Zeitschriftenartikel zum Thema „Charge transfers and SEI“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Charge transfers and SEI" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Qi, Yue. „(Invited) Modeling the Charge Transfer Reactions at Li/SEI/Electrolyte Interfaces in Lithium-Ion Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 45 (28.08.2023): 2452. http://dx.doi.org/10.1149/ma2023-01452452mtgabs.
Der volle Inhalt der QuelleMorasch, Robert, Hubert A. Gasteiger und Bharatkumar Suthar. „Li-Ion Battery Material Impedance Analysis II: Graphite and Solid Electrolyte Interphase Kinetics“. Journal of The Electrochemical Society 171, Nr. 5 (01.05.2024): 050548. http://dx.doi.org/10.1149/1945-7111/ad48c0.
Der volle Inhalt der QuelleLee, Sangyup, und Soon-Ki Jeong. „Investigation of the electrochemical properties of a propylene carbonate-derived SEI in an ethylene carbonate-based solution“. BIO Web of Conferences 62 (2023): 04002. http://dx.doi.org/10.1051/bioconf/20236204002.
Der volle Inhalt der QuelleJeong, Soon Ki. „Effects of Lithium Salt on Interfacial Reactions between SiC and EC-Based Solutions in Lithium Secondary Batteries“. Applied Mechanics and Materials 873 (November 2017): 112–16. http://dx.doi.org/10.4028/www.scientific.net/amm.873.112.
Der volle Inhalt der QuelleTsujimoto, Shota, Changhee Lee, Yuto Miyahara, Kohei Miyazaki und Takeshi Abe. „Effect of Electrolyte on Sodium-Ion Storage Behavior into Non-Graphitizable Carbon Negative Electrode“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 806. http://dx.doi.org/10.1149/ma2023-024806mtgabs.
Der volle Inhalt der QuelleZhou, Xuan, Ping Li, Zhihao Tang, Jialu Liu, Shaowei Zhang, Yingke Zhou und Xiaohui Tian. „FEC Additive for Improved SEI Film and Electrochemical Performance of the Lithium Primary Battery“. Energies 14, Nr. 22 (09.11.2021): 7467. http://dx.doi.org/10.3390/en14227467.
Der volle Inhalt der QuelleLi, Galina, Aleksander Rumyantsev, Ekaterina Astrova und Maxim Maximov. „Growth of the Cycle Life and Rate Capability of LIB Silicon Anodes Based on Macroporous Membranes“. Membranes 12, Nr. 11 (25.10.2022): 1037. http://dx.doi.org/10.3390/membranes12111037.
Der volle Inhalt der QuelleHousel, Lisa M., Alyson Abraham, Genesis D. Renderos, Kenneth J. Takeuchi, Esther S. Takeuchi und Amy C. Marschilok. „Surface Electrolyte Interphase Control on Magnetite, Fe3O4, Electrodes: Impact on Electrochemistry“. MRS Advances 3, Nr. 11 (2018): 581–86. http://dx.doi.org/10.1557/adv.2018.294.
Der volle Inhalt der QuelleZhuang, Qinqin, Weihuang Yang, Wei Lin, Linxi Dong und Changjie Zhou. „Gas Sensing of Monolayer GeSe: A First-Principles Study“. Nano 14, Nr. 10 (Oktober 2019): 1950131. http://dx.doi.org/10.1142/s1793292019501315.
Der volle Inhalt der QuellePotapenko, Anna V., Oleksandr V. Potapenko, Oleksandr V. Krushevskyi und Miaomiao Zhou. „EIS Analysis of Sulfur Cathodes with Water-Soluble Binder NV-1A for Lithium-Sulfur Batteries“. ECS Transactions 105, Nr. 1 (30.11.2021): 225–29. http://dx.doi.org/10.1149/10501.0225ecst.
Der volle Inhalt der QuelleSingh, Triesha, und Bryan D. McCloskey. „Correlating Solid-Electrolyte Interface Composition to Charge Transfer Resistance for Improved Low-Temperature Performance of Lithium-Ion Batteries“. ECS Meeting Abstracts MA2023-02, Nr. 5 (22.12.2023): 883. http://dx.doi.org/10.1149/ma2023-025883mtgabs.
Der volle Inhalt der QuelleLi, Yunsong, und Yue Qi. „Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface“. Energy & Environmental Science 12, Nr. 4 (2019): 1286–95. http://dx.doi.org/10.1039/c8ee03586e.
Der volle Inhalt der QuelleKallel, Ahmed Yahia, Viktor Petrychenko und Olfa Kanoun. „State-of-Health of Li-Ion Battery Estimation Based on the Efficiency of the Charge Transfer Extracted from Impedance Spectra“. Applied Sciences 12, Nr. 2 (16.01.2022): 885. http://dx.doi.org/10.3390/app12020885.
Der volle Inhalt der QuelleGu, Xin, Li Zhang, Wenchao Zhang, Sailin Liu, Sheng Wen, Xinning Mao, Pengcheng Dai et al. „A CoSe–C@C core–shell structure with stable potassium storage performance realized by an effective solid electrolyte interphase layer“. Journal of Materials Chemistry A 9, Nr. 18 (2021): 11397–404. http://dx.doi.org/10.1039/d1ta01107c.
Der volle Inhalt der QuellePark, Kyoung Soo, Soon Ki Jeong und Yang Soo Kim. „Electrochemical Properties of NbO as a Negative Electrode Material for Lithium Secondary Batteries“. Applied Mechanics and Materials 835 (Mai 2016): 126–30. http://dx.doi.org/10.4028/www.scientific.net/amm.835.126.
Der volle Inhalt der QuelleSaito, Morihiro, Yoshiyuki Nakano, Mikihiro Takagi, Takuma Maekawa, Akimasa Tasaka, Minoru Inaba, Hitoshi Takebayashi und Yoshio Shodai. „Effect of Surface Fluorination on the Charge/Discharge Properties of High Potential Negative Electrode TiO2(B) for LIBs“. Key Engineering Materials 582 (September 2013): 127–30. http://dx.doi.org/10.4028/www.scientific.net/kem.582.127.
Der volle Inhalt der QuelleTsujimoto, Shota, Changhee Lee, Yuto Miyahara, Kohei Miyazaki und Takeshi Abe. „Effect of Solid Electrolyte Interphase on Sodium-Ion Insertion and Deinsertion in Non-Graphitizable Carbon“. Journal of The Electrochemical Society 170, Nr. 9 (01.09.2023): 090526. http://dx.doi.org/10.1149/1945-7111/acf8fe.
Der volle Inhalt der QuelleYao, Koffi Pierre, Rownak Jahan Mou und Sattajit Barua. „Electrophoretic Deposition of Chitosan as Synthetic SEI for Silicon Anode: A Model System Investigation“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 523. http://dx.doi.org/10.1149/ma2023-012523mtgabs.
Der volle Inhalt der QuelleWu, Liang-Ting, Santhanamoorthi Nachimuthu, Daniel Brandell, Chia-Ni Tsai, Pei-Hsuan Wang, Yeh-Wei Li und Jyh-Chiang Jiang. „Role of Copper as Current Collectors in the Reductive Reactivity of Polymers for Anode-Free Lithium Metal Batteries - Insights from DFT and AIMD Studies“. ECS Meeting Abstracts MA2023-02, Nr. 5 (22.12.2023): 845. http://dx.doi.org/10.1149/ma2023-025845mtgabs.
Der volle Inhalt der QuelleOvejas, Victoria, und Angel Cuadras. „Impedance Characterization of an LCO-NMC/Graphite Cell: Ohmic Conduction, SEI Transport and Charge-Transfer Phenomenon“. Batteries 4, Nr. 3 (10.09.2018): 43. http://dx.doi.org/10.3390/batteries4030043.
Der volle Inhalt der QuelleWang, Qi, Rui Zhang, Dan Sun, Haiyan Wang und Yougen Tang. „Manipulating Electrolyte Interface Chemistry Enables High-Performance TiO2 Anode for Sodium-Ion Batteries“. Batteries 10, Nr. 10 (11.10.2024): 362. http://dx.doi.org/10.3390/batteries10100362.
Der volle Inhalt der QuelleKondo, Yasuyuki, Tomokazu Fukutsuka, Yuko Yokoyama, Yuto Miyahara, Kohei Miyazaki und Takeshi Abe. „Kinetic properties of sodium-ion transfer at the interface between graphitic materials and organic electrolyte solutions“. Journal of Applied Electrochemistry 51, Nr. 4 (07.02.2021): 629–38. http://dx.doi.org/10.1007/s10800-020-01523-z.
Der volle Inhalt der QuelleSunderraj, Niranjan, Shankar Raman Dhanushkodi, Ramesh Kumar Chidambaram, Bohdan Węglowski, Dorota Skrzyniowska, Mathias Schmid und Michael William Fowler. „Development of Semi-Empirical and Machine Learning Models for Photoelectrochemical Cells“. Energies 17, Nr. 21 (25.10.2024): 5313. http://dx.doi.org/10.3390/en17215313.
Der volle Inhalt der QuelleSchlaier, Jonas, Roman Fedorov, Shixian Huang, Yair Ein-Eli, Michael Schneider, Christian Heubner und Alexander Michaelis. „Electrochemical Characterization of Artificial Solid Electrolyte Interphase Developed on Graphite Via ALD“. ECS Meeting Abstracts MA2023-02, Nr. 60 (22.12.2023): 2909. http://dx.doi.org/10.1149/ma2023-02602909mtgabs.
Der volle Inhalt der QuelleStich, Michael, Jesus Eduardo Valdes Landa, Isabel Pantenburg, Bernhard Roling und Andreas Bund. „Combined Operando Investigations Reveal Correlation between Formation Parameters and Transport Mechanisms in Solid Electrolyte Interphases of Lithium-Ion Battery Anodes“. ECS Meeting Abstracts MA2023-02, Nr. 5 (22.12.2023): 887. http://dx.doi.org/10.1149/ma2023-025887mtgabs.
Der volle Inhalt der QuelleYamamoto, Satoshi, Ryotaro Sakakibara, Munekazu Motoyama, Norikazu Ishigaki, Wataru Norimatsu und Yasutoshi Iriyama. „LiPON/Multilayer-Graphene Interface Enables High-Rate Charging and Discharging“. ECS Meeting Abstracts MA2023-02, Nr. 5 (22.12.2023): 839. http://dx.doi.org/10.1149/ma2023-025839mtgabs.
Der volle Inhalt der QuelleMosallanejad, Behrooz, Mehran Javanbakht, Zahra Shariatinia und Mohammad Akrami. „Phenyl Vinylsulfonate, a Novel Electrolyte Additive to Improve Electrochemical Performance of Lithium-Ion Batteries“. Energies 15, Nr. 17 (26.08.2022): 6205. http://dx.doi.org/10.3390/en15176205.
Der volle Inhalt der QuelleSchmidt-Meinzer, Noah, und Ingo Krossing. „Synthesis and Electrochemical Characterization of Novel Electrolyte Additives for High Performance in Lithium-Ion Batteries with Si-Based Anodes“. ECS Meeting Abstracts MA2023-02, Nr. 65 (22.12.2023): 3093. http://dx.doi.org/10.1149/ma2023-02653093mtgabs.
Der volle Inhalt der QuelleZheng, Lu, Liang Bin Liu, Xiao Jing Zhou und Yu Zhong Guo. „An Electrochemical Impedance Spectroscopy (EIS) Study of Zn-Doped Li (Ni1/3Co1/3Mn1/3) O2 Cathode Materials in the First Delithiation Process“. Advanced Materials Research 833 (November 2013): 50–55. http://dx.doi.org/10.4028/www.scientific.net/amr.833.50.
Der volle Inhalt der QuelleGenov, Ivan, Alexander Tesfaye, Svetlozar Ivanov und Andreas Bund. „Investigations on the Initial-Stages of Lithium Deposition/Dissolution Processes in Sulfolane Based Electrolytes“. ECS Meeting Abstracts MA2023-02, Nr. 5 (22.12.2023): 833. http://dx.doi.org/10.1149/ma2023-025833mtgabs.
Der volle Inhalt der QuelleAboonasr Shiraz, Mohammad Hossein, Erwin Rehl, Hossein Kazemian und Jian Liu. „Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating“. Nanomaterials 11, Nr. 8 (31.07.2021): 1976. http://dx.doi.org/10.3390/nano11081976.
Der volle Inhalt der QuelleJoshi, Prerna, Katsuhito Iwai, Sai Gourang Patnaik, Raman Vedarajan und Noriyoshi Matsumi. „Reduction of Charge-Transfer Resistance via Artificial SEI Formation Using Electropolymerization of Borylated Thiophene Monomer on Graphite Anodes“. Journal of The Electrochemical Society 165, Nr. 3 (2018): A493—A500. http://dx.doi.org/10.1149/2.0141803jes.
Der volle Inhalt der QuelleFlasque, Miguel, Albert Nguyen Van Nhien, Davide Moia, Piers R. F. Barnes und Frédéric Sauvage. „Consequences of Solid Electrolyte Interphase (SEI) Formation upon Aging on Charge-Transfer Processes in Dye-Sensitized Solar Cells“. Journal of Physical Chemistry C 120, Nr. 34 (23.08.2016): 18991–98. http://dx.doi.org/10.1021/acs.jpcc.6b05977.
Der volle Inhalt der QuelleCora, Saida, und Niya Sa. „Mechanisms of Si Stabilization for Future Anode Design“. ECS Meeting Abstracts MA2022-02, Nr. 4 (09.10.2022): 359. http://dx.doi.org/10.1149/ma2022-024359mtgabs.
Der volle Inhalt der QuelleNesterova, Inara, Liga Britala, Anatolijs Sarakovskis, Beate Kruze, Gunars Bajars und Gints Kucinskis. „The Impact of Graphene in Na2FeP2O7/C/Reduced Graphene Oxide Composite Cathode for Sodium-Ion Batteries“. Batteries 9, Nr. 8 (03.08.2023): 406. http://dx.doi.org/10.3390/batteries9080406.
Der volle Inhalt der QuelleOroszová, Lenka, Dávid Csík, Gabriela Baranová, Gábor Bortel, Róbert Džunda, László Temleitner, Mária Hagarová, Ben Breitung und Karel Saksl. „Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)3O4 as a Graphite Alternative in Lithium-Ion Batteries“. Crystals 14, Nr. 3 (24.02.2024): 218. http://dx.doi.org/10.3390/cryst14030218.
Der volle Inhalt der QuelleHuang, Yan Dan, Ying Bin Lin und Zhi Gao Huang. „Enhanced Electrochemical Performances of LiFePO4/C Cathode Materials by Deposited with Ge Film“. Advanced Materials Research 936 (Juni 2014): 480–85. http://dx.doi.org/10.4028/www.scientific.net/amr.936.480.
Der volle Inhalt der QuelleKim, Tae Hyeon, Sung Su Park, Min Su Kang, Ye Rin Kim, Ho Seok Park, Hyun-seung Kim und Goojin Jeong. „Accelerated Degradation of SiO/NCM Cell Quick Rechargeability Due to Depth-of-Discharge Range Dependent Failure Induced Li Dendrite Formation“. Journal of The Electrochemical Society 169, Nr. 2 (01.02.2022): 020562. http://dx.doi.org/10.1149/1945-7111/ac53cf.
Der volle Inhalt der QuelleLoghavi, Mohammad Mohsen, Saeed Bahadorikhalili, Najme Lari, Mohammad Hadi Moghim, Mohsen Babaiee und Rahim Eqra. „The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode“. Zeitschrift für Physikalische Chemie 234, Nr. 3 (26.03.2020): 381–97. http://dx.doi.org/10.1515/zpch-2018-1343.
Der volle Inhalt der QuelleVlčková, Zuzana, Martin Jindra, Gabriela Soukupová, Tomáš Lapka, Farjana Sonia, Martin Müller, Jiří Červenka, Antonín Fejfar, Fatima Hassouna und Otakar Frank. „In Situ Raman Spectroelectrochemical Investigation of Composite Si Nanoparticle-Based Anode for Li-Ion Batteries during (de)Lithiation Process“. ECS Meeting Abstracts MA2023-02, Nr. 5 (22.12.2023): 823. http://dx.doi.org/10.1149/ma2023-025823mtgabs.
Der volle Inhalt der QuelleGossage, Zachary Tyson, Nanako Ito, Tomooki Hosaka, Ryoichi Tatara und Shinichi Komaba. „Understanding the Development and Properties of SEI in Concentrated Aqueous Electrolytes Via Scanning Electrochemical Microscopy“. ECS Meeting Abstracts MA2023-02, Nr. 60 (22.12.2023): 2900. http://dx.doi.org/10.1149/ma2023-02602900mtgabs.
Der volle Inhalt der QuelleLee, Dongsoo, Seho Sun, Chanho Kim, Jeongheon Kim, Keemin Park, Jiseok Kwon, Dowon Song, Kangchun Lee, Taeseup Song und Ungyu Paik. „Highly reversible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy“. Applied Surface Science 572 (Januar 2022): 151439. http://dx.doi.org/10.1016/j.apsusc.2021.151439.
Der volle Inhalt der QuelleEldesoky, A., E. R. Logan, A. J. Louli, Wentao Song, Rochelle Weber, Sunny Hy, Remi Petibon et al. „Impact of Graphite Materials on the Lifetime of NMC811/Graphite Pouch Cells: Part II. Long-Term Cycling, Stack Pressure Growth, Isothermal Microcalorimetry, and Lifetime Projection“. Journal of The Electrochemical Society 169, Nr. 1 (01.01.2022): 010501. http://dx.doi.org/10.1149/1945-7111/ac42f1.
Der volle Inhalt der QuelleJayawardana, Chamithri, Nuwanthi Dilhari Rodrigo und Brett L. Lucht. „(Invited) Lithium Tetrafluoroborate Based Ester Electrolyte System for Wide Operating Temperatures Ingraphite/ Lini 0.6 Co 0.2 Mn 0.2 O 2 Cells“. ECS Meeting Abstracts MA2023-01, Nr. 38 (28.08.2023): 2237. http://dx.doi.org/10.1149/ma2023-01382237mtgabs.
Der volle Inhalt der QuelleFeng, Deshi, Ruiling Zheng, Li Qiao, Shiteng Li, Fengzhao Xu, Chuangen Ye, Jing Zhang und Yong Li. „Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes“. Polymers 16, Nr. 13 (05.07.2024): 1924. http://dx.doi.org/10.3390/polym16131924.
Der volle Inhalt der QuelleXu, Xia, Wei Zeng, Fu-Sheng Liu, Zheng-Tang Liu und Qi-Jun Liu. „First-principles calculations of the structural, elastic, mechanical, electronic and optical properties of monoclinic Hf4CuSi4“. International Journal of Modern Physics B 34, Nr. 06 (25.02.2020): 2050035. http://dx.doi.org/10.1142/s0217979220500356.
Der volle Inhalt der QuelleHossain, Md Jamil, Qisheng Wu, David C. Bock, Amy C. Marschilok, Kenneth J. Takeuchi, Esther S. Takeuchi und Yue Qi. „Designing Localized High Concentration Electrolytes Based on Fluorinated Solvents for Lithium-Ion Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 650. http://dx.doi.org/10.1149/ma2023-012650mtgabs.
Der volle Inhalt der QuelleKurc, Beata, Marita Pigłowska und Łukasz Rymaniak. „The Electrochemical Stability of Starch Carbon as an Important Property in the Construction of a Lithium-Ion Cell“. Entropy 23, Nr. 7 (05.07.2021): 861. http://dx.doi.org/10.3390/e23070861.
Der volle Inhalt der QuelleReuter, Lennart, Robert Morasch, Jonas Dickmanns, Filippo Maglia, Roland Jung und Hubert Andreas Gasteiger. „Temperature Dependent Formation of the Graphite SEI with Vinylene Carbonate Electrolyte Additive“. ECS Meeting Abstracts MA2022-01, Nr. 2 (07.07.2022): 432. http://dx.doi.org/10.1149/ma2022-012432mtgabs.
Der volle Inhalt der QuelleHubbard, Christopher G., L. Jared West, Juan Diego Rodriguez-Blanco und Samuel Shaw. „Laboratory study of spectral induced polarization responses of magnetite — Fe2+ redox reactions in porous media“. GEOPHYSICS 79, Nr. 1 (01.01.2014): D21—D30. http://dx.doi.org/10.1190/geo2013-0079.1.
Der volle Inhalt der Quelle