Auswahl der wissenschaftlichen Literatur zum Thema „Chaotický systém“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chaotický systém" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Chaotický systém"

1

SINGH, R., P. S. MOHARIR und V. M. MARU. „COMPOUND CHAOS“. International Journal of Bifurcation and Chaos 06, Nr. 02 (Februar 1996): 383–93. http://dx.doi.org/10.1142/s0218127496000138.

Der volle Inhalt der Quelle
Annotation:
Compounding is a statistical notion. Essentially, it comprises of regarding the parameters in a particular statistical distribution as random variables with a prescribed distribution. The compound distribution then acquires the parameters of the compounding distribution as its own. As deterministic chaos, in spite of being deterministic, appears like a statistical phenomenon, the notion of compounding can be extended to chaotic systems. It is shown with illustrations that a chaotic system can be compounded by another chaotic system, giving rise to compound chaos which is, in general, “chaoticer”. The concept can also be used to make a periodic system chaotic, thus opening possibilities of “chaoticization”. Examples of compound chaos and chaoticization are given using Lorenz and Rössler systems, including their attractors and limit cycles as “compoundee” and/or “compounder” systems. The conclusions are based on quantitative studies of Lyapunov exponents and correlation dimensions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sun, Yeong-Jeu. „Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Chaotic Systems“. International Journal of Trend in Scientific Research and Development Volume-3, Issue-1 (31.12.2018): 1158–61. http://dx.doi.org/10.31142/ijtsrd20219.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sun, Yeong-Jeu. „Simple Exponential Observer Design for the Generalized Liu Chaotic System“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31.12.2017): 953–56. http://dx.doi.org/10.31142/ijtsrd7126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sun, Yeong-Jeu, und Jer-Guang Hsieh. „Chaos Suppression and Stabilization of Generalized Liu Chaotic Control System“. International Journal of Trend in Scientific Research and Development Volume-3, Issue-1 (31.12.2018): 1112–15. http://dx.doi.org/10.31142/ijtsrd20195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gao, Xiang, Juhyeon Lee und Hyung-Kun Park. „Chaotic Prediction Based Channel Sensing in CR System“. Transactions of The Korean Institute of Electrical Engineers 62, Nr. 1 (01.01.2013): 140–42. http://dx.doi.org/10.5370/kiee.2012.62.1.140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kuznetsov, S. P., V. P. Kruglov und Y. V. Sedova. „Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums“. Nelineinaya Dinamika 16, Nr. 1 (2020): 51–58. http://dx.doi.org/10.20537/nd200105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ma, Yancheng, Guoan Wu und Lan Jiang. „Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems“. International Journal of Information and Electronics Engineering 6, Nr. 5 (2016): 299–303. http://dx.doi.org/10.18178/ijiee.2016.6.5.642.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mengfan Cheng, Mengfan Cheng, und Hanping Hu Hanping Hu. „Theoretical investigations of impulsive synchronization on semiconductor laser chaotic systems“. Chinese Optics Letters 10, Nr. 10 (2012): 101901–4. http://dx.doi.org/10.3788/col201210.101901.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dr.B., Gopinath, Kalyanasundaram M., Pradeepa M. und Karthika V. „Locating Hybrid Power Flow Controller in a 30-Bus System Using Chaotic Evolutionary Algorithm to Improve Power System Stability“. Bonfring International Journal of Software Engineering and Soft Computing 8, Nr. 1 (30.03.2018): 12–16. http://dx.doi.org/10.9756/bijsesc.8382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

LÜ, JINHU, GUANRONG CHEN und DAIZHAN CHENG. „A NEW CHAOTIC SYSTEM AND BEYOND: THE GENERALIZED LORENZ-LIKE SYSTEM“. International Journal of Bifurcation and Chaos 14, Nr. 05 (Mai 2004): 1507–37. http://dx.doi.org/10.1142/s021812740401014x.

Der volle Inhalt der Quelle
Annotation:
This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously, with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equilibria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations, periodic windows, and the compound structure of the new chaotic system are then investigated, either analytically or numerically. Of particular interest is the fact that this chaotic system can generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic attractor under the control of a simple constant input. Furthermore, the concept of generalized Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form. Finally, the important problems of classification and normal form of three-dimensional quadratic autonomous chaotic systems are formulated and discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Chaotický systém"

1

Rujzl, Miroslav. „Analýza a obvodové realizace speciálních chaotických systémů“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442418.

Der volle Inhalt der Quelle
Annotation:
This master‘s thesis deals with analysis of electronic dynamical systems exhibiting chaotic solution. In introduction, some basic concepts for better understanding of dynamical systems are explained. After introduction, current knowledge from the world of circuits exhibiting chaotic solutions are discussed. The best-known chaotic systems are analyzed numerically in Matlab software. Numerical analysis and experimental verification were demonstrated at C class transistor amplifier, which confirmed the chaotic behavior and generation of a strange attractor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Khůlová, Jitka. „Stabilita a chaos v nelineárních dynamických systémech“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392836.

Der volle Inhalt der Quelle
Annotation:
Diplomová práce pojednává o teorii chaotických dynamických systémů, speciálně se pak zabývá Rösslerovým systémem. Kromě standardních výpočtů spojených s bifurkační analýzou se práce zaměřuje na problém stabilizace, konkrétně na stabilizaci rovnovážných bodů. Ke stabilizaci je využita základní metoda zpětnovazebního řízení s časovým zpožděním. Významnou část práce tvoří zavedení a implementace obecné metody pro hledání vhodné volby parametrů vedoucí k úspěšné stabiliaci. Dalším diskutovaným tématem je možnost synchronizace dvou Rösslerových systémů pomocí různých synchronizačních schémat.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schneider, Judith. „Dynamical structures and manifold detection in 2D and 3D chaotic flows“. Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973637420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Borkovec, Ondřej. „Synchronizace chaotických dynamických systémů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401496.

Der volle Inhalt der Quelle
Annotation:
Diplomová práce pojednává o chaotických dynamických systémech se zvláštním zaměřením na jejich synchronizaci. Proces synchronizace je aplikován použitím dvou různých metod, a to - metodou úplné synchronizace na dva Lorenzovy systémy a metodou negativní zpětné vazby na dva Rösslerovy systémy. Dále je prozkoumána možná aplikace synchronizace chaotických systémů v oblasti soukromé komunikace, která je doplněná algoritmy v prostředí MATLAB.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Che, Dzul-Kifli Syahida. „Chaotic dynamical systems“. Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.

Der volle Inhalt der Quelle
Annotation:
In this work, we look at the dynamics of four different spaces, the interval, the unit circle, subshifts of finite type and compact countable sets. We put our emphasis on chaotic dynamical system and exhibit sufficient conditions for the system on the interval, the unit circle and subshifts of finite type to be chaotic in three different types of chaos. On the interval, we reveal two weak conditions’s role as a fast track to chaotic behavior. We also explain how a strong dense periodicity property influences chaotic behavior of dynamics on the interval, the unit circle and subshifts of finite type. Finally we show how dynamics property of compact countable sets effecting the structure of the sets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Karavas, Costas. „Fractal chaotic systems : investigation of the geological system and its sedimentation behaviour“. Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60052.

Der volle Inhalt der Quelle
Annotation:
Chaos theory has only recently been related to various phenomena in the earth sciences. Here, using systems theory in a description of geological processes, we study the chaotic development of sedimentary sequences.
The geosystem is treated as a partially specified system in order to apply qualitative stability analysis in the investigation of sedimentation behaviour and interactions among geological processes. The analysis suggests that the sedimentary system is unstable. This instability in conjunction with the system's sensitive dependence to internal fluctuations (i.e., those generated within the system) provide supporting evidence to suggest a chaotic behaviour for the sedimentation system.
We suggest that chaos could act as the common underlying mechanism which is manifest as the fractal-flicker noise character observed in reflectivity well logs. Acoustic impedance variations--the geophysical measures of lithologic variability--represent the internal organization of the interacting geological processes. This organization under a chaotic regime is responsible for the common statistical character found in various sedimentary basins.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Michaels, Alan Jason. „Digital chaotic communications“. Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/34849.

Der volle Inhalt der Quelle
Annotation:
This dissertation provides the conceptual development, modeling and simulation, physical implementation, and measured hardware results for a practicable digital coherent chaotic communication system. Such systems are highly desirable for robust communications due to the maximal entropy signal characteristics that satisfy Shannon's ideal noise-like waveform and provide optimal data transmission across a flat communications channel. At the core of the coherent chaotic communications system is a fully digital chaotic circuit, providing an efficiently controllable mechanism that overcomes the traditional bottleneck of chaotic circuit state synchronization. The analytical, simulation, and hardware results yield a generalization of direct sequence spread spectrum waveforms, that can be further extended to create a new class of maximal entropy waveforms suitable for optimized channel performance, maximal entropy transmission of chaotically spread amplitude modulated data constellations, and permission-based multiple access systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mathew, Manu K. „Nonlinear system identification and prediction /“. Online version of thesis, 1993. http://hdl.handle.net/1850/11594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Baek, Seung-Jong. „Synchronization in chaotic systems“. College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7728.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.
Thesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tang, Xian Zhu. „Transport in chaotic systems“. W&M ScholarWorks, 1996. https://scholarworks.wm.edu/etd/1539623882.

