Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Chaperons d'histone“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chaperons d'histone" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Chaperons d'histone"
Bakail, May. „Ciblage des chaperons d'histone par une stratégie peptidomimétique“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS388.
Der volle Inhalt der QuelleASF1 is a histone H3-H4 chaperone implicated in several cancers. Like many proteins, this chaperone mediates its cellular functions through protein-protein interactions involving various protein partners. The present thesis focuses on the development of an original strategy to design inhibitory peptides targeting such disease-associated type of biological interactions. This rational and iterative strategy relies on the tethering of binding epitopes isolated from different partners, and stabilized by “anchor” residues that engage large number of atomic contacts with the target. The further progression of this approach toward a peptidomimetic strategy overcomes obstacles commonly associated to the therapeutic use of peptides such as biodisponibility and half-life. Applied for targeting ASF1, such method allowed the conception of a peptide, ip4, presenting a 3nM affinity for its target, which is 3000 fold higher than that of the natural partner H3. This peptide could be successfully mimicked by an oligourea structure, giving rise to the peptidomimetic if3. When coupled to a cleavable Cell Penetrating Peptide, these inhibitors displayed an on-target effect where they impeded cancerous cells proliferation, ultimately resulting in cells death
Ignatyeva, Maria. „Identification et caractérisation de HIRIP3 comme nouveau chaperon d'histone H2A“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ028.
Der volle Inhalt der QuelleThe genome of eukaryotic cells is packaged into chromatin, which establishment and maintenance require mechanisms of assembly and remodelling. This thesis work was dedicated to the characterization of two factors of chromatin assembly machinery. The first factor studied in this work was HIRIP3, a mammalian homologue of yeast H2A.Z chaperone Chz1. We aimed to test whether HIRIP3 is a histone chaperone by itself. At first, we established HIRIP3 interaction with histones in vivo. After then, we studied the structural specificity of this interaction in vitro. We have characterized HIRIP3 as a novel H2A histone chaperone that utilizes the CHZ motif for its function. The second part of this work was focused on SRCAP chromatin remodelling complex. We aimed to decipher its interaction network and to describe its sub-complexes. We have reconstituted YL1, SRCAP, TIP49A, TIP49B and H2A.Z/H2B core complex using baculovirus expression system. Our protocol allowed us to purify core complex suitable for future structural studies by cryo-electron microscopy
Obri, Arnaud. „Etude structurale et fonctionnelle de la variante d'histone H2AZ“. Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00912335.
Der volle Inhalt der QuelleTorné, Cortada Júlia. „Le rôle du complexe HIRA coordonnant la dynamique des histones nouvelles et anciennes lors de la transcription“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. https://theses.hal.science/tel-03580303.
Der volle Inhalt der QuelleThe packaging of DNA into nucleosomes represents a challenge for transcription. Nucleosome disruption and histone eviction enables RNA Polymerase II progression through DNA, a process that compromises chromatin integrity and the maintenance of epigenetic information. Here, we used the imaging SNAP-tag system to distinguish new and old histones and monitor chromatin re-assembly coupled to transcription incells. First, we uncovered a loss of both old variants H3.1 and H3.3 that depends on transcriptional activity, with a major effect on H3.3. Focusing on transcriptionally active domains, we revealed a local enrichment in H3.3 with dynamics involving both new H3.3 incorporation and old H3.3 retention. Mechanistically, we demonstrate that the HIRA chaperone is critical to handle both new and old H3.3, and showed that this implicates different pathways. The de novo H3.3 deposition depends strictly on HIRA trimerization as well as its partner UBN1 while ASF1 interaction with HIRA can be bypassed. In contrast, the recycling of H3.3 requires HIRA but proceeds independently of UBN1 or HIRA trimerization and shows an absolute dependency on ASF1-HIRA interaction. Therefore, we propose a model where HIRA can coordinate these distinct pathways for old H3.3 recycling and new H3.3 deposition during transcription to finetune chromatin states
Yettou, Guillaume. „Rôle de la chaperonne d'histone DAXX dans le maintien et l'établissement de l'hétérochromatine“. Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAJ054.
Der volle Inhalt der QuelleThe functional role of pericentromeric heterochromatin transcripts remains largely unknown in higher eukaryotes. Nevertheless, it has been shown that these transcripts are subject to very precise control, depending on the cell cycle. Regulation of transcription is tightly controlled by chromatin structure that can be modified locally by changing the biochemical composition of the nucleosome, including the use of histone variants. The aim of my thesis was to better understand the role of the histone chaperone protein DAXX and its histone variant H3.3 in the regulation of transcription of pericentromeric repeats. By the method of TAP-TAG purification, DAXX specific partners were identified from soluble nuclear extracts of murine embryonic fibroblasts. These analyzes revealed that CAF-1, classically associated with H3.1, and the chromatin remodeling factors, ATRX and CHD4, specifically interact with DAXX. The role of these proteins in the control of transcription of pericentromeric heterochromatin was then highlighted by an approach combining RNAi and Q-PCR. Finally, the results strongly suggest that these regulatory mechanisms take place at PML nuclear bodies. Taken together, these data show that there is a spatio-temporal regulation of the fine structure of chromatin regulates transcription of pericentromeric heterochromatin
Liu, Danni. „Rôle des chaperons d’histones dans la réplication et la réparation de l’ADN“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS044.
Der volle Inhalt der QuelleIn eukaryotes, chromatin carries both, the genetic and epigenetic information. Mechanisms implicated in maintenance of these information during cell division or DNA repair remain poorly understood and they constitute the main issue of this thesis project. More specifically, the goal of the project is to understand how histone chaperones coordinate their action with partners associated with the replication fork to recognize and preserve the epigenetic marks carried by parental histones and to copy on the newly synthesized histones. The work unravels how ASF1 (Anti-Silencing Function 1) cooperates with the CAF-1 complex (Chromatin Assembly Factor 1) and with the replicative helicase subunit MCM2 (Mini Chromosome Maintenance 2), for the management of H3-H4 histones in DNA replication and repair.Moreover, this thesis investigates the regulation of histone chaperones activities by kinases activated after a replicative stress or DNA damage. In particular, we analyzed the consequences of ASF1 phosphorylation by the enzyme called TLK (Tousled like kinase). The activity of TLK is modulated during the cell cycle and after DNA damage. Characterization of the importance of phosphorylated sites on the chaperone binding properties, allows a better understanding of the role played by different forms of ASF1 in the assembly of histones on DNA and maintenance of epigenetic information. The thesis work included biochemical and structural analysis with a combination of different techniques (SEC-MALS, AUC, ITC, NMR, X-ray crystallography) and functional analysis in cellular models
Cohen, Camille. „Rôle des corps nucléaires PML et des chaperons de l’histone H3.3 dans la chromatinisation du génome du virus Herpès Simplex 1 pendant la latence“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1208.
Der volle Inhalt der QuelleHerpes simplex virus 1 (HSV-1) latency establishment is tightly controlled by PML nuclear bodies (PML-NBs) although their exact implication is still elusive. A hallmark of HSV-1 latency is the interaction between latent viral genomes and PML-NBs leading to the formation of viral DNA-containing PML-NBs (vDCP-NBs). Using a replication defective HSV-1 infected human primary fibroblast model reproducing the formation of vDCP-NBs, combined with an IF-FISH approach developed to detect latent HSV-1, we show that vDCP-NBs contain both histone H3.3 and its chaperone complexes, i.e. the DAXX/ATRX and the HIRA complex. HIRA was also detected co-localizing with vDCP-NBs present in trigeminal ganglia neurons from HSV-1 infected WT mice. ChIP-qPCR performed on fibroblasts stably expressing tagged H3.3 or H3.1 show that latent HSV1 genomes are chromatinized almost exclusively with H3.3. Depletion of single proteins from the H3.3 chaperone complexes only mildly affects H3.3 deposition on the latent HSV1 genome. In contrast, absence of PML significantly impacts on the chromatinization of the latent genomes with H3.3 without replacement with H3.1. Consequently, the study demonstrates a specific epigenetic regulation of latent HSV-1 through an H3.3-dependent HSV-1 chromatinization involving both H3.3 chaperones DAXX/ATRX and HIRA complexes. Additionally, the study reveals that PML-NBs are major actors of the latent HSV-1 H3.3 chromatinization through a PML-NBs/histone H3.3/H3.3 chaperones axis
Agez, Morgane. „ETUDE STRUCTURALE ET FONCTIONNELLE DE LA PROTEINE CHAPERON D'HISTONES ASF1“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00268886.
Der volle Inhalt der QuelleAgez, Morgane. „Etude structurale et fonctionnelle de la protéine chaperon d'histones Asf1“. Paris 6, 2008. https://tel.archives-ouvertes.fr/tel-00268886.
Der volle Inhalt der QuelleCorpet, Armelle. „Rôle des protéines chaperons d'histones ASF1A et ASF1B humaines dans le maintien de l'organisation du génome“. Paris 6, 2010. http://www.theses.fr/2010PA066181.
Der volle Inhalt der Quelle