Zeitschriftenartikel zum Thema „Cells (electric)“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Cells (electric).

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Cells (electric)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Turtle, Robert R. „How Electric Cells Work“. Physics Teacher 47, Nr. L2 (Juli 2009): L2. http://dx.doi.org/10.1119/1.3196255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nur Halimah, Putri, Samuel Rahardian und Bentang Arief Budiman. „Battery Cells for Electric Vehicles“. International Journal of Sustainable Transportation Technology 2, Nr. 2 (31.10.2019): 54–57. http://dx.doi.org/10.31427/ijstt.2019.2.2.3.

Der volle Inhalt der Quelle
Annotation:
The shifting trend of conventional to the electric drivetrain in automotive industries makes batteries become the most favorable energy storage. There are three types of battery cells that are commonly used for electric vehicles i.e., cylindrical cells, pouch cells, and prismatic cells. The use of active material such as lithium-ion in the battery of electric vehicles could bring some issues related to the safety field. For that reason, comprehensive research on battery failure analysis needs to be conducted. This paper reviews the recent progress of the use of battery cells in electric vehicles and some challenges which must be considered to assure their safety. There are a lot of studies on battery failure analysis, which mainly focuses on the appearance of a short circuit as the main cause of the thermal runaway event. Several proposals on predicting short circuits in the battery due to various loading are comprehensively discussed. Those research results can be considered to establish regulations in designing battery protectors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Young, J. „Know your battery [electric cells]“. Engineering & Technology 3, Nr. 19 (08.11.2008): 38–39. http://dx.doi.org/10.1049/et:20081906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

MATSUE, Tomokazu, Norio MATSUMOTO und Isamu UCHIDA. „Electric Micropatterning of Living Cells.“ Kobunshi 44, Nr. 4 (1995): 244–45. http://dx.doi.org/10.1295/kobunshi.44.244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Adžić, Miroljub. „FUEL CELLS AND ELECTRIC VEHICLES“. Mobility and Vehicle Mechanics 46, Nr. 1 (Mai 2020): 43–59. http://dx.doi.org/10.24874/mvm.2020.46.01.04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yulianto, Ahmad, Milan Simic, David Taylor und Pavel Trivailo. „Modelling of full electric and hybrid electric fuel cells buses“. Procedia Computer Science 112 (2017): 1916–25. http://dx.doi.org/10.1016/j.procs.2017.08.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sauer, J., D. Weisensee, C. Trendelenburg, U. Maronna und L. Zichner. „Electric stimulation of human osteoblast cells“. Bone and Mineral 17 (April 1992): 194. http://dx.doi.org/10.1016/0169-6009(92)92114-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ajit, Roshan, und Anish Mathew K. „Flexible Solar Cells For Electric Vehicles“. Journal of Applied Science, Engineering, Technology and Management 1, Nr. 1 (08.06.2023): 16–20. http://dx.doi.org/10.61779/jasetm.v1i1.4.

Der volle Inhalt der Quelle
Annotation:
Flexible solar cells have emerged as a promising technology for integrating renewable energy generation into electric vehicles (EVs), enabling improved energy efficiency and extended driving range. This review paper provides a comprehensive analysis of flexible solar cells for electric vehicles, focusing on their current status, challenges, and future prospects. The review covers various types of flexible solar cell technologies, including organic, dye-sensitized, perovskite, and thin-film technologies, and explores their advantages and limitations. Integration methods, efficiency improvements, and durability considerations for flexible solar cells in EV applications are discussed. The paper identifies key research directions and technological advancements required for the widespread adoption of flexible solar cells in the electric vehicle industry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cardona, Karen, Javier Saiz, José María De Loma, Gustavo Puerto und Carlos Suárez. „Electric Activity Model of Cardiac Cells“. Revista Facultad de Ingeniería Universidad de Antioquia, Nr. 46 (11.12.2013): 80–89. http://dx.doi.org/10.17533/udea.redin.17931.

