Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Chaînes de Markov branchantes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chaînes de Markov branchantes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Chaînes de Markov branchantes"
Delmotte, Thierry. „Estimations pour les chaînes de Markov réversibles“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, Nr. 9 (Mai 1997): 1053–58. http://dx.doi.org/10.1016/s0764-4442(97)87885-8.
Der volle Inhalt der QuelleBrossard, Jean, und Christophe Leuridan. „Chaînes de Markov Constructives Indexées par Z“. Annals of Probability 35, Nr. 2 (März 2007): 715–31. http://dx.doi.org/10.1214/009117906000000430.
Der volle Inhalt der QuelleLadet, Sylvie, Marc Deconchat, Claude Monteil, Jean-Paul Lacombe und Gérard Ballent. „Les chaînes de Markov spatialisées comme outil de simulation“. Revue internationale de géomatique 15, Nr. 2 (30.06.2005): 159–73. http://dx.doi.org/10.3166/rig.15.159-173.
Der volle Inhalt der QuellePieczynski, Wojciech. „Copules gaussiennes dans les chaînes triplet partiellement de Markov“. Comptes Rendus Mathematique 341, Nr. 3 (August 2005): 189–94. http://dx.doi.org/10.1016/j.crma.2005.06.012.
Der volle Inhalt der QuellePieczynski, Wojciech. „Fusion de Dempster–Shafer dans les chaînes triplet partiellement de Markov“. Comptes Rendus Mathematique 339, Nr. 11 (Dezember 2004): 797–802. http://dx.doi.org/10.1016/j.crma.2004.10.013.
Der volle Inhalt der QuelleMiclo, Laurent. „Une variante de l'inégalité de Cheeger pour les chaînes de Markov finies“. ESAIM: Probability and Statistics 2 (1998): 1–21. http://dx.doi.org/10.1051/ps:1998101.
Der volle Inhalt der QuelleDiaconis, P. „Une nouvelle construction de champs Gaussiens à partir de chaînes de Markov“. Annales de l'Institut Henri Poincare (B) Probability and Statistics 38, Nr. 6 (Dezember 2002): 863–78. http://dx.doi.org/10.1016/s0246-0203(02)01123-8.
Der volle Inhalt der QuelleMiclo, Laurent. „Relations entre isopérimétrie et trou spectral pour les chaînes de Markov finies“. Probability Theory and Related Fields 114, Nr. 4 (Juli 1999): 431–85. http://dx.doi.org/10.1007/s004400050231.
Der volle Inhalt der QuelleHERVE, L. „Théorème local pour chaînes de Markov de probabilité de transition quasi-compacte. Applications aux chaînes V-géométriquement ergodiques et aux modèles itératifs“. Annales de l'Institut Henri Poincare (B) Probability and Statistics 41, Nr. 2 (März 2005): 179–96. http://dx.doi.org/10.1016/j.anihpb.2004.04.001.
Der volle Inhalt der QuelleDridi, Noura, Yves Delignon und Wadih Sawaya. „Critères BIC et AIC pour les chaînes de Markov cachées. Application aux communications numériques“. Traitement du signal 31, Nr. 3-4 (28.10.2014): 383–400. http://dx.doi.org/10.3166/ts.31.383-400.
Der volle Inhalt der QuelleDissertationen zum Thema "Chaînes de Markov branchantes"
Weibel, Julien. „Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées“. Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1031.
Der volle Inhalt der QuelleGraphs are mathematical objects used to model all kinds of networks, such as electrical networks, communication networks, and social networks. Formally, a graph consists of a set of vertices and a set of edges connecting pairs of vertices. The vertices represent, for example, individuals, while the edges represent the interactions between these individuals. In the case of a weighted graph, each edge has a weight or a decoration that can model a distance, an interaction intensity, or a resistance. Modeling real-world networks often involves large graphs with a large number of vertices and edges.The first part of this thesis is dedicated to introducing and studying the properties of the limit objects of large weighted graphs : probability-graphons. These objects are a generalization of graphons introduced and studied by Lovász and his co-authors in the case of unweighted graphs. Starting from a distance that induces the weak topology on measures, we define a cut distance on probability-graphons. We exhibit a tightness criterion for probability-graphons related to relative compactness in the cut distance. Finally, we prove that this topology coincides with the topology induced by the convergence in distribution of the sampled subgraphs. In the second part of this thesis, we focus on hidden Markov models indexed by trees. We show the strong consistency and asymptotic normality of the maximum likelihood estimator for these models under standard assumptions. We prove an ergodic theorem for branching Markov chains indexed by trees with general shapes. Finally, we show that for a stationary and reversible chain, the line graph is the tree shape that induces the minimal variance for the empirical mean estimator among trees with a given number of vertices
Lacour, Claire. „Estimation non paramétrique adaptative pour les chaînes de Markov et les chaînes de Markov cachées“. Phd thesis, Université René Descartes - Paris V, 2007. http://tel.archives-ouvertes.fr/tel-00180107.
Der volle Inhalt der QuelleDe, Almeida Rui Manuel. „Décantation dans les chaînes de Markov“. Lille 1, 1986. http://www.theses.fr/1986LIL10144.
Der volle Inhalt der QuelleFaure, Mathieu. „Grandes déviations autonormalisées pour des chaînes de Markov“. Phd thesis, Université de Marne la Vallée, 2002. http://tel.archives-ouvertes.fr/tel-00572835.
Der volle Inhalt der QuelleNoquet, Caroline. „Principe d'invariance local pour les chaînes de Markov“. Lille 1, 1997. http://www.theses.fr/1997LIL10167.
Der volle Inhalt der QuelleThivierge, Sylvain. „Simulation de Monte-Carlo par les chaînes de Markov“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0004/MQ42024.pdf.
Der volle Inhalt der QuelleFernandes, Clément. „Chaînes de Markov triplets et segmentation non supervisée d'images“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAS019.
Der volle Inhalt der QuelleHidden Markov chains (HMC) are widely used in unsupervised Bayesian hidden discrete data restoration. They are very robust and, in spite of their simplicity, they are sufficiently efficient in many situations. In particular for image segmentation, despite their mono-dimensional nature, they are able, through a transformation of the bi-dimensional images into mono-dimensional sequences with Peano scan (PS), to give satisfying results. However, sometimes, more complex models such as hidden Markov fields (HMF) may be preferred in spite of their increased time complexity, for their better results. Moreover, hidden Markov models (the chains as well as the fields) have been extended to pairwise and triplet Markov models, which can be of interest in more complex situations. For example, when sojourn time in hidden states is not geometrical, hidden semi-Markov (HSMC) chains tend to perform better than HMC, and such is also the case for hidden evidential Markov chains (HEMC) when data are non-stationary. In this thesis, we first propose a new triplet Markov chain (TMC), which simultaneously extends HSMC and HEMC. Based on hidden triplet Markov chains (HTMC), the new hidden evidential semi-Markov chain (HESMC) model can be used in unsupervised framework, parameters being estimated with Expectation-Maximization (EM) algorithm. We validate its interest through some experiments on synthetic data. Then we address the problem of mono-dimensionality of the HMC with PS model in image segmentation by introducing the “contextual” Peano scan (CPS). It consists in associating to each index in the HMC obtained from PS, two observations on pixels which are neighbors of the pixel considered in the image, but are not its neighbors in the HMC. This gives three observations on each point of the Peano scan, which leads to a new conditional Markov chain (CMC) with a more complex structure, but whose posterior law is still Markovian. Therefore, we can apply the usual parameter estimation method: Stochastic Expectation-Maximization (SEM), as well as study unsupervised segmentation Marginal Posterior Mode (MPM) so obtained. The CMC with CPS based supervised and unsupervised MPM are compared to the classic scan based HMC-PS and the HMF through experiments on artificial images. They improve notably the former, and can even compete with the latter. Finally, we extend the CMC-CPS to Pairwise Conditional Markov (CPMC) chains and two particular triplet conditional Markov chain: evidential conditional Markov chains (CEMC) and conditional semi-Markov chains (CSMC). For each of these extensions, we show through experiments on artificial images that these models can improve notably their non conditional counterpart, as well as the CMC with CPS, and can even compete with the HMF. Beside they allow the generality of markovian triplets to better play its part in image segmentation, while avoiding the substantial time complexity of triplet Markov fields
Romaskevich, Olga. „Dynamique des systèmes physiques, formes normales et chaînes de Markov“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN043/document.
Der volle Inhalt der QuelleThis thesis deals with the questions of asymptotic behavior of dynamical systems and consists of six independent chapters. In the first part of this thesis we consider three particular dynamical systems. The first two chapters deal with the models of two physical systems: in the first chapter, we study the geometric structure and limit behavior of Arnold tongues of the equation modeling a Josephson contact; in the second chapter, we are interested in the Lagrange problem of establishing the asymptotic angular velocity of the swiveling arm on the surface. The third chapter deals with planar geometry of an elliptic billiard.The forth and fifth chapters are devoted to general methods of studying the asymptotic behavior of dynamical systems. In the forth chapter we prove the convergence of markovian spherical averages for free group actions on a probablility space. In the fifth chapter we provide a normal form for skew-product diffeomorphisms that can be useful in the study of strange attractors of dynamical systems
RAFI, Selwa. „Chaînes de Markov cachées et séparation non supervisée de sources“. Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00995414.
Der volle Inhalt der QuelleCOT, CECILE. „Méthodes d'accélération pour les chaînes de Markov à transitions exponentielles“. Paris 11, 1998. http://www.theses.fr/1998PA112325.
Der volle Inhalt der QuelleBücher zum Thema "Chaînes de Markov branchantes"
Foata, Dominique. Processus stochastiques: Processus de Poisson, chaînes de Markov et martingales : cours et exercices corrigeś. Paris: Dunod, 2004.
Den vollen Inhalt der Quelle findenRobert, Christian. Méthodes de Monte Carlo par chaînes de Markov. Economica, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Chaînes de Markov branchantes"
Jedrzejewski, Franck. „Chaînes de Markov“. In Modèles aléatoires et physique probabiliste, 67–88. Paris: Springer Paris, 2009. http://dx.doi.org/10.1007/978-2-287-99308-4_4.
Der volle Inhalt der QuelleCaumel, Yves. „Chaînes de Markov discrètes“. In Probabilités et processus stochastiques, 149–78. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_7.
Der volle Inhalt der QuelleChafaï, Djalil, und Florent Malrieu. „Chaînes de Markov cachées“. In Recueil de Modèles Aléatoires, 93–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49768-5_7.
Der volle Inhalt der QuelleDel Moral, Pierre, und Christelle Vergé. „Chaînes de Markov Discrètes“. In Mathématiques et Applications, 3–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_1.
Der volle Inhalt der QuelleDel Moral, Pierre, und Christelle Vergé. „Chaînes de Markov Abstraites“. In Mathématiques et Applications, 23–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_2.
Der volle Inhalt der QuelleDel Moral, Pierre, und Christelle Vergé. „Chaînes de Markov Non Linéaires“. In Mathématiques et Applications, 51–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_3.
Der volle Inhalt der QuelleDel Moral, Pierre, und Christelle Vergé. „Chaînes de Markov en Auto-Interaction“. In Mathématiques et Applications, 67–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_4.
Der volle Inhalt der QuelleChafaï, Djalil, und Florent Malrieu. „Des chaînes de Markov aux processus de diffusion“. In Recueil de Modèles Aléatoires, 357–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49768-5_27.
Der volle Inhalt der QuelleCaumel, Yves. „Chaînes de Markov à temps continu et files d’attente“. In Probabilités et processus stochastiques, 203–33. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_9.
Der volle Inhalt der QuelleDel Moral, Pierre, und Christelle Vergé. „Méthodes de Monte Carlo par Chaînes de Markov (MCMC)“. In Mathématiques et Applications, 147–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_6.
Der volle Inhalt der Quelle