Der volle Inhalt der Quelle
Annotation:
This dissertation addresses the general problem of transport in chaotic systems. Typical fluid problem of the kind is the advection and diffusion of a passive scalar. The magnetic field evolution in a chaotic conducting media is an example of the chaotic transport of a vector field. In kinetic theory, the collisional relaxation of a distribution function in phase space is also an advection-diffusion problem, but in a higher dimensional space.;In a chaotic flow neighboring points tend to separate exponentially in time, exp({dollar}\omega t{dollar}) with {dollar}\omega{dollar} the Liapunov exponent. The characteristic parameter for the transport of a scalar in a chaotic flow is {dollar}\Omega\ \equiv\ \omega L\sp2/D{dollar} where L is the spatial scale and D is the diffusivity. For {dollar}\Omega\ \gg\ 1{dollar}, the scalar is advected with the flow for a time {dollar}t\sb{lcub}a{rcub}\ \equiv{dollar} ln(2{dollar}\Omega{dollar})/2{dollar}\omega{dollar} and then diffuses during the relatively short period 1/{dollar}\omega{dollar} centered on the time {dollar}t\sb{lcub}a{rcub}{dollar}. This rapid diffusion occurs only along the field line of the {dollar}\rm \ s\sb\infty{dollar} vector, which defines the stable direction for neighboring streamlines to converge. Diffusion is impeded at the sharp bends of an {dollar}\rm \ s{dollar} line because of a peculiarly small finite time Lyapunov exponent, hence a class of diffusion barriers is created inside a chaotic sea. This result comes from a fundamental relationship between the finite time Lyapunov exponent and the geometry of the {dollar}\rm \ s{dollar} lines, which we rigorously show in 2D and numerically validated for 3D flows.;The evolution of a general 3D magnetic field in a highly conducting chaotic media is also related to the spatial-temporal dependence of the finite time Lyapunov exponent. The Ohmic dissipation in a chaotic plasma will become a dominate process despite a small plasma resistivity. We show that the Ohmic heating in a chaotic plasma occurs in current filaments or current sheets. The particular form is determined by the time dependence of spatial gradient of the finite time Lyapunov exponent along a direction in which neighboring point neither diverge nor converge.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Chaotický systém"

1

Marek, Miloš. Chaotic Behaviour of Deterministic Dissipative Systems. Cambridge [England]: Cambridge University Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wiggins, Stephen. Chaotic Transport in Dynamical Systems. New York, NY: Springer New York, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

1948-, Hsu Sze-Bi, Hrsg. Lectures on chaotic dynamical systems. Providence, R.I: American Mathematical Society, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chaotic oscillations in mechanical systems. Manchester: Manchester University Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rasband, S. Neil. Chaotic dynamics of nonlinear systems. New York: Wiley, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bernhard, Michael A. Introduction to chaotic dynamical systems. Monterey, Calif: Naval Postgraduate School, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wiggins, Stephen. Chaotic transport in dynamical systems. New York: Springer-Verlag, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zelinka, Ivan, Sergej Celikovsky, Hendrik Richter und Guanrong Chen, Hrsg. Evolutionary Algorithms and Chaotic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10707-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wiggins, Stephen. Chaotic Transport in Dynamical Systems. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-3896-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Banerjee, Tanmoy, und Debabrata Biswas. Time-Delayed Chaotic Dynamical Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70993-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Chaotický systém"

1

Goertzel, Ben. „Linguistic Systems“. In Chaotic Logic, 63–87. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Goertzel, Ben. „Belief Systems“. In Chaotic Logic, 165–90. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Goertzel, Ben. „Self-Generating Systems“. In Chaotic Logic, 113–43. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hanslmeier, Arnold. „Chaos in the Solar System“. In The Chaotic Solar Cycle, 37–51. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9821-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chadli, Mohammed. „Chaotic Systems Reconstruction“. In Evolutionary Algorithms and Chaotic Systems, 237–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10707-8_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Crisanti, Andrea, Giovanni Paladin und Angelo Vulpiani. „Chaotic Dynamical Systems“. In Springer Series in Solid-State Sciences, 43–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84942-8_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chirikov, Boris V. „Chaotic Quantum Systems“. In Mathematical Physics X, 34–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77303-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Eubank, Stephen G., und Farmer J. Doyne. „Modeling Chaotic Systems“. In Introduction to Nonlinear Physics, 152–75. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2238-5_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Suykens, Johan, Mustak Yalçın und Joos Vandewalle. „Chaotic Systems Synchronization“. In Chaos Control, 117–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44986-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kato, Hisao. „Chaotic Continua in Chaotic Dynamical Systems“. In Topological Dynamics and Topological Data Analysis, 85–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0174-3_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Chaotický systém"

1

Hammel, Stephen, und P. W. Bo Hammer. „System identification in experimental data“. In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rasmussen, K. O. „Nonlinear localization in a disordered system“. In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Salarieh, Hassan, und Aria Alasty. „Chaos Synchronization in a Class of Chaotic Systems Using Kalman Filter and Feedback Linearization Methods“. In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95214.

Der volle Inhalt der Quelle
Annotation:
In this paper a combination of Kalman filter and feedback linearization methods is used to present a controller-identifier system for synchronizing two different chaotic systems. The drive system has some unknown parameters which are supposed to have linear form within its dynamic equation. An identifier based on Kalman filter approach is designed to estimate the unknown parameters of the drive system, and simultaneously a feedback linearizing controller is used to synchronize the chaotic behavior of the response system with the drive chaotic system. The method proposed in this paper is applied to the Lure’ and the Genesio dynamic systems as the drive and response chaotic systems. The results show the high performance of the method to identify and synchronize two different chaotic systems with unknown parameters and in presence of noise.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Brindley, John, und Tomasz Kapitaniak. „Enhanced predictability in chaotic geophysical systems“. In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.50999.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Vavriv, D. M. „Chaotic dynamics of weakly nonlinear systems“. In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brac̆ic̆, Maja. „Characteristic frequencies of the human blood distribution system“. In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302378.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Janson, Natalie B., und Vadim S. Anishchenko. „Modeling the dynamical systems on experimental data“. In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bailley, Mike. „Modeling and Imaging Mechanical Chaos“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84394.

Der volle Inhalt der Quelle
Annotation:
The word “chaotic system” [Peitgen92] describes a system whose outputs are very sensitive to its initial conditions. Because of their inherent complex nature, chaotic systems are difficult to visualize and understand. This paper describes the visualization of a mechanical chaotic system — a magnetic pendulum. The program uses dynamics modeling and imaging, so that a user can experiment with different configurations and then visualize how that configuration responds to all input conditions. The result shows interesting patterns and insights into the mechanical system itself. This same technique would be applicable to visualizing many other chaotic systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Arrayás, M. „A phase transition in a system driven by coloured noise“. In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lading, Brian. „Chaotic synchronization in a system of two coupled β-cells“. In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Chaotický systém"

1

Sussman, Gerald J., und Jack Wisdom. Chaotic Evolution of the Solar System. Fort Belvoir, VA: Defense Technical Information Center, März 1992. http://dx.doi.org/10.21236/ada260055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jen, E., M. Alber, R. Camassa, W. Choi, J. Crutchfield, D. Holm, G. Kovacic und J. Marsden. Applied mathematics of chaotic systems. Office of Scientific and Technical Information (OSTI), Juli 1996. http://dx.doi.org/10.2172/257451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Hua O., und Eyad H. Abed. Bifurcation Control of Chaotic Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, Juni 1992. http://dx.doi.org/10.21236/ada454958.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Abarbanel, H. D. Topics in Pattern Formation and Chaotic Systems. Fort Belvoir, VA: Defense Technical Information Center, Mai 1993. http://dx.doi.org/10.21236/ada265922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

CARNEGIE-MELLON UNIV PITTSBURGH PA. Non-Linear Dynamics and Chaotic Motions in Feedback Controlled Elastic System. Fort Belvoir, VA: Defense Technical Information Center, Januar 1988. http://dx.doi.org/10.21236/ada208628.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bryant, P. H. Studies of nonlinear and chaotic phenomena in solid state systems. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/5708439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Grebogi, C., und J. A. Yorke. The study of effects of small perturbations on chaotic systems. Office of Scientific and Technical Information (OSTI), Dezember 1991. http://dx.doi.org/10.2172/5955609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cuomo, Kevin M., Alan V. Oppenheim und Steven H. Isabelle. Spread Spectrum Modulation and Signal Masking Using Synchronized Chaotic Systems. Fort Belvoir, VA: Defense Technical Information Center, Februar 1992. http://dx.doi.org/10.21236/ada459567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Grebogi, C., und J. A. Yorke. The study of effects of small perturbations on chaotic systems. Office of Scientific and Technical Information (OSTI), Dezember 1990. http://dx.doi.org/10.2172/6214490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Narducci, L. M. Instabilities and Chaotic Behavior of Active and Passive Laser Systems. Fort Belvoir, VA: Defense Technical Information Center, März 1985. http://dx.doi.org/10.21236/ada153366.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie