show here that the SMC-like MRX complex, the histone methyl transferase Set1 and the histone acetyl transferase Gcn5 are required for cohesin recruitment at stalled replication forks. Our results show that these three proteins affect histone H3 dynamics on replicated DNA in response to replicative stress. Gcn5 and MRX reduce H3 density whereas Set1 maintains nucleosome mobility. These two parameters seem to be important for efficient response to replicative stress and for SMC complexes loading close to stressed replication forks
Barral, Sophie. „L'organisation post-méiotique de l'épigénome mâle“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV058/document.
Der volle Inhalt der QuelleSpermatogenesis, the process of producing male gametes, represents a relevant physiological model for the study of chromatin dynamics. Indeed, a drastic reorganization of the genome is observed at the end of spermatogenesis, during post-meiotic stages of the development of the male germ cells. These reorganizations are intended both to compact the genome to protect it before and during fertilization and to establish a specific male epigenome necessary for early embryonic development. In spermatozoa, during these post-meiotic stages, chromatin is completely reorganized so that the protamines replace the histones. This reorganization is initiated by a wave of genome-wide histone acetylation, followed by massive replacement of histones by small basic proteins, transition proteins and protamines. The molecular mechanisms responsible for this reorganization of the genome remain very poorly known today. My thesis aims to explore these mechanisms by using gene inactivation in mouse of epigenetic actors specifically expressed in post-meiotic germ cells : the nuclear factor Nut (Nuclear protein in Testis) and the histone H2A variant, H2A.L.2. We have demonstrated that the Nut protein interacts and stimulates the p300 acetyltransferase activity and induces the hyperacetylation of histone H4 precisely on the lysine residues at 5 and 8 positions. This acetylation is necessary for the interaction with the first bromodomain of Brdt initiating the process of histone replacement by protamines. Thus, the Nut factor is the main element of the histone acetylation wave. We have also deciphered the crucial role of H2A.L.2 in the “opening ” of nucleosomal structures in post-meiotic germ cells thus allowing its invasion by the transition proteins. These transition proteins will in turn generate a platform for the recruitment and maturation of protamines and induce the formation of transient structures before the final compaction of the mature sperm genome. These studies allowed us to establish for the first time a coherent molecular model for understanding the post-meiotic epigenetic programming of the male genome and its impact on male fertility
Izard, Fanny. „Étude du rôle des méthyltransférases de la Lysine 20 de l’Histone H4 dans la dynamique de la chromatine au cours du cycle cellulaire“. Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT136/document.
Der volle Inhalt der QuelleIn eukaryotic cells, the organization of DNA into chromatin not only ensures its compaction into nucleus, but also serves as a dynamic structure that offers a range of possibilities for regulating DNA transactions, such as transcription, DNA replication and repair. The basic unit of chromatin is the nucleosome, which is constituted of 147 bp of DNA wrapped with an octamer composed of histone proteins. This nucleosome structure is versatile showing distinct variations, including post-translational modifications of histone proteins. Histone modifications contribute to the regulation of genome functions by altering directly the nucleosome structure or through the recruitment of specific chromatin-binding proteins. In this regard, the lysine 20 of histone H4 (H4K20) can be modified to generate three different methylation states: mono- (me1), di- (me2), and trimethylation (me3), with a unique activity being coupled to the specific extent of methylation on this lysine residue. PR-Set7 (also known as SET8 or SETD8) is the sole enzyme that catalyzes H4K20me1, whereas H4K20me2 and H4K20me3 occur through the action of Suv4-20h, which requires PR-Set7-induced H4K20me1 as a substrate. These enzymes are essential since knockout studies have shown that both PR-Set7 and Suv4-20h are required for mouse development and their loss causes DNA damage and cell cycle defects. However, the functions of different H4K20 methylation states and the associated enzymes still remain poorly understood.The work carried out during this thesis reveals that the concerted activity of PR-Set7 and Suv4-20h is required for the timely control of (i) heterochromatin assembly on nascent DNA and (ii) the licensing of a critical subset of late-firing origins necessary for the replication of heterochromatin regions in the following cell cycle. Both functions depend on the conversion of H4K20me1 to H4K20me3 and the specific recruitment of the H4K20me-binding protein LRWD1/ORCA. Accordingly, siRNA-mediated PR-Set7 depletion triggers a defective interphase chromatin compaction in cells that exit of mitosis, which in turn favor a non-specific chromatin loading of ORC and MCMs subunits of pre-replication complexes. Finally and consistent with a key role of H4K20 methylation in heterochromatin formation and replication, my thesis work contributes to reveal that up-regulation of PR-Set7 is a poor prognosis factor in multiple myeloma and that its inhibition by specific chemical compounds might be a great interest for cancer treatment in near future
Mauro, Eric. „Etude fonctionnelle de l'interaction entre l'intasome du VIH-1 et le nucléosome : la queue d'histone H4 comme nouveau partenaire de l'intégration“. Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0273/document.