Der volle Inhalt der Quelle
Annotation:
In order to simulate the guinea pig ventricular action potential we used the mathematical model developed by Luo and Rudy. This model contains 22 ionic channels represented by non linear differential equations. The mathematical models give us a tool to demonstrate through the simulation, how the (Basic Cycle Length) BCL changes the normal value of BCL changes the normal value of Vmax & and the Action Potential Action Potential duration (APD).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hajar, I., und A. Yendra. „Design of mini electric car with electric charging using solar cells“. Journal of Physics: Conference Series 1450 (Februar 2020): 012054. http://dx.doi.org/10.1088/1742-6596/1450/1/012054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

B. Ravi, Kumar, Naidu P. Guruvulu, G. Hanumanthu, Sai Pramodh Ch. Rama, T. Jyotsna und P. Harika. „Passive balancing in battery management system for electrical vehicles“. i-manager’s Journal on Electrical Engineering 16, Nr. 3 (2023): 18. http://dx.doi.org/10.26634/jee.16.3.19437.

Der volle Inhalt der Quelle
Annotation:
Due to the peak energy and power density, the battery is a leading energy source for electric vehicles. Among various battery chemistries, Li-ion batteries have emerged as serious competitors in the field of electric vehicles. The battery cells are connected in series or parallel to increase voltage and current in a battery pack for electric vehicle applications. The heart of a battery-operated electric vehicle is the battery control system. The series-connected cells in a battery pack must preserve each cell's original potential under ideal charging and discharging conditions. If the potential of connected cells is not balanced, the charging and discharging of cells in the pack will be affected, bringing up the issue of cells that are out of balance due to inherent and extrinsic factors. Using active and passive cell balancing techniques can solve this issue. The right cell balancing technique can shorten the battery pack's equalization time and enhance its ageing. This paper explains the parameters of a battery, the function of the BMS, and different cell balancing techniques for use in electric vehicle applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Šály, Vladimír, Vladimír Ďurman, Michal Váry, Milan Perný und František Janíček. „Assessment of encapsulation materials for solar cells“. E3S Web of Conferences 61 (2018): 00008. http://dx.doi.org/10.1051/e3sconf/20186100008.

Der volle Inhalt der Quelle
Annotation:
Interfacial processes were studied in various insulation foils intended for encapsulation of photovoltaic cells. The analysis was based on the dielectric measurements in a broad region of temperatures and frequencies. The measurements showed that the observed processes are connected with the electrode polarization. The electrode polarization gives rise to the space charge formation and enhancement of electric field near the electrodes. Calculation of the electric field is important for praxis as it allows assessing the risk of electrical breakdown. In our work we use the parameters obtained from the dielectric measurements for calculation of electric field distribution in encapsulating materials. It was found that electric field increases more than 100-times comparing with the mean value.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sree, V. Gowri, K. Udayakumar und R. Sundararajan. „Electric Field Analysis of Breast Tumor Cells“. International Journal of Breast Cancer 2011 (2011): 1–8. http://dx.doi.org/10.4061/2011/235926.

Der volle Inhalt der Quelle
Annotation:
An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Li, Chengze, Zhuohao Liu und Zike Xu. „Advanced Regenerative Fuel Cells: Characteristics and Application“. Highlights in Science, Engineering and Technology 52 (04.07.2023): 253–57. http://dx.doi.org/10.54097/hset.v52i.8902.

Der volle Inhalt der Quelle
Annotation:
Nowadays, with the extreme increase of carbon emissions and the consumption of non-renewable resources, the earth's environment has a huge impact. More countries are adopting new carbon policies, and more companies are building new electric cars. Electric vehicles have a great advantage in harmful gas emissions and energy saving compared with ordinary fuel cars. The few disadvantages of electric vehicles are limited to the efficiency of battery supply and the lack of widespread implementation resulting in poor mobility. However, most electric cars today are powered by hydrogen fuel cells. This article will mainly discuss the working principle, the main characteristics and practical applications of the hydrogen fuel cells in professional fields. We mainly collected some information and data and visited many websites and papers on the hydrogen fuel cell for some study and summary.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Canals Casals, Lluc, Marcel Macarulla und Alberto Gómez-Núñez. „High-Capacity Cells and Batteries for Electric Vehicles“. Energies 14, Nr. 22 (22.11.2021): 7799. http://dx.doi.org/10.3390/en14227799.

