Dissertationen zum Thema „Cell metabolism Regulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Cell metabolism Regulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Tejedor, Vaquero Sonia 1988. „Influence of metabolism in the regulation of T cell differentiation“. Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/664638.
Der volle Inhalt der QuelleLa glucosa és un nutrient essencial per les cèl·lules T. Malgrat que l’activació T es veu disminuïda per la manca de glucosa, s’ha vist que respostes T efectores tenen lloc in vivo en entorns amb nivells baixos de glucosa, com són els tumors. Això planteja la incògnita de saber com aquestes cèl·lules poden mantenir les seves funcions en ambients pobres de nutrients. En aquest treball hem analitzat la capacitat de les cèl·lules T efectores (Th0) de ser activades en condicions pro-inflamatòries i nivells baixos de glucosa (0.3 mM). Hem vist que les cèl·lules T efectores secundàries poden induir citocines característiques de respostes Th1 i Th17 com la IL-17A i l’IFNγ en condicions de nivells baixos de glucosa, però perden la capacitat d’expressar la IL-22. Aquestes cèl·lules s’adapten a un entorn baix de glucosa reduint-ne el consum i reduint l’expressió de gens de la glicòlisi, malgrat tot, la glucosa segueix sent la seva principal font d’energia (ATP). A més a més, hem observat que nivells limitats de glucosa provoquen una lleu però progressiva deficiència en l’activitat d’mTORC1, necessària per la producció de la IL-22 i que explicaria en part la disminució dels nivells d’aquesta citocina. Els nostres resultats també mostren que les cèl·lules T efectores secundàries que han experimentat un estrès de glucosa adquireixen un fenotip de memòria que fa que responguin de manera alterada (producció exagerada de IL-22) a un segon estímul en presència de nivells normals de glucosa. Finalment, hem observat que les cèl·lules T CD4 efectores activades in vivo expressen diferencialment gens sensibles a glucosa quan són re-estimulades ex vivo. Això suggereix que el context d’activació d’una cèl·lula T és important per determinar la resposta d’aquestes cèl·lules a posteriors estimulacions en situació de baixa glucosa. En resum, els nostres resultats mostren que els limfòcits T son capaços de mantenir un ventall de funcions efectores en situacions de restricció de nutrients, però que el haver passat per una etapa d’estrès de nutrients pot condicionar els seus perfils d’expressió gènica en respostes efectores futures.
Babić, Nikolina. „Regulation of energy metabolism of heart myoblasts /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/11563.
Der volle Inhalt der QuelleMathew, Jasmin. „Keratin 8/18 regulation of hepatic cell death and metabolism“. Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26554/26554.pdf.
Der volle Inhalt der QuelleSzkolnicka, Dagmara Maria. „MicroRNA regulation of drug metabolism in stem cell-derived hepatocytes“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/23421.
Der volle Inhalt der QuelleMukherjee, Abir. „ROLE OF LYSOPHOSPHATIDIC ACID IN REGULATION OF CANCER CELL METABOLISM“. VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/391.
Der volle Inhalt der QuelleSyal, Charvi. „Epigenetic Regulation of Lipid Metabolism in Neural Stem Cell Fate Decision“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38706.
Der volle Inhalt der QuelleNg, Shyh Chang. „Regulation of Stem Cell Metabolism by the Lin28/let-7 Axis“. Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11217.
Der volle Inhalt der QuelleMofarrahi, Mahroo. „Regulation of skeletal muscle satellite cell proliferation by NADPH oxidase“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111521.
Der volle Inhalt der QuelleAitchison, Robert E. D. „Mammary cell cyclic AMP : regulation of breakdown and influence on protein phosphorylation“. Thesis, University of Glasgow, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303363.
Der volle Inhalt der QuelleBeauchamp, Pascal. „The functional role of the RNA-binding protein HuR in the regulation of muscle cell differentiation /“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111586.
Der volle Inhalt der QuelleNilsson, Per. „Allosteric Regulation of mRNA Metabolism : -Mechanisms of Cap-Dependent Regulation of Poly(A)-specific Ribonuclease (PARN)“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8647.
Der volle Inhalt der QuelleLin, Weiyang. „Phospholipid metabolism in the MCF-7 cell cycle, regulation of phosphatidylcholine accumulation“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0015/NQ53065.pdf.
Der volle Inhalt der QuelleRainer, Roman Josef. „Identification of differential regulation in central carbon metabolism between related cell lines“. Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/22117.
Der volle Inhalt der QuelleColon cancer cells and T cells regulate central carbon metabolism to meet their anabolic needs. In KRAS and BRAF tumors, metabolic reprogramming is a premise to support rapid proliferation. In T cells, the mitochondrial T cell activation inhibitor (TCAIM) is known to affect mitochondrial morphology but its effect on cellular metabolism is not well understood. Via mathematical modelling, I investigate the differential regulation of closely related cell lines. I present the first mathematical model for colon cancer and T cell metabolism, unraveling differential regulation between related cell lines. The model shows that CaCO2-BRAFV600Ecells are mostly downregulated compared to CaCO2-KRASG12Vand CaCO2-control. Additionally, it demonstrates the critical role of monocarboxylate transporter (MCT), especially for CaCO2-KRASG12V. Concerning T cells, I compare wild-type T cells to homozygous TCAIM T cells. This unveils that TCAIM homozygous cells have a mostly downregulated TCA cycle, validated by RNASeq data, and are less metabolically active than wild-type T cells. Furthermore, if the glycolytic flux is not sufficient to support lactate export and biomass production, the model reveals that the TCA cycle is reversed as it requires less regulation. Taken together, this work presents a novel approach to integrate data referring to metabolic and genetic regulation of metabolism. On this basis, we can now better discriminate the metabolic capacity of CaCO2-control, CaCO2-BRAFV600E, CaCO2-KRASG12V, wildtype CD8 T cells, and homozygous TCAIM CD8 T cells.
Koseoglu, Mehmet Murat Marzluff William F. „Cell cycle regulation of the stem loop binding protein a key regulator in histone mRNA metabolism /“. Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,2081.
Der volle Inhalt der QuelleTitle from electronic title page (viewed Feb. 17, 2009). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology Graduate Studies in Molecular, Cell, and Developmental Biology." Discipline: Biology; Department/School: Biology.
Tomac, Andreas C. „Glial cell line-derived neurotrophic factor : expression patterns, neuronal transport, regulation, effects and receptor dependence /“. Stockholm, 1998. http://diss.kib.ki.se/search/diss.se.cfm?19980618toma.
Der volle Inhalt der QuelleAtmosukarto, Ines Irene Caterina. „Biochemical and genetic approach to the characterisation of Tec function in the mouse“. Title page, contents and summary only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pha881.pdf.
Der volle Inhalt der QuellePursglove, Sharon Elizabeth. „Biophysical analysis of Tec Kinase regulatory regions : implications for the control of Kinase activity“. Title page, contents and summary only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09php9863.pdf.
Der volle Inhalt der QuelleSecinaro, Michael Anthony. „The Contribution Of Metabolism To The Regulation Of Caspase Activity And Cell Death In T Lymphocytes“. ScholarWorks @ UVM, 2019. https://scholarworks.uvm.edu/graddis/1000.
Der volle Inhalt der QuelleChenery, Alistair Lee. „Regulation of mucosal T cell responses by intestinal helminths and retinoic acid metabolism“. Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57723.
Der volle Inhalt der QuelleMedicine, Faculty of
Pathology and Laboratory Medicine, Department of
Graduate
Ding, Min Judd Robert L. „Regulation of glucose metabolism in a hepatic and muscle cell line by adiponectin“. Auburn, Ala., 2005. http://hdl.handle.net/10415/1263.
Der volle Inhalt der QuelleThwe, Phyu Myat. „Characterizing The Role And Regulation Of Glycogen Metabolism In Dendritic Cell Immune Responses“. ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/935.
Der volle Inhalt der QuelleFultz, Kimberly Elizabeth. „APC-dependent regulation of polyamine metabolism and apoptosis in human colon tumor cells“. Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280176.
Der volle Inhalt der QuelleFaulkner, Ashton. „Regulation of endothelial cell metabolism by agonist-activated PPAR? : implications for angiogenesis-related activity“. Thesis, Royal Veterinary College (University of London), 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.731287.
Der volle Inhalt der QuelleWaddington, Kirsty Elizabeth. „Regulation of membrane lipid metabolism and immune cell function by the nuclear receptor LXR“. Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10054993/.
Der volle Inhalt der QuelleMcCarthy, Michael Thomas. „Mechanisms of NKG2D ligand regulation“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:69de3276-0b1e-4174-9309-988242468682.
Der volle Inhalt der QuelleCrosby, Priya. „Metabolic regulation of circadian timekeeping“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/269019.
Der volle Inhalt der QuelleSchuster, Susanne. „The NAMPT-mediated NAD salvage pathway in cancer cell metabolism and its regulation by resveratrol“. Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-173401.
Der volle Inhalt der QuelleRainer, Roman Josef [Verfasser]. „Identification of differential regulation in central carbon metabolism between related cell lines / Roman Josef Rainer“. Berlin : Humboldt-Universität zu Berlin, 2020. http://d-nb.info/1222028697/34.
Der volle Inhalt der QuelleTaruttis-Glagoleff, Franziska [Verfasser], und Rainer [Akademischer Betreuer] Spang. „Modeling MYC-dependent regulation of gene expression and cell metabolism in B-cell lymphomas / Franziska Taruttis-Glagoleff ; Betreuer: Rainer Spang“. Regensburg : Universitätsbibliothek Regensburg, 2021. http://d-nb.info/1230135979/34.
Der volle Inhalt der QuelleEnglish, Tamara Erica Carleton University Dissertation Biology. „Differential gene expression in response to freezing and anoxia in the intertidal marine gastropod, littorina littorea“. Ottawa, 2000.
Den vollen Inhalt der Quelle findenOkemo, Pauline Asami. „Regulation of plant programmed cell death by energy metabolism in the Australian resurrection grass Tripogon loliiformis“. Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/205617/1/Pauline_Okemo_Thesis.pdf.
Der volle Inhalt der QuellePurcell, Robert. „Regulation of endothelial cell function by omega-3 fatty acids and their oxygenated metabolites : mediators of vascular protection?“ Thesis, Royal Veterinary College (University of London), 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.701662.
Der volle Inhalt der QuelleJames, Andrew. „Metabolic regulation of the plasma membrane calcium pump in pancreatic ductal adenocarcinoma“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/metabolic-regulation-of-the-plasma-membrane-calcium-pump-in-pancreatic-ductal-adenocarcinoma(0533b59c-e6ee-41fb-ad32-cb4784eadfa1).html.
Der volle Inhalt der QuelleMoore, Jocelyn. „Post-transcriptional control of Drosophila pole plasm component, germ cell-less“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115700.
Der volle Inhalt der QuelleJones, Andrea Kathryn. „The role of cyclic AMP in the regulation of cholesterol metabolism in human monocytes/macrophage cell lines“. Thesis, Royal Veterinary College (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522614.
Der volle Inhalt der QuelleDe, Lira Maria Nathalia [Verfasser], und Elita [Gutachter] Avota. „The regulation of T cell metabolism by neutral sphingomyelinase 2 / Maria Nathalia De Lira ; Gutachter: Elita Avota“. Würzburg : Universität Würzburg, 2020. http://d-nb.info/1221963252/34.
Der volle Inhalt der QuelleChantarasinlapin, Praew. „Regulation of Adipocyte Differentiation and Metabolism: Rab5-Guanine Nucleotide Exchange Factors and Methylglyoxal“. FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3227.
Der volle Inhalt der QuelleDeMille, Desiree. „Identifying and Characterizing Yeast PAS Kinase 1 Substrates Reveals Regulation of Mitochondrial and Cell Growth Pathways“. BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5930.
Der volle Inhalt der QuelleFreitas, Claudia Mercedes. „Regulation of Immune Cell Activation and Functionby the nBMPp2 Protein andthe CD5 Co-Receptor“. BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8257.
Der volle Inhalt der QuelleHäkkinen, Suvi T. „A functional genomics approach to the study of alkaloid biosynthesis and metabolism in Nicotiana tabacum and Hyoscyamus muticus cell cultures /“. [Espoo, Finland] : VTT, 2008. http://www.vtt.fi/inf/pdf/publications/2008/P696.pdf.
Der volle Inhalt der QuelleVondracek, Martin. „Toxicity of smokeless tobacco in human oral epithelium with emphasis on carcinogen metabolism and regulation of programmed cell death /“. Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-335-X/.
Der volle Inhalt der QuelleZhang, Wei. „Neurological - Molecular Interface in Food Intake and Metabolism in Birds and Mammals“. Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64416.
Der volle Inhalt der QuellePh. D.
Pan, Tien-Chien. „Metabolic, cardiac and ventilatory regulation in early larvae of the South African clawed frog, Xenopus laevis“. Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc12175/.
Der volle Inhalt der QuelleLekholm, Emilia. „Solute Carriers in Metabolism : Regulation of known and putative solute carriers in the central nervous system“. Doctoral thesis, Uppsala universitet, Funktionell farmakologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-331328.
Der volle Inhalt der QuelleSun, Zheng Ernsberger Paul. „Imidazoline receptors in insulin signaling and metabolic regulation molecular basis for l1-imidazoline binding and cell signaling and the mechanisms linking this signaling protein to regulation glucose metabolism“. Saarbrücken VDM Verlag Dr. Müller, 2007. http://d-nb.info/988497085/04.
Der volle Inhalt der QuelleWang, Sih-han. „Regulation of mitochondrial fates and cellular metabolism via parkin-mediated mitophagy and interaction between apoptosis and autophagy pathways in cancer“. Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3400.
Der volle Inhalt der QuelleSimon, Molas Helga. „Exploring the regulation and function of TIGAR in cancer cells“. Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667414.
Der volle Inhalt der QuelleEl gen TP53-Induced Glycolysis and Apoptosi Regulator (TIGAR) va ser descrit l'any 2006 pel grup de la Dra. Karen Vousden en resposta a l’activació del supressor tumoral p53. Des de llavors, nombrosos estudis s'han centrat en aclarir el paper d'aquest gen en el metabolisme de les cèl·lules tumorals. Inicialment, la funció atribuïda a TIGAR va ser la de bisfosfatasa de la fructosa-2,6-bisfosfat, metabòlit clau en la regulació al·lostèrica positiva de l’enzim fosfofructoquinasa-1, que catalitza la una reacció clau en la glucòlisi. Mitjançant aquesta activitat bisfosfatasa, TIGAR redueix els nivells de fructosa-2,6-bisfosfat i, en conseqüència, frena en flux glicolític i redirigeix els metabòlits a la via de les pentoses fosfat. És per aquest motiu que TIGAR es va descriure com un gen amb capacitat antioxidant. La present tesi doctoral s'ha centrat en estudiar la funció metabòlica de TIGAR en línies tumorals, així com els mecanismes que regulen la seva transcripció. Amb aquests estudis hem pogut demostrar que TIGAR és clar en la resposta de les cèl·lules al bloqueig de la glucòlisi, ja sigui per la inhibició de l'expressió del gen PFKFB3 mitjançant la tecnologia de RNA d'interferència, com pel bloqueig de la proteïna PFK-2 mitjançant el fàrmac 3PO. El bloqueig de la glucòlisi provoca un augment de l'estrès oxidatiu i de la fosforil·lació de la quinasa Akt, necessària per a la inducció de TIGAR.que al seu torn condueix a una inducció de TIGAR. D’altra banda, estudis metabolòmics ens han permès descriure per primera vegada l’acció de TIGAR en nivells inferiors de la glicòlisi, afectant l’entrada del piruvat al cicle de Krebs. Finalment, hem pogut comprovar que el factor de transcripció Nrf2, clau en la regulació de l'activitat antioxidant de les cèl·lules, controla l'expressió de TIGAR en una línia cel·lular de càncer de cèrvix. En cèl·lules de càncer de pulmó, en canvi, la relació entre Nrf2 i TIGAR sembla ser indirecta. Amb els resultats presentats en aquesta tesi doctoral hem contribuït a entendre millor el paper de TIGAR en el metabolisme tumoral i hem establert les bases per a futurs estudis dirigits al bloqueig d'aquesta proteïna als tumors.
Niklas, Jens [Verfasser], und Elmar [Akademischer Betreuer] Heinzle. „Primary metabolism and its regulation in the human cell line AGE1.HN – application of metabolic flux analysis for improved biopharmaceutical production / Jens Niklas. Betreuer: Elmar Heinzle“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2012. http://d-nb.info/1052339573/34.
Der volle Inhalt der QuelleGaul, Susanne [Verfasser], Annette G. [Akademischer Betreuer] Beck-Sickinger, Annette G. [Gutachter] Beck-Sickinger und Wieland [Gutachter] Kiess. „The NAMPT-mediated NAD salvage pathway in cancer cell metabolism and its regulation by resveratrol / Susanne Schuster ; Gutachter: Annette G. Beck-Sickinger, Wieland Kiess ; Betreuer: Annette G. Beck-Sickinger“. Leipzig : Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-173401.
Der volle Inhalt der QuelleSchuster, Susanne [Verfasser], Annette G. [Akademischer Betreuer] Beck-Sickinger, Annette G. [Gutachter] Beck-Sickinger und Wieland [Gutachter] Kiess. „The NAMPT-mediated NAD salvage pathway in cancer cell metabolism and its regulation by resveratrol / Susanne Schuster ; Gutachter: Annette G. Beck-Sickinger, Wieland Kiess ; Betreuer: Annette G. Beck-Sickinger“. Leipzig : Universitätsbibliothek Leipzig, 2015. http://d-nb.info/1239567219/34.
Der volle Inhalt der Quelle