Der volle Inhalt der QuelleHIV-1 integrase (IN) catalyzes the insertion of the viral genome into the host cell chromatin. This step is crucial for the virus for its efficient replication, integration is thus of interest to target for antiviral strategies. Understanding the mechanisms involved in integration is important in order to develop efficient tools to fight the virus.Retroviral integration is catalyzed by the intasome, an oligomer of IN and viral DNA. Intasomes integrate onto nucleosomes, composed of DNA wrapped around histone proteins, over naked DNA.In this thesis project, we have identified a new host-pathogen interaction between HIV-1 IN and the H4 histone tail. The topic of the project was then focus on this interaction and has highlighted:• The importance of the HIV-1 IN – H4 histone tail interaction for the viral cycle, especially onto the integration step, validating a new host-pathogen interaction.• The identification of the H4 histone tail as an essential partner for HIV-1 intasome for its anchoring onto nucleosomes.• The development of a novel antiviral strategy aiming to block this interaction in infected cells using chemical compounds
Mahé, Elise. „Dynamique chromatinienne lors de l'activation des enhancers au cours de la différenciation cellulaire“. Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1B056/document.
Der volle Inhalt der QuelleCell differentiation relies on a coordinated and finely regulated transcriptional regulation involving the recruitment of cell-type transcription factors (TFs) on genomic regions called enhancers. Some of these TFs, named pioneer factors (PFs), are able to bind to condensed chromatin and favour enhancer transition from an inactive to a primed state, thus facilitating the binding of other TFs and enhancer activation. Therefore, lineage commitment is associated to the engagement of PFs at enhancers where the chromatin structure undergoes architectural modifications related to the set up of specific marks. These include, the monomethylation of the lysine 4 of the histone H3 (H3K4me1), the acetylation of the lysine 27 of the histone H3 (H3K27ac) or cytosine modifications (5-methylcytosine, 5mC; 5-hydroxymethylcytosine, 5hmC). The 5hmC base is an intermediate in the process of active demethylation coming from the oxidation of the 5mC by the Ten Elven Translocation (TET) enzymes and can itself be further oxidized in 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), two bases which are then replaced by cytosines through the Base Excision Repair mechanism. Nevertheless, due to its stability and its ability to bind some specific proteins, 5hmC might also play specific roles. Previous works already highlighted a link between the recruitment of PFs and cytosine modifications. However, the involvement of the methylation/demethylation processes in the spatio-temporal regulation of the priming and activation of enhancers has not yet been characterized. In this context, the aim of this study was to define the role of cytosine modifications (5mC and 5hmC) during the activation of enhancers bound by PFs. For this, we analyzed the implication of cytosine methylation and demethylation processes on enhancer priming and activation by using DNA methyltransferases or TET inhibitors. In addition, we identified the dynamics of enhancer priming and activation genome-wide during neural differentiation, in relation to the presence of 5hmC. The results allow us to propose a scheme of enhancer activation in which DNA methylation/demethylation dynamics play an essential role in the chromatin structure of these regulatory elements
Del, Prete Stefania. „Characterisation of transcriptional and chromatin events in relation to floral transition and identification of nuclear organisation determinants“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS022.