Der volle Inhalt der Quelle
Annotation:
The automotive sector is rapidly accelerating its transformation towards electric mobility, and electric vehicle (EV) sales have been increasing year after year since the beginning of the decade [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Sebastian, Cyril, und T. D. Subash. „Application of electric springs in fuel cells“. Materials Today: Proceedings 43 (2021): 3932–37. http://dx.doi.org/10.1016/j.matpr.2021.02.655.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Allam, Essam M., Sameh M. Metwalley und Noha Muhammad. „Improving Electric Vehicle Performance Using Photovoltaic Cells“. International Journal of Clean Coal and Energy 07, Nr. 01 (2018): 1–19. http://dx.doi.org/10.4236/ijcce.2017.71001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Allam, Essam M., Sameh M. Metwalley und Noha Muhammad. „Improving Electric Vehicle Performance Using Photovoltaic Cells“. International Journal of Clean Coal and Energy 07, Nr. 01 (2018): 1–19. http://dx.doi.org/10.4236/ijcce.2018.71001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

MO Bing, 莫冰, 黄荣海 HUANG Rong-hai, 赵峰 ZHAO Feng und 凌朝东 LING Chao-dong. „Electric energy harvester for microbial fuel cells“. Optics and Precision Engineering 21, Nr. 7 (2013): 1707–12. http://dx.doi.org/10.3788/ope.20132107.1707.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Makarov, Dmitrii E., und Hagen Hofmann. „Does Electric Friction Matter in Living Cells?“ Journal of Physical Chemistry B 125, Nr. 23 (03.06.2021): 6144–53. http://dx.doi.org/10.1021/acs.jpcb.1c02783.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Hager, Y. „BRAIN CELLS BORN WHEN ELECTRIC FISH BREED“. Journal of Experimental Biology 214, Nr. 5 (09.02.2011): ii. http://dx.doi.org/10.1242/jeb.056416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Chen, Haiping, Surong Wu, Jun Ji, Taiping Zhou, Zhiyang Luo, Weidong Pan und Shikun Xie. „Effects of Bio-Electric Injection on Cells“. Journal of Biomaterials and Tissue Engineering 8, Nr. 12 (01.12.2018): 1755–60. http://dx.doi.org/10.1166/jbt.2018.1921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Gilchrist, T. „Fuel cells to the fore [electric vehicles]“. IEEE Spectrum 35, Nr. 11 (November 1998): 35–40. http://dx.doi.org/10.1109/6.730518.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Trakhtengerts, V. Yu. „Electric field generation in atmospheric convective cells“. Journal of Atmospheric and Terrestrial Physics 54, Nr. 3-4 (März 1992): 217–22. http://dx.doi.org/10.1016/0021-9169(92)90001-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Antonova, A. M., G. Barbero, F. Batalioto, A. M. Figueiredo Neto und K. Parekh. „Electric response of cells containing ferrofluid particles“. Journal of Electroanalytical Chemistry 856 (Januar 2020): 113479. http://dx.doi.org/10.1016/j.jelechem.2019.113479.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Moleón Baca, J. A., A. Ontiveros Ortega, A. Aránega Jiménez und S. Granados Principal. „Cells electric charge analyses define specific properties for cancer cells activity“. Bioelectrochemistry 144 (April 2022): 108028. http://dx.doi.org/10.1016/j.bioelechem.2021.108028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Nakae, Hiroki. „Morphological differentiation of rat pheochromocytoma cells (PC12 cells) by electric stimulation“. Brain Research 558, Nr. 2 (September 1991): 348–52. http://dx.doi.org/10.1016/0006-8993(91)90791-s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kusuma, Riska Anggri, Linda Suyati und Wasino Hadi Rahmanto. „Effect of Lactose Concentration as Lactobacillus bulgaricus Substrate on Potential Cells Produced in Microbial Fuel Cell Systems“. Jurnal Kimia Sains dan Aplikasi 21, Nr. 3 (31.07.2018): 144–48. http://dx.doi.org/10.14710/jksa.21.3.144-148.

Der volle Inhalt der Quelle
Annotation:
The effect of laxose concentration as Lactobacillus bulgaricus bacterial substrate on the cell potential produced in Microbial Fuel Cell System has been done. This study aims to determine the effect of lactose concentration as bacterial substrate, to generate electricity, maximum electric potential and determine the potential value of standard lactose (E ° Lactose.) Based on Nernst equation. The MFC system of two compartments and bridges of salt as a linkage is used in this study. Anode contains lactose with variation of concentration 3 - 7% and bacteria. The cathode contains a 1M KMO4. The electrodes used are graphite. MFC operational time is 14 days. The results showed that the lactose concentration had an effect on the cell potential produced in the MFC system. Maximum cell potential yielded at 4% lactose concentration, that is 710 mV then based on Nerst equation theory obtained E ° Lactose value in MFC system of + 0,236 V.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Velev, Boris, Bozhidar Djudzhev, Vladimir Dimitrov und Nikolay Hinov. „Comparative Analysis of Lithium-Ion Batteries for Urban Electric/Hybrid Electric Vehicles“. Batteries 10, Nr. 6 (29.05.2024): 186. http://dx.doi.org/10.3390/batteries10060186.

Der volle Inhalt der Quelle
Annotation:
This paper presents an experimental comparison of two types of Li-ion battery stacks for low-voltage energy storage in small urban Electric or Hybrid Electric Vehicles (EVs/HEVs). These systems are a combination of lithium battery cells, a battery management system (BMS), and a central control circuit—a lithium energy storage and management system (LESMS). Li-Ion cells are assembled with two different active cathode materials, nickel–cobalt–aluminum (NCA) and lithium iron phosphate (LFP), both with an integrated decentralized BMS. Based on experiments conducted on the two assembled LESMSs, this paper suggests that although LFP batteries have inferior characteristics in terms of energy and power density, they have great capacity for improvement.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Piatkowski, Piotr, Iwona Michalska-Pozoga und Marcin Szczepanek. „Fuel Cells in Road Vehicles“. Energies 15, Nr. 22 (17.11.2022): 8606. http://dx.doi.org/10.3390/en15228606.

Der volle Inhalt der Quelle
Annotation:
Issues related to the reduction of the environmental impact of means of road transport by the use of electric motors powered by Proton Exchange Membrane (PEM) fuel cells are presented in this article. The overall functional characteristics of electric vehicles are presented, as well as the essence of the operation of a fuel cell. On the basis of analyzing the energy conversion process, significant advantages of electric drive are demonstrated, especially in vehicles for urban and suburban applications. Moreover, the analyzed literature indicated problems of controlling and maintaining fuel cell power caused by its highest dynamic and possible efficiency. This control was related to the variable load conditions of the fuel cell vehicle (FCV) engine. The relationship with the conventional dependencies in the field of vehicle dynamics is demonstrated. The final part of the study is related to the historical outline and examples of already operating fuel cell systems using hydrogen as an energy source for energy conversion to power propulsion vehicle’s engines. In conclusion, the necessity to conduct research in the field of methods for controlling the power of fuel cells that enable their effective adaptation to the temporary load resulting from the conditions of vehicle motion is indicated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Yao, Yizhou, Robert W. Holdcraft, Susan C. Hagness und John H. Booske. „Electric pulse exposure reduces AAV8 dosage required to transduce HepG2 cells“. PLOS ONE 19, Nr. 4 (30.04.2024): e0298866. http://dx.doi.org/10.1371/journal.pone.0298866.

Der volle Inhalt der Quelle
Annotation:
We demonstrate that applying electric field pulses to hepatocytes, in vitro, in the presence of enhanced green fluorescent protein (EGFP)-expressing adeno-associated virus (AAV8) vectors reduces the viral dosage required for a given transduction level by more than 50-fold, compared to hepatocytes exposed to AAV8-EGFP vectors without electric field pulse exposure. We conducted 48 experimental observations across 8 exposure conditions in standard well plates. The electric pulse exposures involved single 80-ms pulses with 375 V/cm field intensity. Our study suggests that electric pulse exposure results in enhanced EGFP expression in cells, indicative of increased transduction efficiency. The enhanced transduction observed in our study, if translated successfully to an in vivo setting, would be a promising indication of potential reduction in the required dose of AAV vectors. Understanding the effects of electric field pulses on AAV transduction in vitro is an important preliminary step.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Jeican, Ionut Isaia, Horea Matei, Alexandru Istrate, Eugen Mironescu und Ştefana Bâlici. „CHANGES OBSERVED IN ERYTHROCYTE CELLS EXPOSED TO AN ALTERNATING CURRENT“. Medicine and Pharmacy Reports 90, Nr. 2 (26.04.2017): 154–60. http://dx.doi.org/10.15386/cjmed-696.

Der volle Inhalt der Quelle
Annotation:
Background and aims. Appliance of electric pulses induces red blood cells (RBCs) membrane poration, membrane aminophospholipid perturbation and alteration of the normal flip-flop process, resulting in various shape changes of theRBCs. We studied morphological and water permeability changes of RBCs bombarded with electrons in an alternating current circuit.Methods. We used three venous blood samples of 100 mL and an alternating current device. The harvested blood was divided into four experimental sets to be used for various exposure times: 0 hours (control RBCs), 0.5h, 3h and 6h (electricstimulated RBCs).Following the electric current each of the four sets were further divided into three samples: one for the assessment of the echinocytes/RBCs ratio, another for the electron microscopy study of ultrastructural changes induced by the alternating electrical current and a larger third one for determining water permeability of RCBs by 1H-NMR spectroscopy and morphological measurements.Results. There is a small but statistically significant effect of the RBC exposure to alternating electric current on cell diameters. Exposure to electric current is positively and strongly correlated with the percentage of echinocytes in a duration-dependentmanner. There is a strong and statistically significant correlation between electric current exposure and permeability to water as measured by 1H-NMR spectroscopy.Conclusion. Following interactions between electric current and RBCmembrane, certain modifications were observed in the erythrocyte structure. We attribute the increased cell size to a higher permeability to water and a decreased tonicity. This leads to the transformation of the RBCs into echinocytes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Huang, Chi-Yo, Yi-Hsuan Hung und Gwo-Hshiung Tzeng. „Using Hybrid MCDM Methods to Assess Fuel Cell Technology for the Next Generation of Hybrid Power Automobiles“. Journal of Advanced Computational Intelligence and Intelligent Informatics 15, Nr. 4 (20.06.2011): 406–17. http://dx.doi.org/10.20965/jaciii.2011.p0406.

Der volle Inhalt der Quelle
Annotation:
With their huge consumption of petroleum and creation of a large number of pollutants, traditional vehicles have become one of the major creators of pollution in the world. To save energy and reduce carbon dioxide emissions, in recent years national governments have aggressively planned and promoted energy-saving vehicles that use green energy. Thus, hybrid electric vehicles have already become the frontrunners for future vehicles while fuel cells are considered the most suitable energy storage devices for future hybrid electric vehicles. However, various competing fuel cell technologies do exist. Furthermore, very few scholars have tried to investigate how the development of future fuel cells for hybrid electric vehicles can be assessed so that the results can serve as a foundation for the next generation of hybrid electric vehicle developments. Thus, how to assess various fuel cells is one the most critical issues in the designing of hybrid electric vehicles. This research intends to adopt a framework based on Hybrid Multiple-Criteria Decision Making (MCDM) for the assessment of the development in fuel cells for future hybrid electric vehicles. The analytic framework can be used for selecting the most suitable fuel cell technology for future hybrid electric vehicles. The results of the analysis can also be used for designing the next generation of hybrid electric vehicles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Rosenspire, A. J., A. L. Kindzelskii und H. R. Petty. „Pulsed DC electric fields couple to natural NAD(P)H oscillations in HT-1080 fibrosarcoma cells“. Journal of Cell Science 114, Nr. 8 (15.04.2001): 1515–20. http://dx.doi.org/10.1242/jcs.114.8.1515.

