Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Choquet pricing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Choquet pricing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Choquet pricing"
Chen, Zengjing, und Reg Kulperger. „Minimax pricing and Choquet pricing“. Insurance: Mathematics and Economics 38, Nr. 3 (Juni 2006): 518–28. http://dx.doi.org/10.1016/j.insmatheco.2005.11.010.
Der volle Inhalt der QuelleDe Waegenaere, Anja, Robert Kast und Andre Lapied. „Choquet pricing and equilibrium“. Insurance: Mathematics and Economics 32, Nr. 3 (Juli 2003): 359–70. http://dx.doi.org/10.1016/s0167-6687(03)00116-1.
Der volle Inhalt der QuelleCastagnoli, Erio, Fabio Maccheroni und Massimo Marinacci. „CHOQUET INSURANCE PRICING: A CAVEAT“. Mathematical Finance 14, Nr. 3 (Juli 2004): 481–85. http://dx.doi.org/10.1111/j.0960-1627.2004.00201.x.
Der volle Inhalt der QuelleChateauneuf, A., R. Kast und A. Lapied. „CHOQUET PRICING FOR FINANCIAL MARKETS WITH FRICTIONS“. Mathematical Finance 6, Nr. 3 (Juli 1996): 323–30. http://dx.doi.org/10.1111/j.1467-9965.1996.tb00119.x.
Der volle Inhalt der QuelleJang, Lee-Chae. „Interval-valued Choquet integrals and applications in pricing risks“. Journal of Korean Institute of Intelligent Systems 17, Nr. 4 (25.08.2007): 451–54. http://dx.doi.org/10.5391/jkiis.2007.17.4.451.
Der volle Inhalt der QuelleMuzzioli, Silvia, und Costanza Torricelli. „Implied trees in illiquid markets: A Choquet pricing approach“. International Journal of Intelligent Systems 17, Nr. 6 (25.04.2002): 577–94. http://dx.doi.org/10.1002/int.10039.
Der volle Inhalt der QuelleDriouchi, Tarik, Lenos Trigeorgis und Yongling Gao. „Choquet-based European option pricing with stochastic (and fixed) strikes“. OR Spectrum 37, Nr. 3 (10.10.2014): 787–802. http://dx.doi.org/10.1007/s00291-014-0378-3.
Der volle Inhalt der QuelleWójcik, Sebastian. „Quasi-Arithmetic Type Mean Generated by the Generalized Choquet Integral“. Symmetry 12, Nr. 12 (17.12.2020): 2104. http://dx.doi.org/10.3390/sym12122104.
Der volle Inhalt der QuelleBastianello, Lorenzo, Alain Chateauneuf und Bernard Cornet. „Put–Call Parities, absence of arbitrage opportunities, and nonlinear pricing rules“. Mathematical Finance, 23.03.2024. http://dx.doi.org/10.1111/mafi.12433.
Der volle Inhalt der QuelleChateauneuf, Alain, und Bernard Cornet. „The risk-neutral non-additive probability with market frictions“. Economic Theory Bulletin, 15.03.2022. http://dx.doi.org/10.1007/s40505-022-00216-4.
Der volle Inhalt der QuelleDissertationen zum Thema "Choquet pricing"
Lacaussade, Charles-Thierry. „Evaluation d'actifs financiers et frictions de marché“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD021.
Der volle Inhalt der QuelleThis thesis aims to provide innovative theoretical and empirical methods for valuing securities to economics researchers, market makers, and participants, including brokers, dealers, asset managers, and regulators. We propose an extension of the Fundamental Theorem of Asset Pricing (FTAP) tailored to markets with financial frictions. Hence, our asset pricing methodologies allow for more tractable bid and ask prices, as observed in the financial market. This thesis provides both theoretical models and an empirical application of the pricing rule with bid-ask spreads.In our first chapter, we introduce two straightforward closed-form pricing expressions for securities in two-date markets, encompassing a variety of frictions (transaction cost, taxes, commission fees). This result relies on a novel absence of arbitrage condition tailored to the market with frictions considering potential buy and sell strategies. Furthermore, these asset pricing models both rely on non-additive probability measures. The first is a Choquet pricing rule, for which we offer a particular case adapted for calibration, and the second is a Multiple Priors pricing rule.In the second chapter, as a step toward generalizing our asset pricing models, we provide the necessary and sufficient conditions for multi-period pricing rules characterized by bid-ask spreads. We extend the multi-period version of the Fundamental Theorem of Asset Pricing by assuming the existence of market frictions. We show that it is possible to model a dynamic multi-period pricing problem with a one-stage pricing problem when the filtration is frictionless, which is equivalent to assuming the martingale property, which is equivalent to assuming price consistency.Finally, in the third chapter, we give the axiomatization of a particular class of Choquet pricing rule, namely Rank-Dependent pricing rules assuming the absence of arbitrage and put-call parity. Rank-dependent pricing rules have the appealing feature of being easily calibrated because the non-additive probability measure takes the form of a distorted objective probability. Therefore, we offer an empirical study of these Rank-Dependent pricing rules through a parametric calibration on market data to explore the impact of market frictions on prices. We also study the empirical validity of the put-call parity. Furthermore, we investigate the impact of time to expiration (time value) and moneyness (intrinsic value) on the shape of the distortion function. The resulting rank-dependent pricing rules always exhibit a greater accuracy than the benchmark (FTAP). Finally, we relate the market frictions to the market's risk aversion
Konferenzberichte zum Thema "Choquet pricing"
Liyan Han und Juan Zhou. „European option pricing and hedges under heterogeneity with λ-fuzzy measures and choquet intergral“. In 2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2008. http://dx.doi.org/10.1109/fuzzy.2008.4630445.
Der volle Inhalt der Quelle