Zeitschriftenartikel zum Thema „Charge Transfert Inefficiency“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Charge Transfert Inefficiency" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Pasquier, J. F. „Native and irradiated Charge Transfer Inefficiency characterization“. EAS Publications Series 45 (2010): 61–66. http://dx.doi.org/10.1051/eas/1045010.
Der volle Inhalt der QuelleNightingale, James W., Richard J. Massey, Jacob Kegerreis und Richard G. Hayes. „PyAutoCTI: Open-Source Charge Transfer Inefficiency Calibration“. Journal of Open Source Software 9, Nr. 98 (01.06.2024): 4904. http://dx.doi.org/10.21105/joss.04904.
Der volle Inhalt der QuelleStetson, Peter B. „On the Photometric Consequences of Charge‐Transfer Inefficiency in WFPC2“. Publications of the Astronomical Society of the Pacific 110, Nr. 754 (Dezember 1998): 1448–63. http://dx.doi.org/10.1086/316286.
Der volle Inhalt der QuelleManeuski, Dzmitry. „Simulation of the charge transfer inefficiency of column parallel CCDs“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 591, Nr. 1 (Juni 2008): 252–54. http://dx.doi.org/10.1016/j.nima.2008.03.066.
Der volle Inhalt der QuelleBouchy, F., J. Isambert, C. Lovis, I. Boisse, P. Figueira, G. Hébrard und F. Pepe. „Charge Transfer Inefficiency effect for high-precision radial velocity measurements“. EAS Publications Series 37 (2009): 247–53. http://dx.doi.org/10.1051/eas/0937031.
Der volle Inhalt der QuelleSmith, P. H., J. P. D. Gow, P. Pool und A. D. Holland. „Charge transfer inefficiency in the pre- and post-irradiated Swept Charge Device CCD236“. Journal of Instrumentation 10, Nr. 03 (24.03.2015): C03041. http://dx.doi.org/10.1088/1748-0221/10/03/c03041.
Der volle Inhalt der QuelleBlake, C. H., S. Halverson und A. Roy. „The impact of charge transfer inefficiency on Extreme Precision Doppler measurements“. Journal of Instrumentation 12, Nr. 04 (03.04.2017): C04003. http://dx.doi.org/10.1088/1748-0221/12/04/c04003.
Der volle Inhalt der QuelleRhodes, Jason, Alexie Leauthaud, Chris Stoughton, Richard Massey, Kyle Dawson, William Kolbe und Natalie Roe. „The Effects of Charge Transfer Inefficiency (CTI) on Galaxy Shape Measurements“. Publications of the Astronomical Society of the Pacific 122, Nr. 890 (April 2010): 439–50. http://dx.doi.org/10.1086/651675.
Der volle Inhalt der QuelleTownsley, L. K., P. S. Broos, J. A. Nousek und G. P. Garmire. „Modeling charge transfer inefficiency in the Chandra Advanced CCD Imaging Spectrometer“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 486, Nr. 3 (Juli 2002): 751–84. http://dx.doi.org/10.1016/s0168-9002(01)02156-8.
Der volle Inhalt der QuelleToyozumi, Hiroyuki, und Michael C. B. Ashley. „Intra-Pixel Sensitivity Variation and Charge Transfer Inefficiency — Results of CCD Scans“. Publications of the Astronomical Society of Australia 22, Nr. 3 (2005): 257–66. http://dx.doi.org/10.1071/as05013.
Der volle Inhalt der QuelleShort, A., C. Crowley, J. H. J. de Bruijne und T. Prod'homme. „An analytical model of radiation-induced Charge Transfer Inefficiency for CCD detectors“. Monthly Notices of the Royal Astronomical Society 430, Nr. 4 (26.02.2013): 3078–85. http://dx.doi.org/10.1093/mnras/stt114.
Der volle Inhalt der QuelleMassey, Richard. „Charge transfer inefficiency in the Hubble Space Telescope since Servicing Mission 4“. Monthly Notices of the Royal Astronomical Society: Letters 409, Nr. 1 (11.10.2010): L109—L113. http://dx.doi.org/10.1111/j.1745-3933.2010.00959.x.
Der volle Inhalt der QuelleChen, L., S. Pennarthur und H. L. Kwok. „Effects of the clock voltage waveforms on the charge transfer inefficiency of high-speed charge-coupled devices“. Solid-State Electronics 36, Nr. 5 (Mai 1993): 798–800. http://dx.doi.org/10.1016/0038-1101(93)90253-m.
Der volle Inhalt der QuelleGoudfrooij, Paul, Ralph C. Bohlin, Jesús Maíz‐Apellániz und Randy A. Kimble. „Empirical Corrections for Charge Transfer Inefficiency and Associated Centroid Shifts for STIS CCD Observations1“. Publications of the Astronomical Society of the Pacific 118, Nr. 848 (Oktober 2006): 1455–73. http://dx.doi.org/10.1086/508477.
Der volle Inhalt der QuelleMassey, Richard, Chris Stoughton, Alexie Leauthaud, Jason Rhodes, Anton Koekemoer, Richard Ellis und Edgar Shaghoulian. „Pixel-based correction for Charge Transfer Inefficiency in theHubble Space TelescopeAdvanced Camera for Surveys“. Monthly Notices of the Royal Astronomical Society 401, Nr. 1 (01.01.2010): 371–84. http://dx.doi.org/10.1111/j.1365-2966.2009.15638.x.
Der volle Inhalt der QuelleWang, Zujun, Yuanyuan Xue, Rui Xu, Hao Ning, Qianli Jiao, Junwei Li, Lili Ding und Tongxuan Jia. „Charge transfer inefficiency increase of the CCD detector induced by proton and neutron irradiations“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 978 (Oktober 2020): 164431. http://dx.doi.org/10.1016/j.nima.2020.164431.
Der volle Inhalt der QuelleSopczak, AndrÉ, Salim Aoulmit, Khaled Bekhouche, Chris Bowdery, Craig Buttar, Chris Damerell, Dahmane Djendaoui et al. „Modeling of Charge Transfer Inefficiency in a CCD With High-Speed Column Parallel Readout“. IEEE Transactions on Nuclear Science 56, Nr. 3 (Juni 2009): 1613–17. http://dx.doi.org/10.1109/tns.2009.2020985.
Der volle Inhalt der QuelleSopczak, AndrÉ, Khaled Bekhouche, Chris Damerell, Tim Greenshaw, Michal Koziel, Konstantin Stefanov, Tuomo Tikkanen, Tim Woolliscroft und Steve Worm. „Measurements of Charge Transfer Inefficiency in a CCD With High-Speed Column Parallel Readout“. IEEE Transactions on Nuclear Science 56, Nr. 5 (Oktober 2009): 2925–30. http://dx.doi.org/10.1109/tns.2009.2026648.
Der volle Inhalt der QuelleMonmeyran, Corentin, Neil S. Patel, Mark W. Bautz, Catherine E. Grant, Gregory Y. Prigozhin, Anuradha Agarwal und Lionel C. Kimerling. „Annealing bounds to prevent further Charge Transfer Inefficiency increase of the Chandra X-ray CCDs“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 389-390 (Dezember 2016): 23–27. http://dx.doi.org/10.1016/j.nimb.2016.11.020.
Der volle Inhalt der QuelleWeiler, M., C. Babusiaux und A. Short. „Implementation of Models for Charge Transfer Inefficiency (CTI) in the Gaia Pixel-Level Data Simulator“. EAS Publications Series 45 (2010): 67–72. http://dx.doi.org/10.1051/eas/1045011.
Der volle Inhalt der QuelleIsrael, Holger, Richard Massey, Thibaut Prod'homme, Mark Cropper, Oliver Cordes, Jason Gow, Ralf Kohley et al. „How well can charge transfer inefficiency be corrected? A parameter sensitivity study for iterative correction“. Monthly Notices of the Royal Astronomical Society 453, Nr. 1 (17.08.2015): 561–80. http://dx.doi.org/10.1093/mnras/stv1660.
Der volle Inhalt der QuelleSopczak, AndrÉ, Khaled Bekhouche, Chris Bowdery, Chris Damerell, Gavin Davies, Lakhdar Dehimi, Tim Greenshaw et al. „Simulations of the Temperature Dependence of the Charge Transfer Inefficiency in a High-Speed CCD“. IEEE Transactions on Nuclear Science 54, Nr. 4 (August 2007): 1429–34. http://dx.doi.org/10.1109/tns.2007.903180.
Der volle Inhalt der QuelleMassey, Richard, Tim Schrabback, Oliver Cordes, Ole Marggraf, Holger Israel, Lance Miller, David Hall, Mark Cropper, Thibaut Prod'homme und Sami Matias Niemi. „An improved model of charge transfer inefficiency and correction algorithm for the Hubble Space Telescope“. Monthly Notices of the Royal Astronomical Society 439, Nr. 1 (05.02.2014): 887–907. http://dx.doi.org/10.1093/mnras/stu012.
Der volle Inhalt der QuelleDíaz-Hernández, Juan José, Eduardo Martínez-Budría und Rosa Marina González. „Effects of Inefficiency on Marginal Costs, Degree of Economies of Scale and Technical Change: A Theoretical Relationship“. Revista de Métodos Cuantitativos para la Economía y la Empresa 29 (16.04.2020): 190–207. http://dx.doi.org/10.46661/revmetodoscuanteconempresa.2804.
Der volle Inhalt der QuelleIsrael, Holger, Richard Massey, Thibaut Prod'homme, Mark Cropper, Oliver Cordes, Jason Gow, Ralf Kohley et al. „Erratum: How well can charge transfer inefficiency be corrected? A parameter sensitivity study for iterative correction“. Monthly Notices of the Royal Astronomical Society 467, Nr. 4 (15.03.2017): 4218–19. http://dx.doi.org/10.1093/mnras/stx270.
Der volle Inhalt der QuelleMarcelot, Olivier, Romain Molina, Matthieu Bouhier und Pierre Magnan. „Design Impact on Charge Transfer Inefficiency of Surface CCD on CMOS Devices: TCAD and Characterization Study“. IEEE Transactions on Electron Devices 63, Nr. 3 (März 2016): 1099–104. http://dx.doi.org/10.1109/ted.2016.2516045.
Der volle Inhalt der QuelleTownsley, L. K., P. S. Broos, G. P. Garmire und J. A. Nousek. „Mitigating Charge Transfer Inefficiency in the [ITAL]Chandra X-Ray Observatory[/ITAL] Advanced CCD Imaging Spectrometer“. Astrophysical Journal 534, Nr. 2 (10.05.2000): L139—L142. http://dx.doi.org/10.1086/312672.
Der volle Inhalt der QuelleSkrypnyk, Andrii, Oleksandr Zhemoida und Olha Holiachuk. „Transfer of energy inefficiency: cheap hydropower at the expense of farmers“. Ekonomika APK 315, Nr. 1 (28.01.2021): 72–83. http://dx.doi.org/10.32317/2221-1055.202101072.
Der volle Inhalt der QuelleGow, J. P. D., N. J. Murray, A. D. Holland, D. J. Hall, M. Cropper, D. Burt, G. Hopkinson und L. Duvet. „Assessment of space proton radiation-induced charge transfer inefficiency in the CCD204 for the Euclid space observatory“. Journal of Instrumentation 7, Nr. 01 (05.01.2012): C01030. http://dx.doi.org/10.1088/1748-0221/7/01/c01030.
Der volle Inhalt der QuelleXue, Yuanyuan, Zujun Wang, Fengqi Zhang, Jingying Bian, Zhibin Yao, Baoping He, Minbo Liu et al. „Measurement and investigation of proton irradiation-induced charge transfer inefficiency in PPD CIS at different integration times“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 886 (April 2018): 134–39. http://dx.doi.org/10.1016/j.nima.2017.12.071.
Der volle Inhalt der QuelleDjendaoui, Dahmane, Zoubir Becer und Thameur Obeidi. „Improving charge transfer efficiency in CCDs: A SILVACO-based numerical study“. STUDIES IN ENGINEERING AND EXACT SCIENCES 5, Nr. 2 (26.11.2024): e11142. https://doi.org/10.54021/seesv5n2-575.
Der volle Inhalt der QuelleMaham, Yadollah, und Gordon R. Freeman. „Effect of solvent structure on electron reactivity: 2-propanol/water mixtures“. Canadian Journal of Chemistry 66, Nr. 7 (01.07.1988): 1706–11. http://dx.doi.org/10.1139/v88-276.
Der volle Inhalt der QuelleStefanov, Konstantin D., Martin J. Prest, Mark Downing, Elizabeth George, Naidu Bezawada und Andrew D. Holland. „Simulations and Design of a Single-Photon CMOS Imaging Pixel Using Multiple Non-Destructive Signal Sampling“. Sensors 20, Nr. 7 (04.04.2020): 2031. http://dx.doi.org/10.3390/s20072031.
Der volle Inhalt der QuelleMarcelot, Olivier, Marjorie Morvan, Antoine Salih Alj, Stephane Demiguel, Cedric Virmontois, Anne Rouvie, Magali Estribeau und Vincent Goiffon. „Development of a Charge-Multiplication CMOS Image Sensor Based on Capacitive Trench for Low-Light-Level Imaging“. Sensors 23, Nr. 23 (30.11.2023): 9518. http://dx.doi.org/10.3390/s23239518.
Der volle Inhalt der QuelleKjær, Kasper Skov, Nidhi Kaul, Om Prakash, Pavel Chábera, Nils W. Rosemann, Alireza Honarfar, Olga Gordivska et al. „Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime“. Science 363, Nr. 6424 (29.11.2018): 249–53. http://dx.doi.org/10.1126/science.aau7160.
Der volle Inhalt der QuelleYang, S., und Y. Shi. „Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China“. Cryosphere 9, Nr. 5 (22.10.2015): 1983–93. http://dx.doi.org/10.5194/tc-9-1983-2015.
Der volle Inhalt der QuelleYang, S., und Y. Shi. „Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China“. Cryosphere Discussions 9, Nr. 2 (14.04.2015): 2367–95. http://dx.doi.org/10.5194/tcd-9-2367-2015.
Der volle Inhalt der QuelleWelsh, Helga A. „Higher Education in Germany: Fragmented Change Amid Paradigm Shifts“. German Politics and Society 28, Nr. 2 (01.06.2010): 53–70. http://dx.doi.org/10.3167/gps.2010.280204.
Der volle Inhalt der QuelleHosseini, Roozbeh, und Ali Shourideh. „Retirement Financing: An Optimal Reform Approach“. Econometrica 87, Nr. 4 (2019): 1205–65. http://dx.doi.org/10.3982/ecta15088.
Der volle Inhalt der QuelleBalachandran, Selvaraj, und Jose Swaminathan. „Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems“. Energies 15, Nr. 22 (21.11.2022): 8775. http://dx.doi.org/10.3390/en15228775.
Der volle Inhalt der QuelleDuan, Kai, Peter V. Caldwell, Ge Sun, Steven G. McNulty, Yue Qin, Xiaohong Chen und Ning Liu. „Climate change challenges efficiency of inter-basin water transfers in alleviating water stress“. Environmental Research Letters 17, Nr. 4 (29.03.2022): 044050. http://dx.doi.org/10.1088/1748-9326/ac5e68.
Der volle Inhalt der QuelleKanemaru, Yoshiaki, Jin Sato, Toshiyuki Takaki, Yuta Terada, Koji Mori, Mariko Saito, Kumiko K. Nobukawa et al. „Experimental studies on the charge transfer inefficiency of CCD developed for the soft X-ray imaging telescope Xtend aboard the XRISM satellite“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 984 (Dezember 2020): 164646. http://dx.doi.org/10.1016/j.nima.2020.164646.
Der volle Inhalt der QuellePelamatti, Alice, Vincent Goiffon, Aziouz Chabane, Pierre Magnan, Cédric Virmontois, Olivier Saint-Pé und Michel Breart de Boisanger. „Charge Transfer Inefficiency in Pinned Photodiode CMOS image sensors: Simple Montecarlo modeling and experimental measurement based on a pulsed storage-gate method“. Solid-State Electronics 125 (November 2016): 227–33. http://dx.doi.org/10.1016/j.sse.2016.05.009.
Der volle Inhalt der QuelleTouhami, A., und A. Bouhdada. „Interface states effect and influence of the topological and technological parameters on the transfer inefficiency in the surface charge-coupled device (SCCD)“. Microelectronics Reliability 36, Nr. 5 (Mai 1996): 661–65. http://dx.doi.org/10.1016/0026-2714(95)00162-x.
Der volle Inhalt der QuelleDannen, Randall, Daniel Proga, Tim Waters und Sergei Dyda. „On the Transition from Efficient to Inefficient Line Driving in Irradiated Flows“. Astrophysical Journal 961, Nr. 2 (29.01.2024): 221. http://dx.doi.org/10.3847/1538-4357/ad0da5.
Der volle Inhalt der QuelleLian, Tianquan. „(Invited) Efficient Hot Electron Transfer By Plasmon Induced Interfacial Charge Transfer Transitio“. ECS Meeting Abstracts MA2018-01, Nr. 31 (13.04.2018): 1867. http://dx.doi.org/10.1149/ma2018-01/31/1867.
Der volle Inhalt der QuelleDixit, Avinash, und John Londregan. „Redistributive Politics and Economic Efficiency“. American Political Science Review 89, Nr. 4 (Dezember 1995): 856–66. http://dx.doi.org/10.2307/2082513.
Der volle Inhalt der QuelleTamai, Yasunari. „(Invited) Role of the Energy Offset in the Charge Separation at the Donor: Acceptor Interface“. ECS Meeting Abstracts MA2024-01, Nr. 13 (09.08.2024): 1045. http://dx.doi.org/10.1149/ma2024-01131045mtgabs.
Der volle Inhalt der QuelleHidayat, Rahmat, Yolla Sukma Handayani und Priastuti Wulandari. „Study of Interfacial Charge Transfer Loss in Hybrid Solar Cells by Impedance Spectroscopy“. Materials Science Forum 827 (August 2015): 162–67. http://dx.doi.org/10.4028/www.scientific.net/msf.827.162.
Der volle Inhalt der QuelleXue, Lin, Houguang Liu, Jianhua Yang, Songyong Liu, Yu Zhao und Xinsheng Huang. „Research on coupling effects of actuator and round window membrane on reverse stimulation of human cochlea“. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 235, Nr. 4 (09.01.2021): 447–58. http://dx.doi.org/10.1177/0954411920987960.
Der volle Inhalt der Quelle