Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cell wall deficiency“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cell wall deficiency" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cell wall deficiency"
Liao, Ya-Yun, Thomas J. Buckhout und Wolfgang Schmidt. „Phosphate deficiency-induced cell wall remodeling“. Plant Signaling & Behavior 6, Nr. 5 (Mai 2011): 700–702. http://dx.doi.org/10.4161/psb.6.5.15051.
Der volle Inhalt der QuelleWu, Weiwei, Shengnan Zhu, Qianqian Chen, Yan Lin, Jiang Tian und Cuiyue Liang. „Cell Wall Proteins Play Critical Roles in Plant Adaptation to Phosphorus Deficiency“. International Journal of Molecular Sciences 20, Nr. 21 (23.10.2019): 5259. http://dx.doi.org/10.3390/ijms20215259.
Der volle Inhalt der QuelleRidge, S. C., J. B. Zabriskie, H. Osawa, T. Diamantstein, A. L. Oronsky und S. S. Kerwar. „Administration of group A streptococcal cell walls to rats induces an interleukin 2 deficiency.“ Journal of Experimental Medicine 164, Nr. 1 (01.07.1986): 327–32. http://dx.doi.org/10.1084/jem.164.1.327.
Der volle Inhalt der QuelleVitković, Ljubiša. „Wall turnover deficiency of Bacillus subtilis Nil5 is due to a decrease in teichoic acid“. Canadian Journal of Microbiology 33, Nr. 6 (01.06.1987): 566–68. http://dx.doi.org/10.1139/m87-096.
Der volle Inhalt der QuelleOngenae, Véronique, Ariane Briegel und Dennis Claessen. „Cell wall deficiency as an escape mechanism from phage infection“. Open Biology 11, Nr. 9 (September 2021): 210199. http://dx.doi.org/10.1098/rsob.210199.
Der volle Inhalt der QuelleZhang, Cheng, Mingliang He, Zhexuan Jiang, Lan Liu, Junbao Pu, Wenjun Zhang, Sheliang Wang und Fangsen Xu. „The Xyloglucan Endotransglucosylase/Hydrolase Gene XTH22/TCH4 Regulates Plant Growth by Disrupting the Cell Wall Homeostasis in Arabidopsis under Boron Deficiency“. International Journal of Molecular Sciences 23, Nr. 3 (23.01.2022): 1250. http://dx.doi.org/10.3390/ijms23031250.
Der volle Inhalt der QuelleYin, Qi, Lu Kang, Yi Liu, Mirza Faisal Qaseem, Wenqi Qin, Tingting Liu, Huiling Li, Xiaomei Deng und Ai-min Wu. „Boron deficiency disorders the cell wall in Neolamarckia cadamba“. Industrial Crops and Products 176 (Februar 2022): 114332. http://dx.doi.org/10.1016/j.indcrop.2021.114332.
Der volle Inhalt der QuelleClaessen, Dennis, und Jeff Errington. „Cell Wall Deficiency as a Coping Strategy for Stress“. Trends in Microbiology 27, Nr. 12 (Dezember 2019): 1025–33. http://dx.doi.org/10.1016/j.tim.2019.07.008.
Der volle Inhalt der QuelleGutierrez-Armijos, L. Roxana, Rodrigo A. C. Sussmann, Ariel M. Silber, Mauro Cortez und Agustín Hernández. „Abnormal sterol-induced cell wall glucan deficiency in yeast is due to impaired glucan synthase transport to the plasma membrane“. Biochemical Journal 477, Nr. 24 (18.12.2020): 4729–44. http://dx.doi.org/10.1042/bcj20200663.
Der volle Inhalt der QuelleLam, Pui Ying, Lanxiang Wang, Andy C. W. Lui, Hongjia Liu, Yuri Takeda-Kimura, Mo-Xian Chen, Fu-Yuan Zhu et al. „Deficiency in flavonoid biosynthesis genes CHS, CHI, and CHIL alters rice flavonoid and lignin profiles“. Plant Physiology 188, Nr. 4 (28.12.2021): 1993–2011. http://dx.doi.org/10.1093/plphys/kiab606.
