Dissertationen zum Thema „Cell differentiation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Cell differentiation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Falk, Anna. „Stem cells : proliferation, differentiation, migration /“. Stockholm, 2005. http://diss.kib.ki.se/2006/91-7140-497-X/.
Der volle Inhalt der QuelleBrigham, Lindy Andersen 1951. „Root border cell differentiation“. Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290689.
Der volle Inhalt der QuelleLoop, Franciscus Theodorus Lambertus van der. „Cell biological aspects of muscle cell differentiation“. Maastricht : Maastricht : Universitaire Pers Maastricht ; University Library, Maastricht University [Host], 1996. http://arno.unimaas.nl/show.cgi?fid=7288.
Der volle Inhalt der QuelleLi, Victor Chun. „The Cell Cycle and Differentiation in Stem Cells“. Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10536.
Der volle Inhalt der QuelleEllison, David William. „Cell proliferation, cell death, and differentiation in gliomas“. Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295912.
Der volle Inhalt der QuelleXue, Yintong. „Glucocorticoid in T cell differentiation /“. Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3950-0/.
Der volle Inhalt der QuelleLocklin, Rachel M. S. „Biochemistry of bone cell differentiation“. Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363755.
Der volle Inhalt der QuelleGiddings, Ian. „Analysis of myeloid cell differentiation“. Thesis, King's College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285145.
Der volle Inhalt der QuelleJones, Philip Anthony. „B cell differentiation in sheep“. Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/30327.
Der volle Inhalt der QuellePark, Jaesang. „Automatic white blood cell differentiation /“. free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3074435.
Der volle Inhalt der QuelleHolm, Pontus. „Survival and differentiation of central noradrenergic neurons /“. Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-277-9.
Der volle Inhalt der QuelleSankar, Uma. „Coordination of cell cycle and cell differentiation by receptor activator of NF-KAPA-B ligand during osteoclast differentiation“. Columbus, Ohio : Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1056980709.
Der volle Inhalt der QuelleTitle from first page of PDF file. Document formatted into pages; contains xvii, 292 p.; also includes graphics (some col.). Includes abstract and vita. Advisor: Mihael C. Ostrowski, Dept. of Molecular, Cellular and Developmental Biology. Includes bibliographical references (p. 259-292).
Erlandsson, Anna. „Neural Stem Cell Differentiation and Migration“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl.[distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3546.
Der volle Inhalt der QuelleAnsari, Naser A. (Naser Awni). „Purification and Characterization of a Differentiation Factor From Rat Lung Conditioned Medium“. Thesis, North Texas State University, 1988. https://digital.library.unt.edu/ark:/67531/metadc798062/.
Der volle Inhalt der QuelleMuguruma, Yukari. „The origin and differentiation of the osteoclast /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5681.
Der volle Inhalt der QuelleLiu, Haoyu. „Goblet cell differentiation in human colorectal cancer cell lines“. Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:d907bbf2-76fc-409a-877c-529fc04ca042.
Der volle Inhalt der QuelleLu, Xibin, und 盧希彬. „Quantitative characterization of mouse embryonic stem cell state transition“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208049.
Der volle Inhalt der QuelleLyons, Alan Bruce. „Human myeloid differentiation antigens /“. Title page, table of contents and abstract only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09phl991.pdf.
Der volle Inhalt der QuelleRennel, Emma. „Molecular Mechanisms in Endothelial Cell Differentiation“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4059.
Der volle Inhalt der QuelleGraaff, Wiebo Leendert van der. „T cell differentiation in autoimmune diseases“. [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2003. http://dare.uva.nl/document/70775.
Der volle Inhalt der QuelleMasciarelli, Silvia. „Molecular physiology of plasma cell differentiation“. Thesis, Open University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491475.
Der volle Inhalt der QuelleJermyn, Keith A. „Prestalk cell differentiation in Dictyostelium discoideum“. Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314869.
Der volle Inhalt der QuelleMarek, Carylyn Jane. „Trans-differentiation and liver cell biology“. Thesis, University of Aberdeen, 2004. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU186421.
Der volle Inhalt der QuelleShah, Nadia Nisa. „Human embryonic stem cells : prospects for pancreatic β-cell differentiation“. Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495052.
Der volle Inhalt der QuelleVanOudenhove, Jennifer J. „Mechanisms Regulating Early Mesendodermal Differentiation of Human Embryonic Stem Cells: A Dissertation“. eScholarship@UMMS, 2016. http://escholarship.umassmed.edu/gsbs_diss/849.
Der volle Inhalt der QuelleBennett, Jonathan Hilary. „The differentiation of osteogenic cells from bone marrow“. Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:3460f26e-a124-4605-8601-2e300241de14.
Der volle Inhalt der QuelleBeckstead, Benjamin L. „Control of epithelial differentiation by cell-instructive scaffolds /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8096.
Der volle Inhalt der QuelleOrtmann, Daniel. „Reporter cell lines to study cell populations and fate decisions during human pluripotent stem cell differentiation in vitro“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648356.
Der volle Inhalt der QuelleWatson, Andrea. „Heat shock proteins in leukaemia cell differentiation and cell death“. Thesis, Aston University, 1990. http://publications.aston.ac.uk/12533/.
Der volle Inhalt der QuelleSancho, Maria Margarida Gouveia. „Function of Bmpr1a in ES cell differentiation and cell competition“. Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/5885.
Der volle Inhalt der QuelleLeung, Y. L., und 梁宇亮. „Transcriptional regulators of col10al in chondrocyte differentiation“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31244440.
Der volle Inhalt der QuelleLi, Jing. „Effects of intrinsic & extrinsic factors on the growth and differentiation of human mesenchymal stem cells“. View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36434450.
Der volle Inhalt der QuelleFan, Ngo-yin, und 樊傲賢. „The role of protein kinase D in osteoblast differentiation“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41508488.
Der volle Inhalt der QuelleApperly, James A. „The relationship between proliferation and differentiation during oligodendrocyte development“. Thesis, University College London (University of London), 2001. http://discovery.ucl.ac.uk/1349376/.
Der volle Inhalt der QuelleFan, Ngo-yin. „The role of protein kinase D in osteoblast differentiation“. Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41508488.
Der volle Inhalt der QuelleConstant, Vanessa Auguste. „Macrophage-conditioned medium inhibits adipocyte differentiation“. Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27967.
Der volle Inhalt der QuelleCapra, J. (Janne). „Differentiation and malignant transformation of epithelial cells:3D cell culture models“. Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526218236.
Der volle Inhalt der QuelleTiivistelmä Epiteelisolut ovat erikoistuneet toimimaan rajapintana elimen ja ympäristön välillä. Ihmisten yleisin syöpä on epiteelisoluista alkunsa saanut karsinooma. Tämän tutkimuksen tarkoituksena oli ymmärtää Madin-Darby-koiran munuaisen solujen (MDCK) erilaistumista ja pahanlaatuistumista sekä analysoida sähköfysiologisia tekijöitä, jotka säätelevät näiden solujen kuljetustoimintaa. Erityisenä kiinnostuksen kohteena oli erilaisten kasvuympäristöjen vertailu. Farmakologisten aineiden tai basaalisen, solunulkopuolisen nesteen koostumuksen vaikutusta MDCK-solujen, -kystan sekä luumenin kokoon tutkittiin valomikroskooppisten aikasarjojen avulla. Tulokset osoittivat MDCK-solujen olevan kykeneviä sekä veden eritykseen että absorptioon, niin hyperpolarisoivassa kuin depolarisoivassakin ympäristössä. Basaalisen nesteen osmolaliteetin muutosta ei tarvittu. Nämä tulokset osoittavat MDCK-solujen olevan hyvä munuaisen tutkimuksen perusmalli. Seuraavaksi analysoitiin kaksi- ja kolmiulotteisten (2D ja 3D) viljely-ympäristöjen vaikutusta ei-transformoitujen MDCK-solujen ja lämpötilaherkkien ts-Src-transformoitujen MDCK-solujen geenien ilmentymiseen sekä yhden onkogeenin aktivoimisen aikaansaamia muutoksia. Microarray-analyysi osoitti apoptoosin estäjän, surviviinin, ilmentymisen vähenemisen, kun kasvuympäristö vaihdettiin 2D-ympäristöstä 3D-ympäristöön. Koska surviviinin väheneminen on normaali tapahtuma aikuisissa kudoksissa, voitiin todeta, että 3D-ympäristössä kasvatetut solut ovat lähempänä luonnonmukaista olotilaa kuin 2D-ympäristössä kasvaneet. Src-onkogeeni sai aikaan soluliitosten hajoamisen, mutta ei vähentänyt E-kadheriinin ilmentymistä. Tutkimuksen viimeinen osa keskittyi surviviinin ilmentymistä säätelevien tekijöiden analysoimiseen ja surviviinin merkitykseen solujen eloonjäämiselle. 3D-ympäristössä kasvaneet MDCK-solut eivät kärsineet apoptoosista edellyttäen, että solut pysyivät kosketuksissa soluväliaineeseen. Jos solut irtautuivat soluväliaineesta, ne päätyivät herkemmin apoptoosiin kuin surviviinia ilmentävät ts-Src MDCK-solut. Mikäli solujen väliset liitokset pakotettiin avautumaan, solut joutuivat apoptoosiin, vaikka ne olivat kosketuksissa soluväliaineeseen. Yhteenvetona nämä tulokset korostavat solujen kontaktien merkitystä: MDCK-solut tarvitsevat soluväliainekontakteja erilaistumiseen ja solujen välisiä kontakteja välttyäkseen apoptoosilta
Fong, Jenna. „Breast cancer cells affect bone cell differentiation and the bone microenvironment“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104758.
Der volle Inhalt der QuelleLe cancer du sein est le cancer plus diagnostiqué chez les femmes. On estime qu'environ une femme sur sept en sera affectée. La diffusion du cancer du sein aux emplacements secondaires est généralement incurable. L'os est l'emplacement préféré de la métastase, où le développement d'une tumeur secondaire cause de l'osteolyse, de l'hypercalcemie, et une douleur considérable. Cependant, comment les cellules de cancer du sein établissent des interactions supportifs avec des cellules d'os n'est pas bien compris. Nous avons examiné les effets des facteurs libérés des cellules du cancer du sein MDA-MB-231 et 4T1 sur la différentiation des cellules de moelle de la souris C57BL6. Le traitement avec des facteurs cancer-dérivés a produit une diminution de 40-60% des marqueurs de différentiation d'osteoblast, comparé au traitement par l'acide ascorbique, et a induit un changement osteoclastogenique dans le rapport du RANKL/osteoprotegerin. L'exposition des cellules d'os à des facteurs dérivés du cancer du sein a ensuite stimulé l'attachement des cellules cancéreuses aux osteoblasts non mûrs. L'inhibition du γ-secretase utilisant les inhibiteurs pharmacologiques DAPT et le Compound E a complètement inversé l'osteoclastogenise cancer-induit aussi bien que le perfectionnement cancer-induit de l'attachement de cellules cancéreuses, identifiant l'activité de le γ-secretase comme étant le médiateur principal de ces effets. Nous avons ensuite évalué les effets des cellules cancereuse sur le métabolisme énergétique des cellules d'os. Le traitement des cellules de moelle avec le medium conditionné des cellules du cancer du sein 4T1 a eu comme conséquence une augmentation des mitochondries à haut-potentiel de membrane, une augmentation de 2.3 fois le contenu cellulaire de triphosphate d'adénosine, et une consommation plus rapide du glucose. Ce changement de l'énergétique a été accompagné d'une stimulation d'AMPK dans la protéine et l'ADN messagère. Pour évaluer les effets du statut de haute énergie dans les osteoclasts, nous avons élevé l'énergique des osteoclasts avec du pyruvate de sodium. Cette addition a causée une croissance des osteoclasts, avec des plus grands nucleus, et la résorption de plus de substrat. Ainsi, nous avons découvert l'osteoblast comme étant un intermédiaire clé à la signalisation prémetastatique par des cellules du cancer du sein. Nous avons aussi indiqué le γ-secretase comme cible robuste pour le developpement de thérapeutique potentiellement capable de réduire l'autoguidage et la progression des métastases de cancer à l'os. Additonellement, nous avons découvert l'énergétique intensifiée chez les cellules d'os exposées aux facteurs cellule-libérés par le cancer du sein, qui mène à une osteoclastogenesise plus active et plus importante. La modification de la voie d'AMPK peut s'avérer être une cible thérapeutique importante pour que la métastase de cancer du sein aux os.
Cowan, Gillian. „Fetal germ cell differentiation and the impact of the somatic cells“. Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4164.
Der volle Inhalt der QuelleYang, Liu, und 楊柳. „Genetic analyses of terminal differentiation of hypertrophic chondrocytes“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hdl.handle.net/10722/210320.
Der volle Inhalt der QuelleYang, Liu. „Genetic analyses of terminal differentiation of hypertrophic chondrocytes“. Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43223758.
Der volle Inhalt der QuelleNsiah, Barbara Akua. „Fluid shear stress modulation of embryonic stem cell differentiation“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/47552.
Der volle Inhalt der QuelleLemos, Sara Sofia de Campos Pereira. „CD8 T cell differentiation during immune responses“. Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T009/document.
Der volle Inhalt der QuelleCD8 T cells are essential for the elimination of intracellular pathogens and tumor cells. Understanding how naïve CD8 T cells differentiate into effector cells capable of eliminating pathogens and to generate adequate memory cells during immune responses is fundamental for optimal T cell vaccine design. In this PhD thesis work we addressed two central questions: 1) What are the mechanisms by which early effector T cells could act as pro-inflammatory effectors? And what is their role in the immune response? 2) How heterogeneous are CD8 responses? Could different pathogens modulate CD8 T cell differentiation programs and be responsible for CD8 cell-to-cell heterogeneity? Could they also generate memory cells with different protection capacities? To address these questions related to the diversity of CD8 T cell differentiation during immune responses, we used the single cell RT-PCR technique to detect ex vivo expression of mRNA in each individual cell, and Brefeldin A injected mice to detect ex vivo intracellular proteins. As experimental system to evaluate in vivo cell activation we used T cell receptor transgenic (TCR-Tg) CD8 T cells. Since the use of TCR-Tg cells to study immune responses has been subjected to criticism (due to high frequency of naïve-precursor transfers), in a first Ms. we compared the behavior of TCR-Tg and endogenous (non-transgenic and present at low frequency) cells in the same mouse. We found fully overlapping behavior between these two cell populations, which reinforced the advantage of using TCR-Tg cells to study CD8 immune responses. In addition, we concluded that the frequency of naïve-precursors do not induce diversity on CD8 T cell differentiation patterns. In a second Ms. we evaluated the impact of different pathogens in the diversity of CD8 T cell properties during two different immune responses: OT1 TCR-Tg cells (specific for OVA antigen) in the response to LM-OVA (Listeria Monocytogenes expressing OVA) infection; and P14 TCR-Tg cells (specific for GP33 epitope) in the response to Lymphocytic choriomeningitis vírus (LCMV) infection. We found that OT1 and P14 cells had different properties. As this difference could also be attributed to the different TCR avidity between OT1 and P14 cells, we then compared the behavior of P14 and OT-1 cells in the same mouse, co-injected with LM-OVA and LM-GP33. Since no differences were then detected, these results demonstrated that priming with different pathogens generates CD8 T cells with different characteristics that are not determined by TCR usage, but rather by the infection context. In addition, when looking for the protection capacity of endogenous CD8 memory cells generated in bacterial or viral context, we found that memory cells generated after LCMV priming were more efficient in responding to a second challenge, than memory cells generated after LM-GP33 priming. We also found that this better protection is associated with a T cell effector memory (TEM) phenotype associated with the LCMV infection, in contrast with a T cell central memory (TCM) phenotype generated after LM-OVA infection. These results demonstrate that different pathogens are responsible for diversity of CD8 T cell differentiation patterns and that even when distinct pathogens are efficiently eliminated during the primary immune response the quality of the memory generated may differ. In a third Ms. we studied the mechanisms by which effector CD8 T cells attracted other cell types in the early days of an immune response. We used two experimental systems: the response of OT1 TCR-Tg cells to LM-OVA infection; and the response of anti-HY TCR-Tg cells to male cells (“sterile”-non infectious context). In both cases we found that immediately after activation, CD8 T cells expressed high levels of pro-inflammatory cytokines and chemokines (such as TNFα, XCL1, CCL3 and CCL4). (...)
Syvertsson, Simon. „Bistable differentiation in an isogenic cell population“. Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/3002.
Der volle Inhalt der QuelleRijal, Dikchha. „Cell Death Signaling Complexes During Macrophage Differentiation“. Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36455.
Der volle Inhalt der QuelleGore, S. „Neuronal differentiation markers in basal cell carcinoma“. Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445574/.
Der volle Inhalt der QuelleWurff, A. A. M. van der. „Cell differentiation and adhesion in colorectal cancer“. [Maastricht : Maastricht : Universiteit Maastricht] ; University Library, Maastricht University [Host], 1998. http://arno.unimaas.nl/show.cgi?fid=8253.
Der volle Inhalt der QuelleHenderson, Andrew Paul. „Small molecules for controlling stem cell differentiation“. Thesis, Durham University, 2011. http://etheses.dur.ac.uk/3559/.
Der volle Inhalt der QuelleDe, Campos Pereira Lemos Sara Sofia. „CD8 T cell differentiation during immune responses“. Phd thesis, Université René Descartes - Paris V, 2014. http://tel.archives-ouvertes.fr/tel-01059806.
Der volle Inhalt der QuelleCardoso, Sandra Pinto. „Control of cell differentiation during secondary myogenesis“. Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250587.
Der volle Inhalt der Quelle