Der volle Inhalt der QuelleThe transition to flowering results from a complex interplay between endogenous and environmental cues. The leaves play a key role in this process, by perceiving the light changes and producing photosynthates, which participate to the floral signalling. However, our knowledge on the changes occurring in leaves during floral transition is still limited. We characterised the morphological, molecular and transcriptional events related to floral transition in mature leaves in Arabidopsis, using a short-day to long-day shift to induce a synchronized flowering. We identified the temporal window of the floral transition, monitored the leaf growth and observed an increase in their ploidy level during the process. By RNA-seq we studied the transcriptional dynamics of the leaf gene network, and compared with events occurring in roots and meristems to get an integrated view of floral transition in the whole plant. Furthermore, we investigated the mode of action of LIKE HETEROPROTEIN 1 (LHP1), a PRC1 subunit, by exploiting transgenic lines with conditional alterations of LHP1 dosage and analysing the effects on chromatin and transcription of flowering genes. A short-term modulation of LHP1 dosage altered the deposition of H3K27me3 and H3K4me3, showing a functional interaction between LHP1 and PRC2, and also suggesting a new role in the formation of bivalent chromatin regions. Finally, since nuclear organisation plays a key role in gene regulation, we searched and identified determinants of the nuclear architecture by using innovative spatial statistical tools
Walter, Marius. „Transposon regulation upon dynamic loss of DNA methylation“. Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066672.
Der volle Inhalt der QuelleTransposons are DNA sequences that can duplicate autonomously in the genome, posing a threat for genome stability and integrity. To prevent their potentially harmful mobilization, eukaryotes have developed numerous mechanisms that control transposon expression, among which DNA methylation plays a particularly important role. In mammals, DNA methylation patterns are stable for life, at the exception of two key moments during embryonic development, gametogenesis and early embryogenesis. After a phase a global loss of genomic methylation accompanying the acquisition of pluripotent states, DNA methylation patterns are re- established de novo during differentiation. This work attempted to elucidate how the genome copes with the rapid loss of DNA methylation, in particular regarding the control of transposons in absence of this essential protective mark. Using an embryonic cellular model of induced methylation reprogramming, I showed that various chromatin-based mechanisms can compensate for the progressive loss of DNA methylation. In particular, my results suggest that the Polycomb machinery acquires a critical role in transposon silencing, providing a mechanistic relay specifically when DNA methylation patterns are erased. In a second phase, this work analyzed the contribution of the DNA methyltransferase cofactor DNMT3l during events of embryonic de novo methylation. Overall, these findings shed light onto the processes by which genome regulation adapts during DNA methylation reprogramming
González, Morao Ana Karina. „Rôle des complexes PRC2 dans la régulation de la différenciation cellulaire chez Arabidopsis thaliana“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS153.
Der volle Inhalt der QuelleThe Polycomb group (PcG) proteins were originally identified in Drosophila as factors required for maintaining the spatio-temporal expression of homeotic genes along the head-to-tail axis. Since then, their role as developmental regulators has been highlighted in most metazoans as well as plants, in which they orchestrate developmental transitions, organogenesis and cell differentiation. PcG proteins are required to maintain the transcriptional repression of target genes by regulating their chromatin structure via post-translational histone modifications. They are found in multiprotein complexes, including Polycomb Repressive Complexes PRC1 and PRC2. PRC2 is responsible for the trimethylation of histone H3 at lysine 27 (H3K27me3) and consists of four core subunits, most of which are represented by multigene families in Arabidopsis thaliana. Thus, distinct PRC2 complexes formed by alternative subunit combinations exist, possibly in the same cell, and are thought to play partly overlapping roles. By combining molecular, genetic and genomic approaches, we have analyzed the role of the PRC2 subunits expressed in the Arabidopsis root tip used as a model. We show that the interplay between distinct PRC2s is necessary to regulate the activity of the meristem and the timing of cell differentiation, as well as the maintenance of cell identity. In addition, our work reveals that PRC2 complexes containing either of the two related methyltransferases CLF or SWN regulate common as well as specific sets of genes through distinct mechanisms, including a non-canonical function. Furthermore, our results indicate that the functional differences between CLF-PRC2 and SWN-PRC2 rely, at least in part, on the non-catalytic subunit they are interacting with. To identify the genes dynamically regulated by PRC2 during cell differentiation, we have developed cell type-specific approaches to analyze chromatin marks in cell populations within the stem cell niche and the maturation zone of the root. Our data suggest that PRC2 participates in the maintenance of the quiescent center (QC) identity by repressing specific signaling pathways. In addition, cell differentiation towards the maturation zone is accompanied by an increase of the repertoire of PRC2 targets including stem cell and meristem regulators, as well as cell type-specific genes. Finally, our findings suggest that bivalent H3K27me3-H3K4me3 domains in the QC represent a significant, though smaller proportion of PRC2 targets in plant stem cells compared to what has been described in mammalian embryonic stem cells. Overall, this work provides an integrated view of the function, dynamics and multiplicity of PRC2 activity during the cell differentiation process, in the context of a developing organ. Our results highlight the role of PRC2s as major regulators of cell differentiation that provide both robustness and plasticity to the transcriptional programs underlying cell fate acquisition and identity maintenance
Tarhini, Batoul. „Oriented paths in digraphs and the S-packing coloring of subcubic graph“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCK079.
Der volle Inhalt der QuelleThis PhD thesis is divided into two principal parts: Part I delves into the existenceof oriented paths in digraphs, aiming to establish a connection between a digraph'schromatic number and the existence of specific oriented paths within it as subdigraphs. Digraphs contained in any n-chromatic digraph are called n-universal. We consider two conjectures: Burr's conjecture, which states that every oriented tree of order n is (2n-2)-universal, and El Sahili's conjeture which states that every oriented path of order n is n-universal. For oriented paths in general, the best bound is given by Burr, that is every oriented path of order n is (n − 1)^2-universal. Our objective is to study the existence of an integer k such that any digraph with a chromatic number k, contains a copy of a given oriented path with three blocks as its subdigraph. To achieve our goals, we rely significantly on fundamental concepts, including, induction on the order of a given digraph, final forests, leveling techniques, and strategic digraph decomposition methods. A path P (k1, k2, k3) is an oriented path consisting of k1 forward arcs, followed by k2 backward arcs, and then by k3 forward arcs. For the path P(k,1,l), we have confirmed El Sahili's conjecture in Hamiltonian digraphs. More clearly, we have established the existence of any path P (k, 1, l) of order n in any n-chromatic Hamiltonian digraph. And depending on this result concerning Hamiltonian digraphs, we proved the correctness of El Sahili's conjecture on a more general class of digraphs which is digraphs containing a Hamiltonian directed path. We introduce a new technique which is represented by a decomposition of the digraph into subdigraphs defined by a series of successive operations applied to the digraph relying on the famous theorem of Roy which establishes the existence of a directed path of order n in any n-chromatic digraph. This technique has proven to be instrumental in establishing new linear bounds for the chromatic number of digraphs that lack an oriented path with three blocks. In deed, using this technique, we proved that the path P(k,1,l) satisfies Burr's conjecture.Moreover, for any path with three blocks, P(k,l,r) we establish a linear bound for the chromatic number which improves all the previously reached bounds. In Part II we study the problem of S-packing coloring in graphs. Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an S-packing coloring of a graph G is a partition of the vertex set of G into k subsets{V1, V2, . . . , Vk} such that for each 1 ≤ i ≤ k, the distance between any two dis-tinct vertices u and v in Vi is at least si + 1. Our focus is centered on an intriguing conjecture proposed by Brešar et al., which states that packing chromatic number of the subdivision of any subcubic graph is at most 5. Our desired aim is to provide a confirmation of this conjecture for specific classes of subcubic graphs, and to address the unresolved issues raised within this subject matter. An observation for Gastineau and Togni states that if a graph G is (1, 1, 2, 2)-packing colorable, then the chromatic number of its subdivision graph S(G) is at most 5, and hence it satisfies the conjecture. Depending on this observation, and in order to prove the correctness of the conjecture for the class of cubic Halin graphs, we studied its S-packing coloring aiming to prove that it admits a (1, 1, 2, 2)- packing coloring. We proved that a cubic Halin graph is (1, 1, 2, 3)-packing colorable, then it is (1, 1, 2, 2)-packing colorable, and so we confirm the conjecture for this class. Moreover, Gastineau and Togni, after proving that every subcubic graph is (1, 2, 2, 2, 2, 2, 2)-packing colorbale, have posed an open problem on whether every subcubic graph is (1, 2, 2, 2, 2, 2)-packing colorable. We answer this question in affirmative in the particular class we worked on; we proved that cubic Halin graphs are (1, 2, 2, 2, 2, 2)-packing colorable
Jiao, Yue. „Rôle de l'intéraction Asf1-Rad53 dans la stabilité génomique chez S.cerevisiae“. Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112105/document.
Der volle Inhalt der QuelleAsf1 is a histone chaperone, which participates in the assembly and disassembly of histones H3/H4 on DNA. Asf1 is not essential for cell viability in yeast, but the DNA damage checkpoints are constitutively activated in cells lacking Asf1 and they are hypersensitive to several types of genotoxic stress. In yeast, Asf1 forms a stable complex with Rad53 in the absence of genotoxic stress. Our results suggest that this complex involves at Ieast three interaction surfaces. One site involves the H3-binding surface of Asf1 with an as yet undefined surface of Rad53, probably reside in the kinase domain of Rad53. A second site is formed by the Rad53-FHA1 domain binding to Asf1-T270. The third site involves the C-terminal 21 aa of Rad53 bound to the conserved Asf1 N-terminal domain, where Rad53 competes with histone H3/H4 and co-chaperones HirA/CAF-1 for binding to the same surface of Asf1. Rad53 is phosphorylated and activated upon genotoxic stress. The Asf1-Rad53 complex dissociated when cells were treated with hydroxyurea but not methyl methane sulfonate, suggesting a regulation of the complex as a function of the stress.In addition to these results, we also found that the rad53-A806R+L808R mutation at the C-terminus of Rad53 destabilized the Asf1-Rad53 interaction and increased the viability of rad9 and rad24 mutants to genotoxic stress. The rad53-ALRR mutant also appeared to re-enter the cell cycle and/or traverse S-phase more rapidly than wild type and increased repair or adaptation when combined with the rad24 mutant
Tisseur, Mathieu. „Rôle de Hda1 dans la régulation de l'expression gènes par les longs ARN“. Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112100/document.
Der volle Inhalt der QuelleNcRNAs are involved in gene regulation in Prokaryotes, Eukaryotes and Archaea. This regulation could be transcriptional or post-transcriptional. Histone modifications could be involved such as methylation or acetylation. I studied TIR1 gene whose expression is highly reduced when an antisense ncRNA called TIR1axut is stabilized. I showed that this regulation is Hda1-dependant. In addition to that, I showed that H3K14ac and H3K18ac are not directly responsible for TIR1 repression but a polar residue is required for a proper silencing of TIR1 in a XUT depending manner. Moreover, I showed that TIR1 repression is due to a post-transcriptional effect but does not affect mRNA stability. Finally, I tried in vain to understand Hda1 targeting on TIR1 searching for RNA/DNA hybrids using an antibody that recognizes such structures