Der volle Inhalt der QuelleDissertationen zum Thema "Cell wall deficiency"
Fuller, Elizabeth R. „Cell wall-deficiency in Staphylococcus aureus and its role in antibiotic resistance“. Thesis, University of Newcastle Upon Tyne, 2008. http://hdl.handle.net/10443/1671.
Der volle Inhalt der QuelleDell'Era, Simone. „Morphological and molecular characterization of cell wall-deficient L-forms of L. monocytogenes /“. Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17588.
Der volle Inhalt der QuellePalaiodimou, Lydia. „Molecular insights into Listeria monocytogenes persistence via label-free quantitative proteomics“. Electronic Thesis or Diss., université Paris-Saclay, 2024. https://theses.hal.science/tel-04951897.
Der volle Inhalt der QuelleListeria monocytogenes (Lm) is a facultative intracellular pathogen responsible for listeriosis, a severe foodborne illness in pregnant women and immunocompromised individuals. Known for its adaptability, Lm persists across varied environments, making it difficult to control. During long-term infection in epithelial cells, such as hepatocytes and trophoblasts, Lm shifts from a replicative to a quiescent state within lysosome-like vacuoles, termed Listeria-containing vacuoles (LisCVs). This transition is associated with the loss of the actin-nucleating protein ActA and the arrest of actin polymerisation at the bacterial surface. Within LisCVs, the majority of bacteria remain intact and enter a slow/non-replicative or a viable but non-culturable (VBNC) state, a dormant form enabling persistence under adverse conditions. Prolonged infection of hepatocytes by Listeria disrupts host immunity, particularly reducing the secretion of acute-phase proteins (APPs), key to the immune response. This process might prevent the complete elimination of Listeria from the liver, thereby favoring the establishment of persistent infection. Lm also displays notable adaptability outside host environments, particularly in water systems, where it can enter a VBNC dormant state. VBNC pathogens pose heightened health risks as they are undetectable by growth-based methods and can reactivate into a virulent form. A recent study shows that when exposed to these nutrient-poor conditions, the bacteria lose their rod shape and become round due to their cell wall loss. These cell wall-deficient (CWD) forms can adapt to physicochemical imbalances by modifying their membrane and producing specific proteins. The first part of this thesis explores host-pathogen interactions during Lm infections, focusing on trophoblast cells. Using comparative proteomics via LC-MS/MS, this study analyses differences in secretome profiles between infected and uninfected cells across replicative (24h p.i.) and persistent (96h p.i.) infection phases. Pathway analysis in the trophoblast model indicates that Lm modulates immune responses through intermediary processes like angiogenesis and signalling pathways, including HIF-1α and MAPK, essential for signal transduction. Similar to the liver, these modulations may be crucial for creating and sustaining a niche in trophoblast cells; however, mechanisms remain to be identified. The second part of this thesis investigates Lm environmental persistence using an in vitro mineral water model and comparative proteomics. Proteomic data identified the downregulation of cell wall-related proteins, consistent with the establishment of CWD form. Functional analysis showed additional stress responses, including decreased signal transduction, virulence, and energy production, all consistent with the VBNC state. These findings provide insight into Lm environmental survival strategies, aiding in the understanding of its persistence mechanisms. This work examines Lm persistence in trophoblast cells and environmental conditions, demonstrating its molecular adaptation to survive in diverse environments. Within host cells, Lm emphasises immune repression, while in nutrient-poor conditions, it focuses on nutrient scavenging and stress resistance. These findings highlight its resilience and could lead to potential applications for detection and treatment of persistent infections
Το Listeria monocytogenes (Lm) είναι ένας προαιρετικά ενδοκυτταρικός παθογόνος μικροοργανισμός, υπεύθυνος για τη λιστερίωση, μια σοβαρή τροφιμογενή λοίμωξη που επηρεάζει κυρίως έγκυες γυναίκες και ανοσοκατασταλμένα άτομα. Γνωστό για την προσαρμοστικότητά του, το Lm επιμένει σε ποικίλα περιβάλλοντα, καθιστώντας τον έλεγχό του δύσκολο. Κατά τη διάρκεια χρόνιων λοιμώξεων σε επιθηλιακά κύτταρα, όπως ηπατοκύτταρα και τροφοβλάστες, το Lm μεταβαίνει από πολλαπλασιασμό σε λανθάνουσα κατάσταση σε Listeria-containing vacuoles (LisCVs). Αυτή η μετάβαση συνδέεται με την απώλεια της ActA και την αναστολή του πολυμερισμού της ακτίνης στην επιφάνειά του. Στα LisCVs, τα βακτήρια εισέρχονται σε μια αργή/μη πολλαπλασιαστική ή βιώσιμη αλλά μη καλλιεργήσιμη (VBNC) κατάσταση, ευνοώντας την επιμονή. Η παρατεταμένη λοίμωξη των ηπατοκυττάρων από τη Listeria διαταράσσει την ανοσία του ξενιστή, μειώνοντας την έκκριση πρωτεϊνών οξείας φάσης (APPs), κρίσιμων για την ανοσοαπόκριση. Αυτό μπορεί να εμποδίσει την πλήρη εξάλειψή της από το ήπαρ, προωθώντας χρόνια λοίμωξη. Το Lm εμφανίζει προσαρμοστικότητα και εκτός ξενιστών, ιδιαίτερα σε υδάτινα συστήματα, όπου εισέρχεται στη VBNC κατάσταση. Οι οργανισμοί VBNC συνιστούν κίνδυνο, καθώς δεν ανιχνεύονται με μεθόδους καλλιέργειας αλλά μπορούν να επανενεργοποιηθούν. Πρόσφατη μελέτη δείχνει ότι σε συνθήκες πτωχών θρεπτικών στοιχείων, τα βακτήρια χάνουν το ραβδοειδές σχήμα τους και γίνονται στρογγυλά λόγω απώλειας κυτταρικού τοιχώματος. Αυτές οι μορφές χωρίς κυτταρικό τοίχωμα (CWD) προσαρμόζονται σε φυσικοχημικές ανισορροπίες μέσω τροποποιήσεων στη μεμβράνη και παραγωγής ειδικών πρωτεϊνών. Το πρώτο μέρος αυτής της διατριβής εξετάζει τις αλληλεπιδράσεις ξενιστή-παθογόνου στις λοιμώξεις Lm, εστιάζοντας στα κύτταρα τροφοβλάστης. Με συγκριτική πρωτεομική (LC-MS/MS), αναλύονται οι διαφορές στο εκκρίτωμα μολυσμένων και μη μολυσμένων κυττάρων στις φάσεις πολλαπλασιασμού (24h) και επιμονής (96h). Η ανάλυση μονοπατιών δείχνει ότι το Lm τροποποιεί τις ανοσολογικές αποκρίσεις μέσω διαδικασιών όπως η αγγειογένεση και τα μονοπάτια σηματοδότησης HIF-1α και MAPK, κρίσιμα για τη μεταβίβαση σήματος. Όπως και στο ήπαρ, αυτές οι τροποποιήσεις μπορεί να συμβάλλουν στη διατήρηση μιας λοίμωξης στα κύτταρα τροφοβλάστης, αν και οι ακριβείς μηχανισμοί παραμένουν άγνωστοι. Το δεύτερο μέρος εξετάζει την περιβαλλοντική επιμονή του Lm χρησιμοποιώντας in vitro μοντέλο μεταλλικού νερού και συγκριτική πρωτεομική. Τα δεδομένα ανέδειξαν μείωση πρωτεϊνών κυτταρικού τοιχώματος, επιβεβαιώνοντας τη μορφή CWD. Επιπλέον, η λειτουργική ανάλυση έδειξε αποκρίσεις στο στρες, όπως μείωση μεταβίβασης σήματος, λοιμογόνου δράσης και παραγωγής ενέργειας, συμβατές με την κατάσταση VBNC. Αυτά τα ευρήματα προσφέρουν νέα δεδομένα για τις στρατηγικές περιβαλλοντικής επιβίωσης του Lm, συμβάλλοντας στην κατανόηση των μηχανισμών επιμονής του. Η εργασία αυτή εξετάζει την επιμονή του Lm σε κύτταρα τροφοβλάστης και περιβαλλοντικές συνθήκες, καταδεικνύοντας τη μοριακή του προσαρμογή. Στα κύτταρα ξενιστή, το Lm καταστέλλει το ανοσοποιητικό, ενώ σε συνθήκες πτωχών θρεπτικών στοιχείων εστιάζει στη συλλογή τους και την αντοχή στο στρες. Αυτά τα ευρήματα αναδεικνύουν την ανθεκτικότητά του και θα μπορούσαν να συμβάλουν στην ανίχνευση και θεραπεία επίμονων λοιμώξεων
Bücher zum Thema "Cell wall deficiency"
Mattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens. Taylor & Francis Group, 2000.
Den vollen Inhalt der Quelle findenMattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens. Taylor & Francis Group, 2009.
Den vollen Inhalt der Quelle findenMattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens. Taylor & Francis Group, 2000.
Den vollen Inhalt der Quelle findenMattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens, Fourth Edition. CRC, 2009.
Den vollen Inhalt der Quelle findenMattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens, Third Edition. 3. Aufl. CRC, 2000.
Den vollen Inhalt der Quelle findenMattman, Lida H. Cell Wall Deficient FormsStealth Pathogens. Taylor & Francis Group, 2000.
Den vollen Inhalt der Quelle findenCell wall deficient forms: Stealth pathogens. 3. Aufl. Boca Raton, Fla: CRC Press, 2001.
Den vollen Inhalt der Quelle findenMattman, Lida H. Cell Wall Deficient Forms, Third Edition. Taylor & Francis Group, 2000.
Den vollen Inhalt der Quelle findenCell wall deficient forms: Stealth pathogens. 2. Aufl. Boca Raton, Fla: CRC Press, 1993.
Den vollen Inhalt der Quelle findenCell Wall Deficient Forms: Stealth Pathogens, Fourth Edition. CRC Press LLC, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cell wall deficiency"
Bonilla, I., H. Perez, G. Cassab, M. Lara und F. Sanchez. „The effect of boron deficiency on development in determinate nodules: changes in cell wall pectin contents and nodule polypeptide expression“. In Boron in Soils and Plants, 213–20. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5564-9_42.
Der volle Inhalt der QuelleFindeklee, Peter, Monika Wimmer und Heiner E. Goldbach. „Early effects of boron deficiency on physical cell wall parameters, hydraulic conductivity and plasmalemma-bound reductase activities in young C. pepo and V. faba roots“. In Boron in Soils and Plants, 221–27. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5564-9_43.
Der volle Inhalt der QuelleKoch, Arthur L. „Spirochetes and Spiroplasma and the Special Strategies for CWD (Cell Wall Deficient) Cells“. In The Bacteria: Their Origin, Structure, Function and Antibiosis, 137–45. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-3206-6_15.
Der volle Inhalt der QuelleAllan, D. L., J. R. Shann und P. M. Bertsch. „Role of root cell walls in iron deficiency of soybean (Glycine max) and aluminium toxicity of wheat (Triticum aestivum)“. In Plant Nutrition — Physiology and Applications, 345–49. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0585-6_58.
Der volle Inhalt der Quelle„Fungi Recognizing Wall Deficiency of Fungi“. In Cell Wall Deficient Forms, 301–12. CRC Press, 2000. http://dx.doi.org/10.1201/b16928-31.
Der volle Inhalt der QuelleMarkova, Nadya. „Cell Wall Deficiency in Mycobacteria: Latency and Persistence“. In Understanding Tuberculosis - Deciphering the Secret Life of the Bacilli. InTech, 2012. http://dx.doi.org/10.5772/30919.
Der volle Inhalt der QuelleChambers, James. „I-Cell Disease (Mucolipidosis II)“. In Clinical Studies in Medical Biochemistry, 181–94. Oxford University PressNew York, NY, 2006. http://dx.doi.org/10.1093/oso/9780195176872.003.0017.
Der volle Inhalt der QuelleChambers, James. „I-Cell Disease (Mucolipidosis II)“. In Clinical Studies In Medical Biochemistry, 181–94. Oxford University PressNew York, NY, 2006. http://dx.doi.org/10.1093/oso/9780195147322.003.0017.
Der volle Inhalt der Quelle„Disclosures by Electron Microscopy“. In Cell Wall Deficient Forms, 91–102. CRC Press, 2000. http://dx.doi.org/10.1201/b16928-10.
Der volle Inhalt der Quelle„Public Health and Nosocomial Facets Salmonella and Shigella Carriers“. In Cell Wall Deficient Forms, 103–12. CRC Press, 2000. http://dx.doi.org/10.1201/b16928-11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cell wall deficiency"
Gruber, Matthew J., Varun Krishnamurthy, D. A. Narmoneva und Robert B. Hinton. „Elastin Haploinsufficiency Is Associated With Altered Interstitial Phenotype and Progressive Aortopathy“. In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192891.
Der volle Inhalt der QuelleBian, Shiyao, Ying Zheng, Shuichi Takayama und James B. Grotberg. „Micro-PIV Measurements of an Airway Closure Model“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206831.
Der volle Inhalt der QuelleWAJIMA, T. „THROMBOCYTOPENIA IN ACQUIRED IMMUNE DEFICIENCY SYNDRGME(AIDS)-RELATED COMPLEXES:RESOLUTION DURING HERPES VIRAL INFECTION“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644145.
Der volle Inhalt der QuelleEspinosa, Gabriela, Lisa Bennett, William Gardner und Jessica Wagenseil. „The Effects of Extracellular Matrix Protein Insufficiency and Treatment on the Stiffness of Arterial Smooth Muscle Cells“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14131.
Der volle Inhalt der QuelleTengborn, L., und A. Wallmark. „ALTERATIONS IN THE COAGULATION AND FIBRINOLYTIC SYSTEMS AS PREDISPOSING FACTORS IN THE DEVELOPMENT OF DEEP VENOUS THROMBOSIS (DVT)“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644203.
Der volle Inhalt der QuelleTakeshige, T., I. Fuse, I. Hattori, T. Momotsu, A. Shibata und K. Abe. „NORMAL URINARY PROSTAGLANDIN E2 EXCRETION IN THE PATIENT WITH PLATELET CYCLO-OXYGENASE DEFICIENCY“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644879.
Der volle Inhalt der QuelleKeyes, Joseph T., Stacy Borowicz, Urs Utzinger, Mohamad Azhar und Jonathan P. Vande Geest. „Quantification of the Biomechanical Differences in Wild-Type and Heterozygous TGF Beta2 Knockout Mice“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19482.
Der volle Inhalt der QuelleTeitel, J. M., M. B. Garvey und J. J. Freedman. „THE ENDOTHELIAL CELL AS THE SII$ OF THE FACTOR VIII BYPASSING ACTIVITY OF PROTHROMBIN COMPLEX CONCENTRATE (PCC)“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644731.
Der volle Inhalt der QuelleDooi jewaard, G., D. J. Binnema und C. Kluft. „CONTACT ACTIVATION AND SINGLE-CHAIN UROKINASE-TYPE PLASMINOGEN ACTIVATOR“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642958.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cell wall deficiency"
Harman, Gary E., und Ilan Chet. Discovery and Use of Genes and Gene Combinations Coding for Proteins Useful in Biological Control. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568787.bard.
Der volle Inhalt der QuelleThomashow, Linda, Leonid Chernin, Ilan Chet, David M. Weller und Dmitri Mavrodi. Genetically Engineered Microbial Agents for Biocontrol of Plant Fungal Diseases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696521.bard.
Der volle Inhalt der Quelle