Der volle Inhalt der Quelle
Annotation:
Previously, we have demonstrated that NAD(P)H levels in neutrophils and macrophages are oscillatory. We have also found that weak ultra low frequency AC or pulsed DC electric fields can resonate with, and increase the amplitude of, NAD(P)H oscillations in these cells. For these cells, increased NAD(P)H amplitudes directly signal changes in behavior in the absence of cytokines or chemotactic factors. Here, we have studied the effect of pulsed DC electric fields on HT-1080 fibrosarcoma cells. As in neutrophils and macrophages, NAD(P)H levels oscillate. We find that weak (~10(-)(5) V/m), but properly phased DC (pulsed) electric fields, resonate with NAD(P)H oscillations in polarized and migratory, but not spherical, HT-1080 cells. In this instance, electric field resonance signals an increase in HT-1080 pericellular proteolytic activity. Electric field resonance also triggers an immediate increase in the production of reactive oxygen metabolites. Under resonance conditions, we find evidence of DNA damage in HT-1080 cells in as little as 5 minutes. Thus the ability of external electric fields to effect cell function and physiology by acting on NAD(P)H oscillations is not restricted to cells of the hematopoietic lineage, but may be a universal property of many, if not all polarized and migratory eukaryotic cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Corcau, Jenica-Ileana, Liviu Dinca, Grigore Cican, Adriana Ionescu, Mihai Negru, Radu Bogateanu und Andra-Adelina Cucu. „Studies Concerning Electrical Repowering of a Training Airplane Using Hydrogen Fuel Cells“. Aerospace 11, Nr. 3 (11.03.2024): 218. http://dx.doi.org/10.3390/aerospace11030218.

Der volle Inhalt der Quelle
Annotation:
The increase in greenhouse gas emissions, as well as the risk of fossil fuel depletion, has prompted a transition to electric transportation. The European Union aims to substantially reduce pollutant emissions by 2035 through the use of renewable energies. In aviation, this transition is particularly challenging, mainly due to the weight of onboard equipment. Traditional electric motors with radial magnetic flux have been replaced by axial magnetic flux motors with reduced weight and volume, high efficiency, power, and torque. These motors were initially developed for electric vehicles with in-wheel motors but have been adapted for aviation without modifications. Worldwide, there are already companies developing propulsion systems for various aircraft categories using such electric motors. One category of aircraft that could benefit from this electric motor development is traditionally constructed training aircraft with significant remaining flight resource. Electric repowering would allow their continued use for pilot training, preparing them for future electrically powered aircraft. This article presents a study on the feasibility of repowering a classic training aircraft with an electric propulsion system. The possibilities of using either a battery or a hybrid source composed of a battery and a fuel cell as an energy source are explored. The goal is to utilize components already in production to eliminate the research phase for specific aircraft components.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Tursunov, M. N., R. A. Muminov, O. F. Tukfatullin, I. A. Yuldoshev und E. T. Abdullaev. „Photothermal electric battery based on silicon solar cells“. Applied Solar Energy 47, Nr. 1 (März 2011): 63–65. http://dx.doi.org/10.3103/s0003701x11010166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

EVTIMOV, Ivan, Rosen IVANOV, Hristo STANCHEV, Georgi KADIKYANOV und Gergana STANEVA. „LIFE CYCLE ASSESSMENT OF FUEL CELLS ELECTRIC VEHICLES“. Transport Problems 15, Nr. 3 (2020): 153–66. http://dx.doi.org/10.21307/tp-2020-041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Agarwal, Gautum. „Lithium Peroxide Fuel Cells for Electric Vehicle Propulsion“. Journal of Propulsion and Power 16, Nr. 2 (März 2000): 367–69. http://dx.doi.org/10.2514/2.5579.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Pologea-Moraru, Roxana, Tudor Savopol und Eugenia Kovacs. „Orientation of photoreceptor cells in static electric fields“. Bioelectrochemistry and Bioenergetics 46, Nr. 2 (Oktober 1998): 237–40. http://dx.doi.org/10.1016/s0302-4598(98)00116-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Shinnar, Reuel. „The hydrogen economy, fuel cells, and electric cars“. Technology in Society 25, Nr. 4 (November 2003): 455–76. http://dx.doi.org/10.1016/j.techsoc.2003.09.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Thoma, Jean. „Electric batteries and fuel cells modeled by Bondgraphs“. Simulation Practice and Theory 7, Nr. 5-6 (Dezember 1999): 613–22. http://dx.doi.org/10.1016/s0928-4869(99)00025-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

ROGNER, H. „Fuel cells, energy system evolution and electric utilities“. International Journal of Hydrogen Energy 19, Nr. 10 (Oktober 1994): 853–61. http://dx.doi.org/10.1016/0360-3199(94)90201-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Cornu, Jean-Pierre. „High performance nickel-cadmium cells for electric vehicles“. Journal of Power Sources 51, Nr. 1-2 (August 1994): 19–28. http://dx.doi.org/10.1016/0378-7753(94)01964-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Sperelakis, N., und K. McConnell. „Electric field interactions between closely abutting excitable cells“. IEEE Engineering in Medicine and Biology Magazine 21, Nr. 1 (2002): 77–89. http://dx.doi.org/10.1109/51.993199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Berg, Hermann. „Basic applications of electric fields on biological cells“. Journal of Electroanalytical Chemistry 342, Nr. 2 (April 1992): 89–97. http://dx.doi.org/10.1016/0022-0728(92)85040-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Berg, Hermann. „Basic applications of electric fields on biological cells“. Bioelectrochemistry and Bioenergetics 27, Nr. 2 (April 1992): 89–97. http://dx.doi.org/10.1016/0302-4598(92)87033-q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Saive, Rebecca, Michael Scherer, Christian Mueller, Dominik Daume, Janusz Schinke, Michael Kroeger und Wolfgang Kowalsky. „Imaging the Electric Potential within Organic Solar Cells“. Advanced Functional Materials 23, Nr. 47 (19.06.2013): 5854–60. http://dx.doi.org/10.1002/adfm.201301315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Liu, Peilin, Yonglan Yi, Hanqin Liu und Hongxi Chen. „PRELIMINARY STUDY ON ELECTRIC FUSION OF FISH CELLS“. Acta Hydrobiologica Sinica 12, Nr. 1 (01.01.1988): 94–96. http://dx.doi.org/10.3724/issn1000-3207-1988-1-94-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Hsieh, Ya-Ping, Bang-Jian Hong, Chu-Chi Ting und Mario Hofmann. „Ultrathin graphene-based solar cells“. RSC Advances 5, Nr. 121 (2015): 99627–31. http://dx.doi.org/10.1039/c5ra19393a.

Der volle Inhalt der Quelle
Annotation:
By employing graphene as a top electrode, 10 nm leakage-free ultra-thin solar cells were produced and the competition between interfacial electric fields and bulk carrier recombination could be probed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Abd-Elghany, Amr, und A. Yousef. „Response of Human Malignant Glioma Cells to Asymmetric Bipolar Electrical Impulses“. International Journal of Biomedicine 12, Nr. 4 (05.12.2022): 560–66. http://dx.doi.org/10.21103/article12(4)_oa6.

Der volle Inhalt der Quelle
Annotation:
Electric and electromagnetic pulses have been shown to enhance the endocytosis rate, with all-or-nothing responses beyond a field strength threshold and linear responses as a function of field strength and treatment duration utilizing bipolar symmetrical and monopolar pulses, respectively. Malignant glioma (MG) is resistant to chemotherapy. The present study looked for a new electrical impulse that can aid electrochemotherapy to deliver anticancer drugs while using less electrical energy. Bipolar asymmetric electric pulses were applied to U251MG cells suspended in physiologically conductive media in the presence of molecular probes, including Bleomycin. The delivered electric pulses with a pulse duration range of 180-500 µs and a frequency range of 100-400 Hz had a low field intensity ranging from 1.5 V/cm to 7.3 V/cm. Spectrophotometric and spectrofluorometric measurements were used to investigate the impact of these variables on cancer cell survival and the molecular probe uptake induced by the electric pulses. An all-or-nothing response was observed above a specified threshold of electric field intensity of 4 V/cm. This threshold was unaffected by changes in repetition frequency or pulse duration. It was not a temperature effect that caused the molecular probe uptake to increase. When bipolar asymmetric electric pulses were applied just before electroporation, the effectiveness of the cytotoxic impact of bleomycin was increased from 80%, when employing electroporation pulses alone, to 100%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie