Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Chaotic Recurrent Neural Networks“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chaotic Recurrent Neural Networks" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Chaotic Recurrent Neural Networks"
Wang, Jeff, und Raymond Lee. „Chaotic Recurrent Neural Networks for Financial Forecast“. American Journal of Neural Networks and Applications 7, Nr. 1 (2021): 7. http://dx.doi.org/10.11648/j.ajnna.20210701.12.
Der volle Inhalt der QuelleMarković, Dimitrije, und Claudius Gros. „Intrinsic Adaptation in Autonomous Recurrent Neural Networks“. Neural Computation 24, Nr. 2 (Februar 2012): 523–40. http://dx.doi.org/10.1162/neco_a_00232.
Der volle Inhalt der QuelleWang, Xing-Yuan, und Yi Zhang. „Chaotic diagonal recurrent neural network“. Chinese Physics B 21, Nr. 3 (März 2012): 038703. http://dx.doi.org/10.1088/1674-1056/21/3/038703.
Der volle Inhalt der QuelleDong, En Zeng, Yang Du, Cheng Cheng Li und Zai Ping Chen. „Image Encryption Scheme Based on Dual Hyper-Chaotic Recurrent Neural Networks“. Key Engineering Materials 474-476 (April 2011): 599–604. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.599.
Der volle Inhalt der QuelleKandıran, Engin, und Avadis Hacınlıyan. „Comparison of Feedforward and Recurrent Neural Network in Forecasting Chaotic Dynamical System“. AJIT-e Online Academic Journal of Information Technology 10, Nr. 37 (01.04.2019): 31–44. http://dx.doi.org/10.5824/1309-1581.2019.2.002.x.
Der volle Inhalt der QuelleBertschinger, Nils, und Thomas Natschläger. „Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks“. Neural Computation 16, Nr. 7 (01.07.2004): 1413–36. http://dx.doi.org/10.1162/089976604323057443.
Der volle Inhalt der QuelleWen, Tan, und Wang Yao-Nan. „Synchronization of an uncertain chaotic system via recurrent neural networks“. Chinese Physics 14, Nr. 1 (23.12.2004): 72–76. http://dx.doi.org/10.1088/1009-1963/14/1/015.
Der volle Inhalt der QuelleCechin, Adelmo L., Denise R. Pechmann und Luiz P. L. de Oliveira. „Optimizing Markovian modeling of chaotic systems with recurrent neural networks“. Chaos, Solitons & Fractals 37, Nr. 5 (September 2008): 1317–27. http://dx.doi.org/10.1016/j.chaos.2006.10.018.
Der volle Inhalt der QuelleRyeu, Jin Kyung, und Ho Sun Chung. „Chaotic recurrent neural networks and their application to speech recognition“. Neurocomputing 13, Nr. 2-4 (Oktober 1996): 281–94. http://dx.doi.org/10.1016/0925-2312(95)00093-3.
Der volle Inhalt der QuelleWu, Xiaoying, Yuanlong Chen, Jing Tian und Liangliang Li. „Chaotic Dynamics of Discrete Multiple-Time Delayed Neural Networks of Ring Architecture Evoked by External Inputs“. International Journal of Bifurcation and Chaos 26, Nr. 11 (Oktober 2016): 1650179. http://dx.doi.org/10.1142/s0218127416501790.
Der volle Inhalt der QuelleDissertationen zum Thema "Chaotic Recurrent Neural Networks"
Molter, Colin. „Storing information through complex dynamics in recurrent neural networks“. Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211039.
Der volle Inhalt der QuelleIn this thesis, it is shown experimentally that the more information is to be stored in robust cyclic attractors, the more chaos appears as a regime in the back, erratically itinerating among brief appearances of these attractors. Chaos does not appear to be the cause but the consequence of the learning. However, it appears as an helpful consequence that widens the net's encoding capacity. To learn the information to be stored, an unsupervised Hebbian learning algorithm is introduced. By leaving the semantics of the attractors to be associated with the feeding data unprescribed, promising results have been obtained in term of storing capacity.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Vincent-Lamarre, Philippe. „Learning Long Temporal Sequences in Spiking Networks by Multiplexing Neural Oscillations“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39960.
Der volle Inhalt der QuelleChen, Cong. „High-Dimensional Generative Models for 3D Perception“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103948.
Der volle Inhalt der QuelleDoctor of Philosophy
The development of automation systems and robotics brought the modern world unrivaled affluence and convenience. However, the current automated tasks are mainly simple repetitive motions. Tasks that require more artificial capability with advanced visual cognition are still an unsolved problem for automation. Many of the high-level cognition-based tasks require the accurate visual perception of the environment and dynamic objects from the data received from the optical sensor. The capability to represent, identify and interpret complex visual data for understanding the geometric structure of the world is 3D perception. To better tackle the existing 3D perception challenges, this dissertation proposed a set of generative learning-based frameworks on sparse tensor data for various high-dimensional robotics perception applications: underwater point cloud filtering, image restoration, deformation detection, and localization. Underwater point cloud data is relevant for many applications such as environmental monitoring or geological exploration. The data collected with sonar sensors are however subjected to different types of noise, including holes, noise measurements, and outliers. In the first chapter, we propose a generative model for point cloud data recovery using Variational Bayesian (VB) based sparse tensor factorization methods to tackle these three defects simultaneously. In the second part of the dissertation, we propose an image restoration technique to tackle missing data, which is essential for many perception applications. An efficient generative chaotic RNN framework has been introduced for recovering the sparse tensor from a single corrupted image for various types of missing data. In the last chapter, a multi-level CNN for high-dimension tensor feature extraction for underwater vehicle localization has been proposed.
Clodong, Sébastien. „Recurrent outbreaks in ecology : chaotic dynamics in complex networks“. Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/171/.
Der volle Inhalt der QuelleOne of the most striking features of ecological systems is their ability to undergo sudden outbreaks in the population numbers of one or a small number of species. The similarity of outbreak characteristics, which is exhibited in totally different and unrelated (ecological) systems naturally leads to the question whether there are universal mechanisms underlying outbreak dynamics in Ecology. It will be shown into two case studies (dynamics of phytoplankton blooms under variable nutrients supply and spread of epidemics in networks of cities) that one explanation for the regular recurrence of outbreaks stems from the interaction of the natural systems with periodical variations of their environment. Natural aquatic systems like lakes offer very good examples for the annual recurrence of outbreaks in Ecology. The idea whether chaos is responsible for the irregular heights of outbreaks is central in the domain of ecological modeling. This question is investigated in the context of phytoplankton blooms. The dynamics of epidemics in networks of cities is a problem which offers many ecological and theoretical aspects. The coupling between the cities is introduced through their sizes and gives rise to a weighted network which topology is generated from the distribution of the city sizes. We examine the dynamics in this network and classified the different possible regimes. It could be shown that a single epidemiological model can be reduced to a one-dimensional map. We analyze in this context the dynamics in networks of weighted maps. The coupling is a saturation function which possess a parameter which can be interpreted as an effective temperature for the network. This parameter allows to vary continously the network topology from global coupling to hierarchical network. We perform bifurcation analysis of the global dynamics and succeed to construct an effective theory explaining very well the behavior of the system.
Clodong, Sébastien. „Recurrent outbreaks in ecology chaotic dynamics in complex networks /“. [S.l. : s.n.], 2004. http://pub.ub.uni-potsdam.de/2004/0062/clodong.pdf.
Der volle Inhalt der QuelleŻbikowski, Rafal Waclaw. „Recurrent neural networks some control aspects /“. Connect to electronic version, 1994. http://hdl.handle.net/1905/180.
Der volle Inhalt der QuelleAhamed, Woakil Uddin. „Quantum recurrent neural networks for filtering“. Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2411.
Der volle Inhalt der QuelleZbikowski, Rafal Waclaw. „Recurrent neural networks : some control aspects“. Thesis, University of Glasgow, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390233.
Der volle Inhalt der QuelleJacobsson, Henrik. „Rule extraction from recurrent neural networks“. Thesis, University of Sheffield, 2006. http://etheses.whiterose.ac.uk/6081/.
Der volle Inhalt der QuelleBonato, Tommaso. „Time Series Predictions With Recurrent Neural Networks“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Den vollen Inhalt der Quelle findenBücher zum Thema "Chaotic Recurrent Neural Networks"
Hu, Xiaolin, und P. Balasubramaniam. Recurrent neural networks. Rijek, Crotia: InTech, 2008.
Den vollen Inhalt der Quelle findenHammer, Barbara. Learning with recurrent neural networks. London: Springer London, 2000. http://dx.doi.org/10.1007/bfb0110016.
Der volle Inhalt der QuelleElHevnawi, Mahmoud, und Mohamed Mysara. Recurrent neural networks and soft computing. Rijeka: InTech, 2012.
Den vollen Inhalt der Quelle findenK, Tan K., Hrsg. Convergence analysis of recurrent neural networks. Boston: Kluwer Academic Publishers, 2004.
Den vollen Inhalt der Quelle findenYi, Zhang, und K. K. Tan. Convergence Analysis of Recurrent Neural Networks. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-3819-3.
Der volle Inhalt der QuelleWhittle, Peter. Neural nets and chaotic carriers. Chichester: Wiley, 1998.
Den vollen Inhalt der Quelle findenGraves, Alex. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenGraves, Alex. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24797-2.
Der volle Inhalt der QuelleNeural nets and chaotic carriers. 2. Aufl. London: Imperial College Press, 2010.
Den vollen Inhalt der Quelle findenDerong, Liu, Hrsg. Qualitative analysis and synthesis of recurrent neural networks. New York: Marcel Dekker, Inc., 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Chaotic Recurrent Neural Networks"
Assaad, Mohammad, Romuald Boné und Hubert Cardot. „Predicting Chaotic Time Series by Boosted Recurrent Neural Networks“. In Neural Information Processing, 831–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11893257_92.
Der volle Inhalt der QuelleLuo, Haigeng, Xiaodong Xu und Xiaoxin Liao. „Numerical Analysis of a Chaotic Delay Recurrent Neural Network with Four Neurons“. In Advances in Neural Networks - ISNN 2006, 328–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11759966_51.
Der volle Inhalt der QuelleSun, Jiancheng, Taiyi Zhang und Haiyuan Liu. „Modelling of Chaotic Systems with Novel Weighted Recurrent Least Squares Support Vector Machines“. In Advances in Neural Networks – ISNN 2004, 578–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28647-9_95.
Der volle Inhalt der QuelleSun, Jiancheng, Lun Yu, Guang Yang und Congde Lu. „Modelling of Chaotic Systems with Recurrent Least Squares Support Vector Machines Combined with Stationary Wavelet Transform“. In Advances in Neural Networks – ISNN 2005, 424–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427445_69.
Der volle Inhalt der QuelleHu, Yun-an, Bin Zuo und Jing Li. „A Novel Chaotic Annealing Recurrent Neural Network for Multi-parameters Extremum Seeking Algorithm“. In Neural Information Processing, 1022–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11893257_112.
Der volle Inhalt der QuelleYoshinaka, Ryosuke, Masato Kawashima, Yuta Takamura, Hitoshi Yamaguchi, Naoya Miyahara, Kei-ichiro Nabeta, Yongtao Li und Shigetoshi Nara. „Adaptive Control of Robot Systems with Simple Rules Using Chaotic Dynamics in Quasi-layered Recurrent Neural Networks“. In Studies in Computational Intelligence, 287–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27534-0_19.
Der volle Inhalt der QuelleLi, Yongtao, und Shigetoshi Nara. „Solving Complex Control Tasks via Simple Rule(s): Using Chaotic Dynamics in a Recurrent Neural Network Model“. In The Relevance of the Time Domain to Neural Network Models, 159–78. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-0724-9_9.
Der volle Inhalt der QuelleDu, Ke-Lin, und M. N. S. Swamy. „Recurrent Neural Networks“. In Neural Networks and Statistical Learning, 351–71. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7452-3_12.
Der volle Inhalt der QuelleYalçın, Orhan Gazi. „Recurrent Neural Networks“. In Applied Neural Networks with TensorFlow 2, 161–85. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6513-0_8.
Der volle Inhalt der QuelleCalin, Ovidiu. „Recurrent Neural Networks“. In Deep Learning Architectures, 543–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36721-3_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Chaotic Recurrent Neural Networks"
Liu, Ziqian. „Optimal chaotic synchronization of stochastic delayed recurrent neural networks“. In 2013 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE, 2013. http://dx.doi.org/10.1109/spmb.2013.6736775.
Der volle Inhalt der QuelleAzarpour, M., S. A. Seyyedsalehi und A. Taherkhani. „Robust pattern recognition using chaotic dynamics in Attractor Recurrent Neural Network“. In 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596375.
Der volle Inhalt der QuelleLi, Zhanying, Kejun Wang und Mo Tang. „Optimization of learning algorithms for Chaotic Diagonal Recurrent Neural Networks“. In 2010 International Conference on Intelligent Control and Information Processing (ICICIP). IEEE, 2010. http://dx.doi.org/10.1109/icicip.2010.5564282.
Der volle Inhalt der QuelleMa, Qian-Li, Qi-Lun Zheng, Hong Peng, Tan-Wei Zhong und Li-Qiang Xu. „Chaotic Time Series Prediction Based on Evolving Recurrent Neural Networks“. In 2007 International Conference on Machine Learning and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370752.
Der volle Inhalt der QuelleLiu, Leipo, Xiaona Song und Xiaoqiang Li. „Adaptive exponential synchronization of chaotic recurrent neural networks with stochastic perturbation“. In 2012 IEEE International Conference on Automation and Logistics (ICAL). IEEE, 2012. http://dx.doi.org/10.1109/ical.2012.6308232.
Der volle Inhalt der QuelleHussein, Shamina, Rohitash Chandra und Anuraganand Sharma. „Multi-step-ahead chaotic time series prediction using coevolutionary recurrent neural networks“. In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. http://dx.doi.org/10.1109/cec.2016.7744179.
Der volle Inhalt der QuelleCoca, Andres E., Roseli A. F. Romero und Liang Zhao. „Generation of composed musical structures through recurrent neural networks based on chaotic inspiration“. In 2011 International Joint Conference on Neural Networks (IJCNN 2011 - San Jose). IEEE, 2011. http://dx.doi.org/10.1109/ijcnn.2011.6033648.
Der volle Inhalt der QuelleTang, Mo, Ke jun Wang und Yan Zhang. „A Research on Chaotic Recurrent Fuzzy Neural Network and Its Convergence“. In 2007 International Conference on Mechatronics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icma.2007.4303626.
Der volle Inhalt der QuelleFolgheraiter, Michele, Nazgul Tazhigaliyeva und Aibek Niyetkaliyev. „Adaptive joint trajectory generator based on a chaotic recurrent neural network“. In 2015 5th Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE, 2015. http://dx.doi.org/10.1109/devlrn.2015.7346158.
Der volle Inhalt der QuelleLi, Yongtao, Shuhei Kurata, Ryosuke Yoshinaka und Shigetoshi Nara. „Chaotic dynamics in quasi-layered recurrent neural network model and application to complex control via simple rule“. In 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta). IEEE, 2009. http://dx.doi.org/10.1109/ijcnn.2009.5178834.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Chaotic Recurrent Neural Networks"
Bodruzzaman, M., und M. A. Essawy. Iterative prediction of chaotic time series using a recurrent neural network. Quarterly progress report, January 1, 1995--March 31, 1995. Office of Scientific and Technical Information (OSTI), März 1996. http://dx.doi.org/10.2172/283610.
Der volle Inhalt der QuellePearlmutter, Barak A. Learning State Space Trajectories in Recurrent Neural Networks: A preliminary Report. Fort Belvoir, VA: Defense Technical Information Center, Juli 1988. http://dx.doi.org/10.21236/ada219114.
Der volle Inhalt der QuelleTalathi, S. S. Deep Recurrent Neural Networks for seizure detection and early seizure detection systems. Office of Scientific and Technical Information (OSTI), Juni 2017. http://dx.doi.org/10.2172/1366924.
Der volle Inhalt der QuelleMathia, Karl. Solutions of linear equations and a class of nonlinear equations using recurrent neural networks. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.1354.
Der volle Inhalt der QuelleKozman, Robert, und Walter J. Freeman. The Effect of External and Internal Noise on the Performance of Chaotic Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, Januar 2002. http://dx.doi.org/10.21236/ada413501.
Der volle Inhalt der Quelle