Dissertationen zum Thema „Cellular immunity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Cellular immunity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Shimokata, Kaoru. „Cytokines and Local Cellular Immunity“. 名古屋大学医学部, 1997. http://hdl.handle.net/2237/6185.
Der volle Inhalt der QuelleWuttge, Dirk Marcus. „Cellular immunity and inflammation in atherosclerosis /“. Stockholm : Karolinska Univ. Press, 2001. http://diss.kib.ki.se/2001/91-7349-051-2/.
Der volle Inhalt der QuelleYassine, Daadaa. „Network Decontamination with Temporal Immunity“. Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20633.
Der volle Inhalt der QuelleMakedonas, George. „Cellular immunity among HIV exposed, uninfected individuals“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111828.
Der volle Inhalt der QuelleTye, Gee Jun. „Combined adjuvant for stimulation of cellular immunity“. Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/combined-adjuvant-for-stimulation-of-cellular-immunity(b1be07ae-b8d4-40a8-9258-bc3e3413df9d).html.
Der volle Inhalt der QuellePatel, Mihil. „Regulation of cellular immunity by human cytomegalovirus“. Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/114496/.
Der volle Inhalt der QuelleAbuhammash, E. V. „Transfer actor as mediator of cellular immunity“. Thesis, Сумський державний університет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/32144.
Der volle Inhalt der QuelleOldenhove, Guillaume. „Contrôle de la réponse immunitaire induite par les cellules dendritiques: rôle des cellules T régulatrices naturelles ou induites“. Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210888.
Der volle Inhalt der QuelleWeber, Wilhelm Evert Jacob. „Cellular auto-immunity in central nervous system disease“. Maastricht : Maastricht : Rijksuniversiteit Limburg ; University Library, Maastricht University [Host], 1988. http://arno.unimaas.nl/show.cgi?fid=5594.
Der volle Inhalt der QuelleNickless, Jane Christina. „Cellular immunity to acetylcholine receptor in myasthenia gravis“. Thesis, University of Bath, 1985. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767550.
Der volle Inhalt der QuelleWatkins, Marcia Linda Vivienne. „Cellular immunity of naïve and BCG vaccinated neonates“. Doctoral thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/10984.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 153-187).
Despite more than 95% vaccination coverage with Mycobacterium bovis Bacille Calmette-Guérin (BCG), tuberculosis (TB) remains epidemic in South Africa. The dichotomy that successful pregnancy is usually associated with a type 2 (Th2) cytokine profile in the newborn child, whereas immunity to Mycobacterium tuberculosis (Mtb) is associated with the development of a type 1 helper (Th1) cytokine response, could impact on the subsequent adaptive immune response to BCG vaccination. Previous studies have suggested that immune responses in early life may be defective and related to the immaturity of antigen-presenting cells and/or T cells.
Zettervall, Carl-Johan. „Signaling pathways in the activation and proliferation of Drosophila melanogaster blood cells“. Doctoral thesis, Umeå : Umeå centrum för molekylär patogenes (UCMP), 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-513.
Der volle Inhalt der QuelleHaque, Khawaja Mostaq Gausul. „The quantitation of cellular allo-immunity in preparation for monitoring of cellular tolerance“. Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389232.
Der volle Inhalt der QuelleMäkitalo, Barbro. „HIV and SIV specific cellular immunity in macaque models /“. Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-751-7/.
Der volle Inhalt der QuelleStruik, Siske Sybrich. „Cellular immune responses and clinical immunity to P. falciparium“. Thesis, London School of Hygiene and Tropical Medicine (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417697.
Der volle Inhalt der QuelleMcLarnon, Andrew. „Cellular mechanisms of alloreactive immunity following stem cell transplantation“. Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/3064/.
Der volle Inhalt der QuelleMarques, Mariana Campos. „Cellular responses to viral infection : proteostasis and innate immunity“. Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22054.
Der volle Inhalt der QuelleViruses are small opportunistic infectious agents. Virus entry, replication and assembly are dynamic and coordinated processes that require precise interactions with host components, often with cellular organelles. Hence, we proposed to study two different viruses affecting two distinct cellular surveillance mechanisms: Human Cytomegalovirus (HCMV) and Influenza A Virus (IAV) influence on the innate immune response and proteostasis, respectively. HCMV might be associated with additional long-term health consequences in human due to its ability to establish a lifelong persistent latent infection. HCMV encodes vMIA, an anti-apoptotic protein known to co-localize at peroxisomes and mitochondria, induce their fragmentation and inhibit the downstream cellular antiviral response that is established at both organelles. In the present work, we aimed to characterize the role of vMIA in the peroxisomal-MAVS dependent antiviral response. We proposed to map the vMIA domains responsible for the organelles’ morphology changes and innate immune response inhibition. Our results revealed that the 115-130 amino acid sequence might be important for the organelles’ fragmentation. We also found that m38.5, an analogue of vMIA in murine CMV (MCMV) seems to localize at peroxisomes, induce the organelle’s fragmentation and clearly inhibit the peroxisome-dependent antiviral immune response. These results suggest that this virus may be useful to complement our results with experiments performed in animals or in the context of a viral infection. IAV is the causative agent for most of the annual epidemic in humans. During IAV infection, it occurs the accumulation of unfolded proteins and the formation of specialized sites of viral replication, resulting in the formation of insoluble aggregates or inclusions. In this study, we proposed to determine whether and how IAV infection leads to aggresomal-prone proteins accumulation. Our preliminary results suggest aggresomes formation during viral infection, previous to the vRNP release in to the cytoplasm.
Os vírus são agentes infeciosos oportunistas. Os diferentes passos de um ciclo de vida viral, incluindo a entrada do vírus na célula, a replicação do seu genoma e a formação de novas partículas virais requerem interações com os diferentes componentes celulares do hospedeiro, nomeadamente com organelos. Neste projeto, propomos estudar dois tipos diferentes de vírus que afetam dois mecanismos distintos de sobrevivência celular: a influência do Citomegalovírus de humano (HCMV) na resposta imunitária inata e o efeito do Vírus da Influenza A (IAV) na proteostase. O HCMV pode estar associado com consequências graves para a saúde da população, uma vez que tem a capacidade para estabelecer uma infeção latente e persistente no hospedeiro. Este vírus codifica para a vMIA, uma proteína anti-apoptótica que se localiza nos peroxissomas e nas mitocôndrias, induzindo a sua fragmentação e inibindo a resposta antiviral celular que é estabelecida em ambos. Com isto, sugerimos mapear os domínios da vMIA responsáveis pelas alterações na morfologia dos organelos e na inibição da resposta imune. Os nossos resultados revelaram que a sequência de aminoácidos 115-130 poderá ser importante para a fragmentação dos organelos. Também descobrimos que a proteína m38.5 do Citomegalovírus de ratinho (MCMV), análoga à vMIA, parece localizar nos peroxissomas, induzir a sua fragmentação e claramente inibir a resposta antiviral dependente deste organelo. Estes resultados sugerem que este vírus poderá ser útil para complementar os nossos resultados com experiências animais ou no contexto de infeção viral. O IAV é o agente causativo da maioria das epidemias anuais em humanos. Durante a infeção com IAV, ocorre acumulação de proteínas com conformação errada e a formação de locais especializados de replicação viral, resultando na formação de agregados insolúveis ou inclusões. Neste estudo, propusemos determinar se a infeção com IAV conduz à acumulação de proteína com pré-disponibilidade para formar agressomas. Os nossos resultados, embora preliminares, sugerem que existe formação destas estruturas durante a infeção viral, previamente à libertação do genoma viral no citoplasma.
Noble, Roger Lee. „Cellular Immunity in Children with Down Syndrome (Trisomy-21)“. DigitalCommons@USU, 1985. https://digitalcommons.usu.edu/etd/4640.
Der volle Inhalt der QuelleTemmerman, Stéphane. „Etude de la réponse à médiation cellulaire indute par l'héparin-binding hemagglutinin chez le sujet infecté par Mycobacterium tuberculosis“. Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211117.
Der volle Inhalt der QuelleLa « heparin-binding hemagglutinin (HBHA) » est une protéine de 28-kDa, sécrétée et exprimée à la surface de M. tuberculosis et de M. bovis BCG. Montrant une affinité importante pour les gycoconjugués sulfatés, elle favorise la dissémination hématogène du bacille de Koch.
Nos résultats démontrent que la HBHA stimule l’immunité à médiation cellulaire humaine avec, toutefois, des différences selon que le sujet infecté souffre ou non de tuberculose active. En effet, les cellules mononuclées circulantes, de la majorité des individus infectés mais non-malades, secrètent de l’IFN-? en réponse à la HBHA, alors qu’une minorité de sujets malades produit de faibles quantités d’IFN-? après stimulation in vitro avec l’antigène. Lors de l’infection naturelle par le bacille de Koch, la HBHA devient dès lors une cible pour le système immunitaire, et plus particulièrement au sein des sujets, généralement considérés, comme protégés.
L’analyse de la réponse cellulaire, spécifique à l’adhésine, démontre que les lymphocytes T CD4+, mais également T CD8+, des sujets infectés mais non-malades, produisent de l’IFN-? L’antigène est effectivement présenté aux lymphocytes T grâce aux glycoprotéines du complexe majeur d’histocompatibilité de classe I et de classe II. Le phénotypage des cellules productrices d’IFN-? témoigne également la participation des cellules « natural killer (NK) » dans la réponse immunitaire contre la HBHA. En l’absence des lymphocytes T restreints à l’antigène, les cellules NK se montrent toutefois incapables de secréter de l’IFN-? au contact de la HBHA. Les interactions entre les lymphocytes T, spécifiques à l’antigène, déterminent également la production de cytokines. Alors que la déplétion des cellules T CD8+ diminue légèrement la production d’IFN-? l’absence des lymphocytes T CD4+ abolit toute sécrétion résiduelle d’IFN-? lors de la stimulation avec la HBHA. Par contre, les lymphocytes T CD8+, pré-stimulés avec l’antigène en présence de cellules T CD4+, répondent secondairement à la présentation de la HBHA par des macrophages. Ce résultat suggère une coopération entre ces deux sous-populations cellulaires, afin de produire de l’IFN-? à l’encontre de la HBHA. Grâce à un contact cellulaire, les lymphocytes T CD4+ spécifiques à la HBHA soutiennent effectivement l’activation des cellules T CD8+.
Outre la production de cytokines, la participation des lymphocytes T CD8+ à la lutte contre M. tuberculosis, se traduit également par leurs fonctions cytotoxique et bactéricide. La caractérisation des cellules T CD8+, spécifiques à la HBHA, s’est dès lors poursuivie par l’évaluation de leur potentiel cytolytique. Après expansion clonale, les lymphocytes T CD8+ induisent la mort des macrophages présentant la HBHA. Le mécanisme cytotoxique engage la libération du contenu des granules cytoplasmiques, comme le montre l’augmentation de la synthèse de perforine et de granzyme A, lorsque les cellules T CD8+ sont stimulées avec la HBHA. Privés de ces médiateurs solubles, les lymphocytes T CD8+, spécifiques à la HBHA sont alors incapables de lyser les cellules cibles. En définitive, l’activité microbicide constitue actuellement le meilleur corrélat de protection. La culture de macrophages infectés par M. bovis BCG, en présence de cellules T CD8+ spécifiques à la HBHA, limite partiellement la croissance de la bactérie phagocytée, soulignant le pouvoir anti-mycobactérien de l’immunité cellulaire induite par la HBHA, chez le sujet infecté mais non-malade.
D’autre part, l’analyse biochimique, menée à l’Institut Pasteur de Lille, démontre que la HBHA subit une modification post-traductionnelle, lors de sa synthèse. Il s’agit d’une méthylation des multiples résidus lysine, qui composent son extrémité C-terminale. La comparaison des formes native méthylée et recombinante non-méthylée de la HBHA démontre que la méthylation détermine l’immunogénicité et le pouvoir protecteur de la HBHA. En effet, contrairement à la HBHA native, la forme recombinante stimule faiblement la production d’IFN-? chez les individus infectés mais non-malades, et ne protège pas la souris contre l’infection par le bacille de Koch. La sécrétion d’IFN-? est, par ailleurs, partiellement restaurée lorsque la HBHA est artificiellement méthylée in vitro. Les splénocytes murins se comportent également différemment, selon qu’ils ont été immunisés avec la forme méthylée ou non. Alors que la HBHA recombinante est immunogène chez la souris et chez l’homme, l’immunité cellulaire murine induite demeure impassible face à l’infection des phagocytes par les mycobactéries, ce qui se traduit par l’absence de protection.
En conclusion, la HBHA se compose d’épitopes protecteurs, qui dépendent de la présence des groupements méthyls, associés à son domaine C-terminal. Il s’agit, à notre connaissance, de la première mise en évidence de l’implication de la méthylation dans la réponse d’immunité cellulaire à l’encontre d’une protéine. De plus, l’immunité adaptative spécifique à la HBHA, chez le sujet infecté mais non-malade, se caractérise par les trois principaux corrélats de protection, actuellement décrits chez l’homme. Le potentiel vaccinal de cette adhésine mycobactérienne est donc bien réel.
Doctorat en sciences biomédicales
info:eu-repo/semantics/nonPublished
Hawke, Simon. „Cellular immunity to the human acetylcholine receptor in myasthenia gravis“. Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239315.
Der volle Inhalt der QuelleCoates, Christopher J. „Hemocyanin-derived phenoloxidase : biochemical and cellular investigations of innate immunity“. Thesis, University of Stirling, 2012. http://hdl.handle.net/1893/12228.
Der volle Inhalt der QuelleMackenzie, Danielle K. „Ageing and the cellular immune response in adult Drosophila melanogaster“. Thesis, University of Stirling, 2014. http://hdl.handle.net/1893/20882.
Der volle Inhalt der QuelleYoung, Lauren Jill. „Cellular immune responses of marsupials : family Macropodidae /“. View thesis, 2002. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030724.151428/index.html.
Der volle Inhalt der Quelle"A thesis submitted to the University of Western Sydney in fulfilment of the requirements for the degree of Doctor of Philosophy" Bibliography : leaves 400-437.
McAuley, Julie Louise. „MUC1 in innate and adaptive immunity /“. [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19061.pdf.
Der volle Inhalt der QuelleJun, Janice. „THE OFFENSE-DEFENSE BALANCE IN IMMUNITY“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1467997330.
Der volle Inhalt der QuelleLiew, F. Y. „Cell mediated-immunity against infectious diseases“. Thesis, Canberra, ACT : The Australian National University, 1990. http://hdl.handle.net/1885/142999.
Der volle Inhalt der QuelleAhanotu, Ejemihu Ndu. „Immune Response of the Rat to Outer Membrane Proteins of Legionella pneumophila“. Thesis, North Texas State University, 1985. https://digital.library.unt.edu/ark:/67531/metadc935780/.
Der volle Inhalt der QuelleHiggins, Melanie Rae. „Identification of novel virulence factors and mechanisms of pathogenesis from the sexually transmitted protozoan Tritrichomonas foetus“. Diss., Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/higgins/HigginsM0506.pdf.
Der volle Inhalt der QuelleFatime, Ramla Tanko. „Restoration of cellular immunity in HIV-infected individuals on antiretroviral therapy“. Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/25280.
Der volle Inhalt der QuelleXu, Dan. „Cellular Immunity in Recombinant Adeno-Associated Virus Vector Mediated Gene Therapy“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313504203.
Der volle Inhalt der QuelleHollingworth, James. „The manipulation of cellular immunity by monoclonal antibodies in cancer patients“. Thesis, University of Leicester, 1994. http://hdl.handle.net/2381/34109.
Der volle Inhalt der QuelleFurniss, James John. „Ubiquitin-ligase-mediated transcription initiation in cellular stress defences“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22004.
Der volle Inhalt der QuelleLorgat, Faizel. „Proliferative and cytotoxic cellular immune responses in human tuberculosis“. Thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/26373.
Der volle Inhalt der QuelleReed, Jennifer. „Interferon-gamma increases CD4+ T cell survival and proliferation“. Click here for download, 2006. http://wwwlib.umi.com/cr/villanova/fullcit?p1432655.
Der volle Inhalt der QuelleTran, Tinh Vi. „The hydrolysis rate of fluorescent dipeptides by dipeptidyl peptidase I (DPPI)“. Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/10132.
Der volle Inhalt der QuelleBangham, C. R. M. „The cellular immune response to respiratory syncytial virus in mouse and man“. Thesis, University College London (University of London), 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376958.
Der volle Inhalt der QuelleBeck, Melinda Annetta. „Regulation of cell-mediated immunity during reinfection with influenza virus /“. The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487324944212867.
Der volle Inhalt der QuelleЧорненька, Жанетта Анатоліївна. „CHARACTERISTIC OF INDICATORS OF CELLULAR AND HUMORAL IMMUNITY IN PATIENTS WITH DEMODECOSIS“. Thesis, Материалы 72-й научно-практической конференции студентов-медиков и молодых ученых с международным участием «Актуальные проблемы современной медицины». Самарканд 11-12 мая 2018 г. С.382, 2018. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/14251.
Der volle Inhalt der QuelleLindencrona, Jan Alvar. „Enhancing T cell mediated immunity in DNA vaccination /“. Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-710-x.
Der volle Inhalt der QuelleWilder, Sarah A. „The Relationships between Energetic Condition, Immune System Cellular Components, Testosterone Corticosterone, and Hemoparasites in Breeding Birds“. Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/WilderSA2007.pdf.
Der volle Inhalt der QuelleKischnick, Christian [Verfasser], und Steeve [Akademischer Betreuer] Boulant. „Role of Phosphoinositides in Cellular Polarity and Immunity / Christian Kischnick ; Betreuer: Steeve Boulant“. Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177253089/34.
Der volle Inhalt der QuelleSchanen, Brian. „Novel Immunogens of Cellular Immunity Revealed using in vitro Human Cell-Based Approach“. Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5483.
Der volle Inhalt der QuellePh.D.
Doctorate
Molecular Biology and Microbiology
Medicine
Biomedical Sciences
Muindi, K. M. „Cellular lipids and immunity : characterisation of glycolipids binding the antigen presenting molecule CD1“. Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670089.
Der volle Inhalt der QuelleHou, Lin. „The distribution and characterization of protease-activated receptors in oral mucosa and skin“. Thesis, Queen Mary, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286544.
Der volle Inhalt der QuelleSermersheim, Matthew Alan. „MG53 is a Novel Regulator of Inflammation and Innate Immunity“. The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu157121945938419.
Der volle Inhalt der QuelleLiu, Zhenzhen. „The Roles of Interleukin-27 in Tumor Immunity“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354656185.
Der volle Inhalt der QuelleAuld, Stuart Kenneth John Robert. „Fitness consequences of cellular immunity : studies with Daphnia magna and its sterilizing bacterial parasite“. Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5779.
Der volle Inhalt der QuelleEnglish, Kieran. „Deciphering the cellular mechanisms promoting CD4+ T cell-dependent intrahepatic CD8+ T cell immunity“. Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/27735.
Der volle Inhalt der QuelleVickery, Karen. „The humoral and cellular responses to duck hepatitis B virus“. Thesis, The University of Sydney, 1994. https://hdl.handle.net/2123/26913.
Der volle Inhalt der QuelleDe, la Rosa Patricia. „Changes in immune cell populations and the antibody response to Streptococcus pneumoniae after exposure to a mixture of herbicides“. Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=2929.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xii, 243 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 213-240).