Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Chemical defence“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chemical defence" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Chemical defence"
Skelhorn, John, und Candy Rowe. „Frequency-dependent taste-rejection by avian predation may select for defence chemical polymorphisms in aposematic prey“. Biology Letters 1, Nr. 4 (31.08.2005): 500–503. http://dx.doi.org/10.1098/rsbl.2005.0359.
Der volle Inhalt der QuelleHantak, Maggie M., Daniel J. Paluh und Ralph A. Saporito. „Bufadienolide and alkaloid-based chemical defences in two different species of neotropical anurans are equally effective against the same arthropod predators“. Journal of Tropical Ecology 32, Nr. 2 (März 2016): 165–69. http://dx.doi.org/10.1017/s0266467416000055.
Der volle Inhalt der QuelleArbuckle, Kevin. „Chemical antipredator defence is linked to higher extinction risk“. Royal Society Open Science 3, Nr. 11 (November 2016): 160681. http://dx.doi.org/10.1098/rsos.160681.
Der volle Inhalt der QuelleSkelhorn, John, und Candy Rowe. „Avian predators taste–reject aposematic prey on the basis of their chemical defence“. Biology Letters 2, Nr. 3 (25.04.2006): 348–50. http://dx.doi.org/10.1098/rsbl.2006.0483.
Der volle Inhalt der QuelleGuan, Chi, Mahasweta Saha und Florian Weinberger. „Chemical Defence of a Seagrass against Microfoulers and Its Seasonal Dynamics“. Applied Sciences 9, Nr. 6 (26.03.2019): 1258. http://dx.doi.org/10.3390/app9061258.
Der volle Inhalt der QuelleRasher, Douglas B., und Mark E. Hay. „Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed“. Proceedings of the Royal Society B: Biological Sciences 281, Nr. 1777 (22.02.2014): 20132615. http://dx.doi.org/10.1098/rspb.2013.2615.
Der volle Inhalt der QuelleCurley, Edward A. M., Hannah E. Rowley und Michael P. Speed. „A field demonstration of the costs and benefits of group living to edible and defended prey“. Biology Letters 11, Nr. 6 (Juni 2015): 20150152. http://dx.doi.org/10.1098/rsbl.2015.0152.
Der volle Inhalt der QuelleBraekman, J. C., und D. Daloze. „Chemical defence in sponges“. Pure and Applied Chemistry 58, Nr. 3 (01.01.1986): 357–64. http://dx.doi.org/10.1351/pac198658030357.
Der volle Inhalt der QuelleRead, Jennifer, Emma Gras, Gordon D. Sanson, Fiona Clissold und Charlotte Brunt. „Does chemical defence decline more in developing leaves that become strong and tough at maturity?“ Australian Journal of Botany 51, Nr. 5 (2003): 489. http://dx.doi.org/10.1071/bt03044.
Der volle Inhalt der QuelleNakano, Saya, Michio Oguro, Tomoyuki Itagaki und Satoki Sakai. „Florivory defence: are phenolic compounds distributed non-randomly within perianths?“ Biological Journal of the Linnean Society 131, Nr. 1 (29.07.2020): 12–25. http://dx.doi.org/10.1093/biolinnean/blaa099.
Der volle Inhalt der QuelleDissertationen zum Thema "Chemical defence"
Danielsson, Marie. „Chemical defence in Norway spruce“. Doctoral thesis, KTH, Organisk kemi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-31133.
Der volle Inhalt der QuelleQC 20110314
Hsieh, Ji-Fan (Sarah). „Molecular and Chemical Mechanisms of Defence against Myrtle Rust in Australian Myrtaceae“. Phd thesis, Canberra, ACT : The Australian National University, 2018. http://hdl.handle.net/1885/143530.
Der volle Inhalt der QuelleKnapp, Jennifer J. „Chemical aspects of communication and defence in leaf-cutting ants“. Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295675.
Der volle Inhalt der QuelleLaw-Brown, Janette. „Chemical defence in the red-billed wood hoopoe : phoeniculus purpureus“. Master's thesis, University of Cape Town, 2001. http://hdl.handle.net/11427/6119.
Der volle Inhalt der QuelleThornton, Robert. „The effect of the aircrew chemical defence assembly on thermal strain“. Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/27005.
Der volle Inhalt der QuellePaul, Nicholas Andrew School of Biological Earth & Environmental Sciences UNSW. „The ecology of chemical defence in a filamentous marine red alga“. Awarded by:University of New South Wales. School of Biological, Earth and Environmental Sciences, 2006. http://handle.unsw.edu.au/1959.4/24304.
Der volle Inhalt der QuelleOhlsson, Åse. „Do plants change their defence strategy from a structural defence to a chemical one as a response to heavier herbivory?“ Thesis, Södertörn University College, School of Life Sciences, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-310.
Der volle Inhalt der QuelleTo the main part, this paper is the result of a literature survey and to the minor part of a field survey. The study is found on the question of, if and why unpalatable plant species invade heavily grassed rangelands and if plants change their defence strategy from a mechanical defence to a chemical defence if the herbivory pressure increase. I conclude that defended plants do invade heavily grassed rangelands if the rangelands lose essential recourses (often nutrients) and/or the defended plants are strongly avoided by mammalian herbivores. I also conclude that plants do go from a mechanical defence strategy to a chemical strategy if their environment loses essential recourses under a threshold. This firstly depends on that mechanical defended plants can not develop a complete defence if they suffer from a shortage in the nutrient supply, and secondly of that plants in resources rich environments often have lager possibilities of responding to herbivory with regrowth. They do not therefore have to defend them self as hard as plants in environments with low supply of recourses.
Foster, Rosie. „Plants signalling to herbivores : is there a link between chemical defence and visual cues?“ Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/45168/.
Der volle Inhalt der QuelleHedner, Erik. „Bioactive Compounds in the Chemical Defence of Marine Sponges : Structure-Activity Relationships and Pharmacological Targets“. Doctoral thesis, Uppsala University, Division of Pharmacognosy, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8218.
Der volle Inhalt der QuelleMarine invertebrates, in particular sponges, represent a source of a wide range of secondary metabolites, many of which have been attributed various defensive capabilities against environmental stress factors. In this thesis sponge-derived low-molecular peptide-like compounds and associated analogs are investigated for bioactivity and pharmacological targets.
The compound bromobenzisoxazolone barettin (cyclo[(6-bromo-8-(6-bromo-benzioxazol -3(1H)-one)-8-hydroxy)tryptophan)]arginine) was isolated from the sponge Geodia barretti and its ability to inhibit larval settlement of the barnacle Balanus improvisus was determined. With an EC50 value of 15 nM, this compound’s antifouling effect was higher than those of the previously reported brominated dipeptides from Geodia barretti, i.e., barettin and 8,9-dihydrobarettin; moreover, this antifouling effect was demonstrated to be reversible. However, the compound lacked affinity for 5-HT1-7 receptors, whereas barettin possessed specific affinity to 5-HT2A, 5-HT2C and 5-HT4, while 8,9-dihydrobarettin interacted with 5-HT4. In an attempt to evaluate structure-activity relationships synthesized analogs with barettin and dipodazine scaffolds were investigated for antifouling activity. The analog benso[g]dipodazine, with an EC50 value of 34 nM, displayed the highest settlement inhibition.
The studies of the structure-activity relationships of sponge-derived compounds were extended to cover analogs of agelasines and agelasimines originally isolated from sponges of the genus Agelas. Synthesized (+)-agelasine D and two structurally close analogs were investigated for cytotoxic and antibacterial activity. The profound cytotoxicity and broad spectrum antibacterial activity found prompted a further investigation of structure-activity relationships in 42 agelasine and agelasimine analogs and several characteristics that increased bioactivity were identified.
In conclusion this work has produced new results regarding the potent bioactivity of compounds derived from the sponges Geodia barretti and Agelas spp. and increased SAR knowledge of the fouling inhibition, cytotoxicity and antimicrobial activity of these compounds.
Pöykkö, H. (Heikki). „Host range of lichenivorous moths with special reference to nutritional quality and chemical defence in lichens“. Doctoral thesis, University of Oulu, 2005. http://urn.fi/urn:isbn:951427959X.
Der volle Inhalt der QuelleBücher zum Thema "Chemical defence"
Sen, A. K. Defence against chemical and biological agents. New Delhi: Defence Research and Development Organisation, Ministry of Defence, 2009.
Den vollen Inhalt der Quelle findenK, Sen A. Defence against chemical and biological agents. New Delhi: Defence Research and Development Organisation, Ministry of Defence, 2009.
Den vollen Inhalt der Quelle findenDefence Research & Development Organisation (India), Hrsg. Defence against chemical and biological agents. New Delhi: Defence Research and Development Organisation, Ministry of Defence, 2009.
Den vollen Inhalt der Quelle findenGreat Britain. Ministry of Defence. Medical manual of defence against chemical agents: By command of the Defence Council. 6. Aufl. London: H.M.S.O., 1987.
Den vollen Inhalt der Quelle findenB, Carter G., Hrsg. Chemical and biological defence at Porton Down, 1916-2000. London: H.M.S.O., 2000.
Den vollen Inhalt der Quelle findenCanada. Department of National Defence. Research, development and training in chemical and biological defence within the Department of National Defence and the Canadian Forces: A review. S.l: s.n, 1989.
Den vollen Inhalt der Quelle findenCollins, Charles J., und John C. Carrano. Optically based biological and chemical detection for defence V: 1 September 2009, Berlin, Germany. Bellingham, Wash: SPIE, 2009.
Den vollen Inhalt der Quelle findenThe killing factory: The top secret world of germ and chemical warfare. London: Smith Gryphon, c1996., 1996.
Den vollen Inhalt der Quelle finden1955-, Grote James Gerard, Kajzar F, Lindgren Mikael, SPIE Europe, Defence IQ (Organization) und Society of Photo-optical Instrumentation Engineers., Hrsg. Optical materials in defence systems technology III: 13-14 September 2006, Stockholm, Sweden. Bellingham, Wash: SPIE, 2006.
Den vollen Inhalt der Quelle findenHol, Wilhelmina Hermina Geertruida. The role of pyrrolizidine alkaloids from Senecio jacobaea in the defence against fungi. [Leiden: Universiteit Leiden, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Chemical defence"
Putz, Annika, und Peter Proksch. „Chemical Defence in Marine Ecosystems“. In Functions and Biotechnology of Plant Secondary Metabolites, 162–213. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444318876.ch3.
Der volle Inhalt der QuelleLindsay, Christopher D., James R. Riches, Neil Roughley und Christopher M. Timperley. „CHAPTER 8. Chemical Defence Against Fentanyls“. In Chemical Warfare Toxicology, 259–313. Cambridge: Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782628071-00259.
Der volle Inhalt der Quellevan Dam, Nicole M., und Sheila K. Bhairo-Marhé. „Induced chemical defence in Cynoglossum officinale“. In Proceedings of the 8th International Symposium on Insect-Plant Relationships, 79–82. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1654-1_24.
Der volle Inhalt der QuelleKumar, Narendra, und Ambesh Dixit. „Nanotechnology-Enabled Management of Chemical, Biological, Radiological, and Nuclear Threats“. In Nanotechnology for Defence Applications, 117–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29880-7_4.
Der volle Inhalt der QuellePasteels, Jacques M., Martine Rowell-Rahier, Jean-Claude Braekman und Désiré Daloze. „Chemical defence of adult leaf beetles updated“. In Novel aspects of the biology of Chrysomelidae, 289–301. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1781-4_22.
Der volle Inhalt der QuelleMoreira, Xoaquín, Rafael Zas und Luis Sampedro. „Methyl Jasmonate as Chemical Elicitor of Induced Responses and Anti-Herbivory Resistance in Young Conifer Trees“. In Plant Defence: Biological Control, 345–62. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1933-0_15.
Der volle Inhalt der QuelleTiku, Anupama Razdan. „Direct and Indirect Defence Against Insects“. In Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology, 157–92. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-2467-7_8.
Der volle Inhalt der QuelleDavis, Bradley S. „Transitional Perspectives on Conventional, Chemical and Biological Weapons Production“. In United States Post-Cold War Defence Interests, 131–48. London: Palgrave Macmillan UK, 2004. http://dx.doi.org/10.1057/9780230000834_8.
Der volle Inhalt der QuelleBologna, Mauro. „Immunological Defence Mechanisms Against Biological Agents“. In Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism, 11–16. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9238-7_2.
Der volle Inhalt der QuelleHarborne, J. B. „Role of Secondary Metabolites in Chemical Defence Mechanisms in Plants“. In Ciba Foundation Symposium 154 - Bioactive Compounds from Plants, 126–39. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514009.ch10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Chemical defence"
Sivalingam, Yuvaraj, Gabriele Magna, Roberto Paolesse und Corrado di Natale. „Photo-assisted chemical sensors“. In SPIE Security + Defence, herausgegeben von Douglas Burgess, Gari Owen, Harbinder Rana, Roberto Zamboni, François Kajzar und Attila A. Szep. SPIE, 2014. http://dx.doi.org/10.1117/12.2071187.
Der volle Inhalt der QuelleRuxton, K., G. Robertson, W. Miller, G. P. A. Malcolm, G. T. Maker und C. R. Howle. „Infrared hyperspectral imaging for chemical vapour detection“. In SPIE Security + Defence, herausgegeben von Colin Lewis und Douglas Burgess. SPIE, 2012. http://dx.doi.org/10.1117/12.975057.
Der volle Inhalt der QuelleBrett, Cory J. C., Robert S. DiPietro, Dimitris G. Manolakis und Vinay K. Ingle. „Efficient implementations of hyperspectral chemical-detection algorithms“. In SPIE Security + Defence, herausgegeben von Gary W. Kamerman, Ove K. Steinvall, Gary J. Bishop und John D. Gonglewski. SPIE, 2013. http://dx.doi.org/10.1117/12.2028562.
Der volle Inhalt der QuelleTakehisa, K. „New concepts of realizing a chemical oxygen laser“. In SPIE Security + Defence, herausgegeben von David H. Titterton, Mark A. Richardson, Robert J. Grasso, Willy L. Bohn und Harro Ackermann. SPIE, 2014. http://dx.doi.org/10.1117/12.2069708.
Der volle Inhalt der QuellePark, Yoon S., P. Pasupathy und Dean P. Neikirk. „Resonant chemical surveillance tags“. In Optics/Photonics in Security and Defence, herausgegeben von Gary W. Kamerman, Ove K. Steinvall, Keith L. Lewis, Keith A. Krapels, John C. Carrano und Arturas Zukauskas. SPIE, 2007. http://dx.doi.org/10.1117/12.736975.
Der volle Inhalt der QuelleLavoie, Hugo, Jean-Marc Thériault, François Bouffard, Eldon Puckrin und Denis Dubé. „LWIR hyperspectral imaging application and detection of chemical precursors“. In SPIE Security + Defence, herausgegeben von Colin Lewis und Douglas Burgess. SPIE, 2012. http://dx.doi.org/10.1117/12.974605.
Der volle Inhalt der QuelleClewes, Rhea J., Chris R. Howle, David J. M. Stothard, Malcolm H. Dunn, Gordon Robertson, William Miller, Graeme Malcolm et al. „Stand-off spectroscopy for the detection of chemical warfare agents“. In SPIE Security + Defence, herausgegeben von Colin Lewis und Douglas Burgess. SPIE, 2012. http://dx.doi.org/10.1117/12.974574.
Der volle Inhalt der QuelleMunk, Jens K., Ole T. Buus, Jan Larsen, Eleftheria Dossi, Sol Tatlow, Lina Lässig, Lars Sandström und Mogens H. Jakobsen. „CRIM-TRACK: sensor system for detection of criminal chemical substances“. In SPIE Security + Defence, herausgegeben von Douglas Burgess, Gari Owen, Harbinder Rana, Roberto Zamboni, François Kajzar und Attila A. Szep. SPIE, 2015. http://dx.doi.org/10.1117/12.2194915.
Der volle Inhalt der QuelleWebber, Michael E., Michael B. Pushkarsky und C. Kumar N. Patel. „Optical detection of chemical warfare agents and toxic industrial chemicals“. In European Symposium on Optics and Photonics for Defence and Security, herausgegeben von John C. Carrano und Arturas Zukauskas. SPIE, 2004. http://dx.doi.org/10.1117/12.579109.
Der volle Inhalt der QuelleBellecci, C., P. Gaudio, M. Gelfusa, S. Martellucci, M. Richetta, P. Ventura, A. Antonucci, F. Pasquino, V. Ricci und A. Sassolini. „Database for chemical weapons detection: first results“. In SPIE Europe Security and Defence, herausgegeben von John C. Carrano und Arturas Zukauskas. SPIE, 2008. http://dx.doi.org/10.1117/12.800193.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Chemical defence"
Nayfack, Nicholas, und Robert W. MacDougall. Chemical Biological Defense (CBD) Simulations. Fort Belvoir, VA: Defense Technical Information Center, Juli 1996. http://dx.doi.org/10.21236/ada396828.
Der volle Inhalt der QuelleShuely, Wendel J. Chemical-Material Data Bases: Chemical Defense Material Data Base. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada327593.
Der volle Inhalt der QuelleMorris, Mariana. Low Level Chemical Toxicity: Relevance to Chemical Agent Defense. Fort Belvoir, VA: Defense Technical Information Center, Juli 2003. http://dx.doi.org/10.21236/ada422716.
Der volle Inhalt der QuelleLarsen, James P. Chemical Warfare, Terrorism, and National Defense. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada394318.
Der volle Inhalt der QuelleRoss, Jo, und Cay Ervin. Chemical Defense Flight Glove Ensemble Evaluation. Fort Belvoir, VA: Defense Technical Information Center, Juni 1987. http://dx.doi.org/10.21236/ada188401.
Der volle Inhalt der QuelleJohnson-Winegar, Anna. DoD Chemical/Biological Defense Program Overview. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada422847.
Der volle Inhalt der QuelleThedford, Debra. Department of Defense Chemical, Biological, Radiological and Nuclear Defense Program Overview. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada423645.
Der volle Inhalt der QuelleBonin, Benjamin J., Nataly Lyn Beck, Patricia Marie Hernandez, Trisha Hoette Miller und Janson Wu. DHS Chemical and Biological Defense Architecture Development. Office of Scientific and Technical Information (OSTI), März 2019. http://dx.doi.org/10.2172/1592857.
Der volle Inhalt der QuelleDEPARTMENT OF DEFENSE WASHINGTON DC. Department of Defense Nuclear/Biological/Chemical (NBC) Defense, Annual Report to Congress. Fort Belvoir, VA: Defense Technical Information Center, Februar 1998. http://dx.doi.org/10.21236/ada339415.
Der volle Inhalt der QuelleRobinette, Kathleen M., und James F. Annis. A Nine-Size System for Chemical Defense Gloves. Fort Belvoir, VA: Defense Technical Information Center, Juli 1986. http://dx.doi.org/10.21236/ada173193.
Der volle Inhalt der Quelle