Auswahl der wissenschaftlichen Literatur zum Thema „Chemical Sciences“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chemical Sciences" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Chemical Sciences"

1

Cekovic, Zivorad. „Challenges for chemical sciences in the 21st century“. Chemical Industry 58, Nr. 4 (2004): 151–57. http://dx.doi.org/10.2298/hemind0404151c.

Der volle Inhalt der Quelle
Annotation:
Chemistry and chemical engineering have changed very significantly in the last half century. From classical sciences they have broadened their scope into biology, medicine, physics, material science, nanotechnology, computation and advanced methods of process engineering and control. The applications of chemical compounds, materials and knowledge have also dramatically increased. The development of chemical sciences in the scientifically most advanced countries, at the end of the last century was extrapolated to the next several decades in this review and challenges for chemists and chemical engineers are described. Research, discovery and invention across the entire spectrum of activities in the chemical sciences, from fundamental molecular-level chemistry to large-scale chemical processing technology are summarized. The strong integration of chemical science and engineering into all other natural sciences, agriculture, environmental science, medicine, as well as into physics, material science and information technology is discussed. Some challenges for chemists and chemical engineers are reviewed in the following fields: i) synthesis and manufacturing of chemical products, ii) chemistry for medicine and biology, iii) new materials, iv) chemical and physical transformations of materials, v) chemistry in the solving of energy problems (generation and savings), vi) environmental chemistry: fundamental and practical challenges.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fenner, Kathrin, und Paul G. Tratnyek. „QSARs and computational chemistry methods in environmental chemical sciences“. Environmental Science: Processes & Impacts 19, Nr. 3 (2017): 185–87. http://dx.doi.org/10.1039/c7em90008b.

Der volle Inhalt der Quelle
Annotation:
Guest editors Kathrin Fenner and Paul Tratnyek introduce the themed issue on “QSARs and computational chemistry methods in environmental chemical sciences” of Environmental Science: Processes & Impacts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McGee, H. A., und P. K. Mercure. „Reunification of the chemical sciences“. Journal of Chemical Education 63, Nr. 3 (März 1986): 256. http://dx.doi.org/10.1021/ed063p256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kim, Sangtae. „Cyberinfrastructure: Enabling the Chemical Sciences“. Journal of Chemical Information and Modeling 46, Nr. 3 (Mai 2006): 938. http://dx.doi.org/10.1021/ci060100+.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kulkarni, G. U., B. Bagchi und J. Gopalakrishnan. „Emerging directions in chemical sciences“. Journal of Chemical Sciences 115, Nr. 5-6 (Oktober 2003): 319. http://dx.doi.org/10.1007/bf02708224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shuai, Zhigang. „United to Advance Chemical Sciences“. Nachrichten aus der Chemie 68, Nr. 10 (Oktober 2020): 3. http://dx.doi.org/10.1002/nadc.20204102348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bhat, SubhasChandra. „INTERDEPENDENCE BETWEEN CHEMICAL SCIENCES AND MEDICAL SCIENCES - AN OVERVIEW.“ International Journal of Advanced Research 7, Nr. 5 (31.05.2019): 1349–51. http://dx.doi.org/10.21474/ijar01/9173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Inokuma, Tsubasa, und Shinichi Sato. „Chemical Biology for Pharmaceutical Sciences (Development of Practical Chemical Biotechnology)“. YAKUGAKU ZASSHI 138, Nr. 1 (01.01.2018): 37–38. http://dx.doi.org/10.1248/yakushi.17-00186-f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fullmer, June Z., und Seymour H. Mauskopf. „Chemical Sciences in the Modern World“. Technology and Culture 36, Nr. 3 (Juli 1995): 727. http://dx.doi.org/10.2307/3107281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Palermo, Alejandra. „The Future of the Chemical Sciences“. Chemistry International 40, Nr. 3 (01.07.2018): 4–6. http://dx.doi.org/10.1515/ci-2018-0303.

Der volle Inhalt der Quelle
Annotation:
Abstract Today’s world is characterised by turbulencewithanincreasing uncertainty in the global economy and in social and political relations.Scientific, social and technological trends are rapidly changing the way we live and work. These not only affect the nature and practice of chemistry, but also the roles that chemists play. With this in mind, the Royal Society of Chemistry launched the Future of the Chemical Sciences initiative to assess how the chemical sciences may evolve over the next ten to twenty years and the possible consequences for the community and society at large.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Chemical Sciences"

1

Milewski, Thomas. „Stratospheric chemical-dynamical ensemble data assimilation“. Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110352.

