Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Charge Transfert Inefficiency“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Charge Transfert Inefficiency" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Charge Transfert Inefficiency"
Pasquier, J. F. „Native and irradiated Charge Transfer Inefficiency characterization“. EAS Publications Series 45 (2010): 61–66. http://dx.doi.org/10.1051/eas/1045010.
Der volle Inhalt der QuelleNightingale, James W., Richard J. Massey, Jacob Kegerreis und Richard G. Hayes. „PyAutoCTI: Open-Source Charge Transfer Inefficiency Calibration“. Journal of Open Source Software 9, Nr. 98 (01.06.2024): 4904. http://dx.doi.org/10.21105/joss.04904.
Der volle Inhalt der QuelleStetson, Peter B. „On the Photometric Consequences of Charge‐Transfer Inefficiency in WFPC2“. Publications of the Astronomical Society of the Pacific 110, Nr. 754 (Dezember 1998): 1448–63. http://dx.doi.org/10.1086/316286.
Der volle Inhalt der QuelleManeuski, Dzmitry. „Simulation of the charge transfer inefficiency of column parallel CCDs“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 591, Nr. 1 (Juni 2008): 252–54. http://dx.doi.org/10.1016/j.nima.2008.03.066.
Der volle Inhalt der QuelleBouchy, F., J. Isambert, C. Lovis, I. Boisse, P. Figueira, G. Hébrard und F. Pepe. „Charge Transfer Inefficiency effect for high-precision radial velocity measurements“. EAS Publications Series 37 (2009): 247–53. http://dx.doi.org/10.1051/eas/0937031.
Der volle Inhalt der QuelleSmith, P. H., J. P. D. Gow, P. Pool und A. D. Holland. „Charge transfer inefficiency in the pre- and post-irradiated Swept Charge Device CCD236“. Journal of Instrumentation 10, Nr. 03 (24.03.2015): C03041. http://dx.doi.org/10.1088/1748-0221/10/03/c03041.
Der volle Inhalt der QuelleBlake, C. H., S. Halverson und A. Roy. „The impact of charge transfer inefficiency on Extreme Precision Doppler measurements“. Journal of Instrumentation 12, Nr. 04 (03.04.2017): C04003. http://dx.doi.org/10.1088/1748-0221/12/04/c04003.
Der volle Inhalt der QuelleRhodes, Jason, Alexie Leauthaud, Chris Stoughton, Richard Massey, Kyle Dawson, William Kolbe und Natalie Roe. „The Effects of Charge Transfer Inefficiency (CTI) on Galaxy Shape Measurements“. Publications of the Astronomical Society of the Pacific 122, Nr. 890 (April 2010): 439–50. http://dx.doi.org/10.1086/651675.
Der volle Inhalt der QuelleTownsley, L. K., P. S. Broos, J. A. Nousek und G. P. Garmire. „Modeling charge transfer inefficiency in the Chandra Advanced CCD Imaging Spectrometer“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 486, Nr. 3 (Juli 2002): 751–84. http://dx.doi.org/10.1016/s0168-9002(01)02156-8.
Der volle Inhalt der QuelleToyozumi, Hiroyuki, und Michael C. B. Ashley. „Intra-Pixel Sensitivity Variation and Charge Transfer Inefficiency — Results of CCD Scans“. Publications of the Astronomical Society of Australia 22, Nr. 3 (2005): 257–66. http://dx.doi.org/10.1071/as05013.
Der volle Inhalt der QuelleDissertationen zum Thema "Charge Transfert Inefficiency"
Salih, Alj Antoine. „Effets des radiations et propriétés électriques d’un capteur CCD-sur-CMOS à tranchées profondes actives pour l’imagerie haute-performance“. Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0048.
Der volle Inhalt der QuelleCMOS imaging devices (Complementary Metal Oxide Semiconductor) have numerous applications in high-resolution terrestrial imaging and scientific imaging (e.g., Sentinel-2, MSL2020, and MMX). The remarkable advancements made in CMOS imaging technology over the past five years, both in terms of photodetection performance and noise reduction, have paved the way for very high-performance applications, where CCDs (Charge Coupled Devices) were previously considered the best candidates.For such applications, the development of this technology must focus on improving the signal-to-noise ratio (SNR) to achieve optimal spatial resolution in satellite images for terrestrial observation (sub-meter resolution). The first lever for improvement is increasing detector sensitivity, to optimize inter-pixel charge transfer and reduce parasitic dark currents. The second lever is maximizing charge collection capacity and controlling saturation effects. All these parameters must be evaluated considering the space environment, particularly the effects of radiation (ionization and displacement), which can significantly degrade the electrical properties of image sensors.The CMOS technology currently favored for future high-resolution terrestrial imaging projects integrates a specific feature of active deep trench isolation. When combined with the appropriate trench potential, this technology allows the control of charge movements within the silicon. As a result, CCD-on-CMOS charge transfer registers using this technology have been successfully implemented. Theoretical analysis and characterization of certain two-phase CCD register architectures have yielded very promising results and opened up new perspectives.The objectives of this thesis are multiple: to improve the understanding of this new type of charge transfer pixel, particularly the active deep trench isolation feature, through an in-depth analysis of the physical phenomena involved and the effects of radiation (both in terms of ionizing dose and displacement). Additionally, it aims to evaluate and propose design optimizations for various operating modes (Time Delay Integration, Electron Multiplication), to achieve the targeted SNR performance while meeting radiation tolerance requirements for high-resolution imaging
Buchteile zum Thema "Charge Transfert Inefficiency"
Pestieau, Pierre. „Efficiency of the welfare state“. In The Welfare State in the European Union, 78–90. Oxford University PressOxford, 2005. http://dx.doi.org/10.1093/oso/9780199261017.003.0008.
Der volle Inhalt der QuelleColonnelli, Emanuele, und Nicole Ntungire. „Construction and Public Procurement in Uganda“. In Mining for Change, 326–48. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851172.003.0015.
Der volle Inhalt der QuelleAlabbasi, Yousef, und Kamaljeet Sandhu. „Blockchain Innovation and Information Technology at GCC“. In Research Anthology on Blockchain Technology in Business, Healthcare, Education, and Government, 751–64. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5351-0.ch044.
Der volle Inhalt der QuelleAlabbasi, Yousef, und Kamaljeet Sandhu. „The Framework for Blockchain Innovation and the Impact on Digital Economic Transformation“. In Research Anthology on Blockchain Technology in Business, Healthcare, Education, and Government, 172–84. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5351-0.ch009.
Der volle Inhalt der QuelleMusungwini, Samuel, Yvonne Madongonda und Hope Hogo. „Contemporary Agriculture Marketing Strategies for Smallholder Farmers in a Developing Context“. In Sustainable Practices for Agriculture and Marketing Convergence, 200–225. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-2011-2.ch009.
Der volle Inhalt der QuelleMatos, Douglas Nuernberg de, und Samantha Zamberlan Leyraud. „Use of antimicrobial seal in central venous catheter in hemodialysis patients“. In Health and Medicine: Science, Care, and Discoveries. Seven Editora, 2024. http://dx.doi.org/10.56238/sevened2023.004-037.
Der volle Inhalt der QuelleHnylianska, Olha. „BENCHMARKING AS A NEW COMPONENT FOR EFFECTIVE DEVELOPMENT OF THE ENTERPRISE“. In Scientific space in the conditions of global transformations of the modern world. Publishing House “Baltija Publishing”, 2022. http://dx.doi.org/10.30525/978-9934-26-255-5-5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Charge Transfert Inefficiency"
Nyren, Daniel, Marc Tardiff und Kenneth Desabrais. „Passive Stabilization and Stability Quantification of Helicopter Sling Load Payloads“. In Vertical Flight Society 71st Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10227.
Der volle Inhalt der QuelleSOPCZAK, ANDRÉ. „LCFI CHARGE TRANSFER INEFFICIENCY STUDIES FOR CCD VERTEX DETECTORS“. In Proceedings of the 9th Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773678_0140.
Der volle Inhalt der QuelleGow, Jason P. D., und Neil J. Murray. „Simplified charge transfer inefficiency correction in CCDs by trap-pumping“. In SPIE Astronomical Telescopes + Instrumentation, herausgegeben von Andrew D. Holland und James Beletic. SPIE, 2016. http://dx.doi.org/10.1117/12.2232706.
Der volle Inhalt der QuelleKelman, Bradley, Thibaut Prod'homme, Jesper Skottfelt, Frederic Lemmel, Matej Arko, Patricia Liebing, Peter Verhoeve, Ben Dryer, David Hall und Michael Hubbard. „Calibrating and correcting charge transfer inefficiency in CCDs using Pyxel“. In X-Ray, Optical, and Infrared Detectors for Astronomy X, herausgegeben von Andrew D. Holland und James Beletic. SPIE, 2022. http://dx.doi.org/10.1117/12.2629896.
Der volle Inhalt der QuelleGow, J. P. D., und N. J. Murray. „Charge transfer inefficiency mitigation in a CCD by trap pumping“. In 2016 16th European Conference on Radiation and its Effects on Components and Systems (RADECS). IEEE, 2016. http://dx.doi.org/10.1109/radecs.2016.8093128.
Der volle Inhalt der QuelleGrant, C. E., M. W. Bautz, S. E. Kissel, B. LaMarr und G. Y. Prigozhin. „Temperature dependence of charge transfer inefficiency in Chandra X-ray CCDs“. In SPIE Astronomical Telescopes + Instrumentation, herausgegeben von David A. Dorn und Andrew D. Holland. SPIE, 2006. http://dx.doi.org/10.1117/12.672019.
Der volle Inhalt der QuelleAhmed, Saad, David J. Hall, Cian Crowley, Jesper M. Skottfelt, Ben Dryer, George Seabroke, José Hernández und Andrew D. Holland. „Gaia CCDs: charge transfer inefficiency measurements between five years of flight“. In X-ray, Optical, and Infrared Detectors for Astronomy IX, herausgegeben von Andrew D. Holland und James Beletic. SPIE, 2020. http://dx.doi.org/10.1117/12.2562162.
Der volle Inhalt der QuelleHou, Rui, Shanghong Zhao, Zhoushi Yao, Jie Xu und Xiaofeng Jiang. „Analysis of charge transfer inefficiency of CCD equipment under proton radiation“. In 2011 International Conference on Electronics and Optoelectronics (ICEOE). IEEE, 2011. http://dx.doi.org/10.1109/iceoe.2011.6013232.
Der volle Inhalt der QuelleGrant, Catherine E., Mark W. Bautz, Steven E. Kissel und Beverly LaMarr. „A charge-transfer-inefficiency correction model for the Chandra advanced-CCD imaging spectrometer“. In SPIE Astronomical Telescopes + Instrumentation, herausgegeben von Andrew D. Holland. SPIE, 2004. http://dx.doi.org/10.1117/12.550628.
Der volle Inhalt der QuelleSopczak, Andre, Salim Aoulmit, Khaled Bekhouche, Chris Bowdery, Craig Buttar, Chris Damerell, Dahmane Djendaoui et al. „Modeling of charge transfer inefficiency in a CCD with high-speed column parallel readout“. In 2008 IEEE Nuclear Science Symposium and Medical Imaging conference (2008 NSS/MIC). IEEE, 2008. http://dx.doi.org/10.1109/nssmic.2008.4774902.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Charge Transfert Inefficiency"
Norelli, John L., Moshe Flaishman, Herb Aldwinckle und David Gidoni. Regulated expression of site-specific DNA recombination for precision genetic engineering of apple. United States Department of Agriculture, März 2005. http://dx.doi.org/10.32747/2005.7587214.bard.
Der volle Inhalt der Quelle