Der volle Inhalt der Quelle
Annotation:
Ensemble data assimilation uses Monte-Carlo methods to estimate flow-dependent error covariances which allow the transfer of information from observed variables to correlated ones. As the winds are largely unobserved in the stratosphere and models have biases there, the possibility to constrain the dynamical analysis from temperature or ozone observations is attempted using ensemble data assimilation.The applicability of coupled chemical/dynamical ensemble data assimilation in the stratosphere is tested in idealized perfect model observation system simulation experiments with the IGCM-FASTOC chemistry-climate model. Covariance localization is found to be necessary for stability of the Ensemble Kalman Filter (EnKF) data assimilation system and optimal localization parameters yield a strong constraint on the global dynamical state of the model when assimilating synthetic limb-sounding stratospheric temperature or ozone observations only. The multivariate coupling between ozone, temperature and winds is investigated in the optimized EnKF system. Stratospheric temperature and ozone observations induce valuable dynamical analysis increments during the analysis step. There is additional feedback during the forecast steps in the ensemble data assimilation system, further constraining the global dynamical and ozone states. The potential impact of assimilating observations posterior to analysis time in multivariate mode was estimated with an Ensemble Kalman Smoother (EnKS). Assimilation of additional asynchronous observations up to 48 hours posterior toanalysis time provided improvements on the EnKF analysis nearly similar to the ones obtained from the assimilation of a same amount of additional synchronous observations. The EnKS assimilation showed beneficial impacts on the unobserved variables analysis state but mixed impacts on the observed variable analysis state.The capacity to constrain the unobserved stratospheric winds by assimilating ozone observations is demonstrated in the ensemble data assimilation system with the EnKF and EnKS. The chemical-dynamical error covariances are critical to reduce the wind error in the model analysis state particularly through the ozone-wind covariances effective in the upper-troposphere lower-stratosphere region. Additional tests with strongly-biased initial forecasts, within a stratospheric sudden warming experiment, confirm the ability of the EnKF to efficiently propagate information from ozone observations to the dynamical model state.
L'assimilation d'ensemble utilise une méthode de Monte-Carlo pour estimer les covariances d'erreur du moment qui permettent le transfert d'information des variables observées aux variables corrélées à celles-ci. Puisque les vents sont très peu observés dans la stratosphère et que les modèles y présentent des biais, la possibilité de contraindre l'état dynamique du modèle par l'assimilation d'observations de température et d'ozone par la technique d'ensemble est tentée. L'applicabilité de l'assimilation d'ensemble dans un système chimique/dynamique couplé est testé lors d'une expérience idéalisé (modèle parfait) de simulation de système d'observation avec le modèle de chimie-climat IGCM-FASTOC. La localisation des covariances est indispensable à la stabilité du système d'assimilation avec filtre de Kalman d'ensemble (EnKF) et les paramètres optimaux offrent une forte contrainte sur l'état dynamique global du modèle lorsque l'on assimile des observations satellites synthétiques de température et d'ozone stratosphériques uniquement. Le couplage entre l'ozone, la température et les vents est étudié dans le système EnKF optimisé. Les observations de température et d'ozone stratosphériques créent des incréments dynamiques bénéfiques lors des phases d'analyses. Il y a également une rétroaction lors de la phase de prédiction du système d'assimilation de données, qui aide à contraindre davantage les états chimiques et dynamiques globaux. L'impact potentiel de l'assimilation de données postérieures au temps d'analyse en mode multivarié est estimé avec un lisseur d'ensemble de Kalman (EnKS). L'assimilation d'observations additionnelles asynchrones, ayant jusqu'à 48 heures d'écart avec le temps d'analyse, offre des améliorations aux analyses de l'EnKF presque équivalentes à celles obtenues par assimilation d'une quantité égale d'observations additionnelles synchrones. L'EnKS présente des impacts bénéfiques sur l'état d'analyse des variables non observées mais des impacts mitigés sur l'état analysé des variables observées. La capacité de contraindre les vents stratosphériques non-observés grâce à l'assimilation d'observations d'ozone est démontrée dans le système d'assimilation d'ensemble avec l'EnKF et l'EnKS. Les covariances d'erreurs chimiques- dynamiques sont essentielles à la réduction de l'erreur de vents dans l'état analysé du modèle, en particulier les covariances ozone-vent qui font effet dans la haute troposphère et basse stratosphère. Des expériences additionelles avec un état initial fortement biaisé, en l'occurence un réchauffement stratosphérique soudain, confirment l'abilité de l'EnKF à transférer de façon efficace l'information depuis les observations d'ozone vers l'état dynamique du modèle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gerothanassis, I. P. „Application of a DSc in the School of Chemical Sciences“. Thesis, University of East Anglia, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539366.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gunasekaran, Subbiah, M. Sadikbatcha und P. Sivaraman. „Mapping chemical science research in India: A bibliometric study“. NISCAIR, New Delhi, India, 2006. http://hdl.handle.net/10150/299580.

Der volle Inhalt der Quelle
Annotation:
Chemical sciences research in India has been mapped with data collected from the CD-ROM version of Chemistry Citation Index [publication year : 2002]. Roughly, 4.5% of the global R&D output in chemical sciences was contributed by Indian in 2002. Indian researchers published 6186 papers from 569 journals and 12 non-journal sources. More than 45% of these papers appeared in journals with an impact factor less than 1.000. Around 2% of the papers were either published in journals with no impact factor or not indexed in JCR 2003. The average impact factor for journal articles during this period is 1.359. While 26% of papers published by Indians were in US journals, the percentages for Indian and UK journals were 21 and 20%, respectively. Among Indian journals, the Asian Journal of Chemistry (IF 0.211) took the major chunk of 269 papers, while the Journal of Indian Chemical Society (IF 0.275) and the Indian Journal of Chemistry B (IF 0.492) carried 224 and 209 papers, respectively. In all, 563 institutions contributed 6199 papers in 2002. Of these papers, 68% were contributed by 10% of Indian institutions. The Indian Institute of Science, Bangalore ranks first with 345 papers. This is followed by the Indian Institute of Chemical Technology, Hyderabad with 263 papers. Bhabha Atomic Research Centre, Mumbai with 259 papers and the National Chemical Laboratory, Pune with 246 papers come in the third and fourth places, respectively. The largest contributions came from Mumbai, Bangalore, Hyderabad and Kolkata. In terms of states, Maharashtra, Tamil Nadu, Karnataka, Andhra Pradesh and West Bengal are major contributors. About 16% of the papers had international collaboration (with as many as 53 county ies). Major collaborating countries in chemical sciences were the US, Germany, Japan and Great Britain.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lohse, Peter A. (Peter Andreas). „Distribution of knowledge production in the chemical sciences in the US“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65786.

Der volle Inhalt der Quelle
Annotation:
Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 43-44).
A citation analysis was carried out to gain an understanding of the geographical and institutional distribution of highly cited articles in the chemical sciences in the US over the last thirty years. The contribution of US chemistry departments was determined by quantifying the number of highly cited articles published by individual authors or groups of authors from the same department. Articles stemming from collaborative research across schools were not considered. The results show that a dilution in intradepartmental knowledge production has occurred both on a geographical and institutional level. Three chemistry departments have emerged as strong producers of high impact articles over the last thirty years: the University of North Carolina, Texas A&M University and the University of Utah. In terms of aggregate numbers of highly cited articles these three schools are in the top ten of over seventy schools which were evaluated; their chemistry departments are en par in terms of scientific impact with those from Ivy League schools like Stanford University, Harvard University and the California Institute of Technology. While the literature reports increasing concentration for the US research base, the present analysis shows a dilution in chemical knowledge production when collaborative efforts across departments and schools are excluded. This finding suggests that the increase in concentration in the US science base is not a uniform trend when studied on a more granular level.
by Peter A. Lohse.
M.B.A.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Degrand, Elisabeth. „Evolving Chemical Reaction Networks“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257491.

Der volle Inhalt der Quelle
Annotation:
One goal of synthetic biology is to implement useful functions with biochemical reactions, either by reprogramming living cells or programming artificial vesicles. In this perspective, we consider Chemical Reaction Networks (CRNs) as a programming language. Recent work has shown that continuous CRNs with their dynamics described by ordinary differential equations are Turing complete. That means that any function over the reals that is computable by a Turing machine in arbitrary precision, can be computed by a CRN over a finite set of molecular species. The proof uses an algorithm which, given a computable function presented as the solution of a PIVP (PolynomialInitial Values Problem), generates a finite CRN to implement it. In the generated CRNs, the molecular concentrations play the role of information carriers, similarly to proteins in cells. In this Master’s Thesis, we investigate an approach based on an evolutionary algorithm to build a continuous CRN that approximates a real function given a finite set of the values of the function. The idea is to use a two-level parallel genetic algorithm. A first algorithm is used to evolve the structure of the network, while the other one enables us to optimize the parameters of the CRNs at each step. We compare the CRNs generated by our method on different functions. The CRNs found by evolution often give good results with quite unexpected solutions.
Ett mål med syntetisk biologi är att genomföra användbara funktioner med biokemiska reaktioner, antingen genom omprogrammering av levande celler eller programmering av artificiella vesiklar. I detta perspektiv anser vi Chemical Reaction Networks (CRNs) som ett programmeringsspråk. Det senaste arbetet har visat att kontinuerliga CRNs med dynamik som beskrivs av vanliga differentialekvationer är Turingkompletta. Det betyder att en funktion över de realla talen som kan beräknas av en Turing-maskin i godtycklig precision, kan beräknas av en CRN över en ändlig uppsättning molekylära arter. Beviset använder en algoritm som, givet en beräkningsbar funktion som presenteras som lösningen av ett PIVP (Polynomial Initial Values Problem), genererar en ändlig CRN för att implementera den. I de genererade CRN:erna spelar molekylkoncentrationerna rollen som informationsbärare, på samma sätt som proteiner i celler. I detta examensarbete undersöker vi ett tillvägagångssätt baserat på en evolutionär algoritm för att bygga en kontinuerlig CRN som approximerar en verklig funktion med en ändlig uppsättning av värden för funktionen. Tanken är att använda parallell genetisk algoritm i två nivåer. En första algoritm används för att utveckla nätets struktur, medan den andra möjliggör att optimera parametrarna för CRN:erna vid varje steg. Vi jämför de CRN som genereras av vår metod på olika funktioner. De CRN som hittas av evolutionen ger ofta bra resultat med ganska oväntade lösningar.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Attwell, Jane Louise. „Heterogeneous chemical processing by stratospheric aerosol“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390491.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Webb, Penelope Eugenia. „Chemical inflation for assisted assembly“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/114060.

Der volle Inhalt der Quelle
Annotation:
Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2017.
Page 85 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (pages 81-84).
This thesis aims to utilize an output method for popup fabrication, using chemical inflation as a technique for instant, hardware-free shape change. By applying state-changing techniques as a medium for material activation, we provide a framework for a two-part assembly process, starting from the manufacturing side, whereby a structural body is given its form, through to the user side, where the form potential of a soft structure is activated and a form becomes complete. The process discussed in this thesis is similar in nature to existing chemical reaction home-activation kits, such as hand warmers or cold packs, however, with the inclusion of volume-change and automatic assembly, this method gives way to alternative application possibilities and component-free construction. Along with structural configuration, this thesis provides material development for the application of volume changing membranes for the purpose of material surprise and transformation.`
by Penelope Eugenia Webb.
S.M.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Puhl, Jacqueline L. „Chemical instabilities in isotropic turbulent flows“. Doctoral thesis, Universite Libre de Bruxelles, 1988. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Khannoon, Eraqi Radwan R. „Comparative chemical ecology, behaviour, and evolutionary genetics of acanthodactlylus boskianus (Squamata: Lacertidae) : comparative chemical ecology, behaviour and evolution“. Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2415.

Der volle Inhalt der Quelle
Annotation:
Acanthodactylus boskianus is a common lizard species frequently occurring in different habitats throughout Egypt. Both males and females have well developed epidermal femoral glands. This species is territorial and males acquire dominance hierarchies in captivity. The current work included three different techniques to study the importance of femoral gland secretions in communication and signal evolution of A. boskianus. These are behaviour, chemical and DNA analyses techniques. Behavioural bioassays in different experiments showed that the femoral gland secretions are used in communication between the lizards. Communication includes possible roles in mate choice, agonistic behaviour between potential competitor males, and chemical trailing of scent pheromones. These behavioural results reflect the chemical results which showed the chemical variability between male ages, sexes, and allopatric populations. Chemical analysis of the secretions resulted in the identification of natural compounds not previously reported in reptiles, glycerolmonoethers and monoglycerides. The secretions seem to be used as scent pheromones, which are involved in signal evolution processes resulting in divergence of the chemical fingerprints of the gland secretion between allopatric populations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ballhaus, Florentine. „Investigating plant autophagy with new chemical modulators“. Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428075.

Der volle Inhalt der Quelle
Annotation:
Autophagy is a major catabolic pathway in which cell components get sequestered in a double membrane vesicle, transported to the vacuole, degraded by vacuolar hydrolases and recycled.  Through this process, cells ensure cell homeostasis and remobilise nutrients. The autophagic flux can be enhanced as an adaptive stress response, improving plants resistance against stress, reducing aging and ultimately increasing yield. However, autophagy regulation in plants remains poorly understood.  Novel plant-specific modulators can be used in a chemical genetic approach for identification of proteins involved in the autophagy pathway. Furthermore, autophagy enhancers can find their application in agriculture for improved plant fitness. Known autophagy modulators have severe off-target effects, affecting plant growth and development. A recent screening identified two potential autophagy modulators. We developed a novel method for photoaffinity labelling and pulldown assay in Arabidopsis thaliana to identify potential interactors of the modulators. The identification of autophagy-related proteins will help to further elucidate the autophagic pathway in plants. The effect of the new autophagy enhancers on plant growth and development was analysed by automated growth assays. In comparison with a currently available autophagy enhancer, treated plants showed higher viability, indicating possible further applications for the new autophagy modulators in planta.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Chemical Sciences"

1

Ramasami, Ponnadurai, Minu Gupta Bhowon, Sabina Jhaumeer Laulloo und Henri Li Kam Wah, Hrsg. Emerging Trends in Chemical Sciences. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-60408-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Stig, Pedersen-Bjergaard, und Rasmussen Knut, Hrsg. Chemical analysis in pharmaceutical sciences. Chichester, West Sussex: John Wiley & Sons Inc., 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

1922-, Spindel William, Simon Robert Michael und American Association for the Advancement of Science., Hrsg. Frontiers in the chemical sciences. Washington, D.C: American Association for the Advancement of Science, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bhatia, S. C. Biochemistry in applied sciences (chemical). Delhi: Shree Pub. House : distributors, Jian Book Depot, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bowden, Mary Ellen. Chemical achievers: The human face of the chemical sciences. Philadelphia: Chemical Heritage Foundation, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chemical genomics. Cambridge: Cambridge University Press, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

H, Mauskopf Seymour, Hrsg. Chemical sciences in the modern world. Philadelphia: University of Pennsylvania Press, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

1945-, Morgan P. H., Hrsg. Computational methods in the chemical sciences. Chichester, England: Ellis Horwood, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

University of Greenwich. School of Biological and Chemical Sciences. Course documents and submissions: Chemical sciences. London: University of Greenwich., 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pelletier, S. W. Alkaloids: Chemical and biological perspectives. Amsterdam: Pergamon, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Chemical Sciences"

1

Myers, Jeffrey K. „Chemical Denaturation“. In Molecular Life Sciences, 1–7. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_646-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Myers, Jeffrey K. „Chemical Denaturation“. In Molecular Life Sciences, 75–80. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_646.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Arigoni, Duilio. „Organic Synthesis and the Life Sciences“. In Chemical Synthesis, 601–19. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0255-8_27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bewersdorff, A., P. Borckmans und S. C. Müller. „Chemical Pattern Formation“. In Fluid Sciences and Materials Science in Space, 257–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46613-7_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Viers, Jérôme, und Priscia Oliva. „Chemical Weathering“. In Encyclopedia of Earth Sciences Series, 1–5. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_143-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bickmore, Barry R., und Matthew C. F. Wander. „Chemical Bonds“. In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_4-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Viers, Jérôme, und Priscia Oliva. „Chemical Weathering“. In Encyclopedia of Earth Sciences Series, 237–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bickmore, Barry R., und Matthew C. F. Wander. „Chemical Bonds“. In Encyclopedia of Earth Sciences Series, 234–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Duarte, Isabel M. R., Celso S. F. Gomes und António B. Pinho. „Chemical Weathering“. In Encyclopedia of Earth Sciences Series, 114–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kondepudi, Dilip. „Chemical Thermodynamics“. In Encyclopedia of Sciences and Religions, 344–52. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_1126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Chemical Sciences"

1

Ad’hiya, Eka, und Endang W. Laksono. „Students’ analytical thinking skills and chemical literacy concerning chemical equilibrium“. In THE 8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: Coverage of Basic Sciences toward the World’s Sustainability Challanges. Author(s), 2018. http://dx.doi.org/10.1063/1.5062824.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

YING, SHUH-JING, und HUNG NGUYEN. „Reduced chemical kinetics for propane combustion“. In 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

„The Application of Chemical Genomics and Chemical Proteomics in Cell Autophagy“. In 2020 International Conference on Social Sciences and Social Phenomena. Scholar Publishing Group, 2020. http://dx.doi.org/10.38007/proceedings.0001195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ingenito, Antonella, Antonio Agresta, Roberto Andriani und Fausto Gamma. „Electro-chemical propulsion for space exploration“. In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

GNOFFO, P., und R. MCCANDLESS. „Three-dimensional AOTV flowfields in chemical nonequilibrium“. In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-230.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

PARK, CHUL, JOHN HOWE, RICHARD JAFFE und GRAHAM CANDLER. „Chemical-kinetic problems of future NASA missions“. In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

WESTBROOK, C. „Chemical kinetic modeling of higher hydrocarbon fuels“. In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Frederickson, Kraig, Yauheni Ivanou, Sergey B. Leonov, J. William Rich, Walter R. Lempert und Igor V. Adamovich. „Development of a Chemical Carbon Monoxide Laser“. In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Swain, Shovan, Lalit Mohan S., Venkatesh Choppella und Y. R. Reddy. „Model Driven Approach for Virtual Lab Authoring - Chemical Sciences Labs“. In 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT). IEEE, 2018. http://dx.doi.org/10.1109/icalt.2018.00062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Slavinskaya, Nadja, Uwe Riedel, Mhedi Abbasi, JanHendrik Starke, Aisulu Tursynbai, Michael Frenklach, Andrew Packard, Wenyu Li, James Oreluk und Arun Hedge. „Consistent Chemical Mechanism from Collaborative Data Processing“. In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Chemical Sciences"

1

Moore, Joel E., Alán Aspuru-Guzik, Bela Bauer, Sue Coppersmith, Wibe (Bert) de Jong, Thomas Devereaux, Marivi Fernandez-Serra et al. Basic Energy Sciences Roundtable: Opportunities for Quantum Computing in Chemical and Materials Sciences. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1616253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

PHILLIPS, JULIA M. Physical and Chemical Sciences Center Research Briefs 2001. Office of Scientific and Technical Information (OSTI), Dezember 2001. http://dx.doi.org/10.2172/791900.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Author, Not Given. Chemical and Laser Sciences Division annual report, 1988. Office of Scientific and Technical Information (OSTI), Juni 1989. http://dx.doi.org/10.2172/6095225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Haines, N., Hrsg. Chemical and Laser Sciences Division annual report 1989. Office of Scientific and Technical Information (OSTI), Juni 1990. http://dx.doi.org/10.2172/6876779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Raber, D. J. Challenges for the Chemical Sciences in the 21st Century. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/834006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Scielzo, N. D., S. Quaglioni und D. Shaughnessy. Nucleosynthesis for Science and Security: Preparing for a Nuclear and Chemical Sciences Program at FRIB. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1571733.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Vook, F. L., und G. A. Samara. Physical and Chemical Sciences Center: Research briefs. Volume 9-94. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/10107582.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mattern, P. L. Physical and Chemical Sciences Center - research briefs. Volume 1-96. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/380371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ballinger, Marcel Y., und Michael J. Lindberg. Sampling for Air Chemical Emissions from the Life Sciences Laboratory II. Office of Scientific and Technical Information (OSTI), März 2017. http://dx.doi.org/10.2172/1408199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rehr, John J. Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1156688.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie