Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cell conditioning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cell conditioning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cell conditioning"
Woywodt, Alexander, Johanna Scheer, Lothar Hambach, Stefanie Buchholz, Arnold Ganser, Hermann Haller, Bernd Hertenstein und Marion Haubitz. „Circulating endothelial cells as a marker of endothelial damage in allogeneic hematopoietic stem cell transplantation“. Blood 103, Nr. 9 (01.05.2004): 3603–5. http://dx.doi.org/10.1182/blood-2003-10-3479.
Der volle Inhalt der QuelleCan, Sun, Lin Xia, Huang Yuxian, Chen Tuzhen und Bingyi Wu. „More Intensity Immuno-Suppression In Conditioning Regimen may Favor Donor Stem Cell Sustained Engraftment In Allogeneic Stem Cell Transplantation For Acquired Severe Aplastic Anemia Patients“. Blood 122, Nr. 21 (15.11.2013): 5452. http://dx.doi.org/10.1182/blood.v122.21.5452.5452.
Der volle Inhalt der QuelleJadasz, Janusz Joachim, David Kremer, Peter Göttle, Nevena Tzekova, Julia Domke, Francisco J. Rivera, James Adjaye, Hans-Peter Hartung, Ludwig Aigner und Patrick Küry. „Mesenchymal Stem Cell Conditioning Promotes Rat Oligodendroglial Cell Maturation“. PLoS ONE 8, Nr. 8 (12.08.2013): e71814. http://dx.doi.org/10.1371/journal.pone.0071814.
Der volle Inhalt der QuelleDivito, Sherrie J., Christopher Elco, Indira Guleria, Edgar Milford, Corey Cutler und Thomas S. Kupper. „Host skin T cells survive stem cell transplant conditioning and are functional during acute GVHD“. Journal of Immunology 198, Nr. 1_Supplement (01.05.2017): 82.13. http://dx.doi.org/10.4049/jimmunol.198.supp.82.13.
Der volle Inhalt der QuelleYamamoto, Shuhei, Yasunori Mitani, Masayuki Watanabe, Akihiro Satake und Yoshiaki Ushifusa. „Fuel Cell Co-generation and PCS Control for Suppressing Frequency and Voltage Fluctuation due to PV Power“. International Journal of Electronics and Electrical Engineering 9, Nr. 2 (Juni 2021): 48–51. http://dx.doi.org/10.18178/ijeee.9.2.48-51.
Der volle Inhalt der QuelleLimerick, Emily, und Courtney Fitzhugh. „Choice of Donor Source and Conditioning Regimen for Hematopoietic Stem Cell Transplantation in Sickle Cell Disease“. Journal of Clinical Medicine 8, Nr. 11 (15.11.2019): 1997. http://dx.doi.org/10.3390/jcm8111997.
Der volle Inhalt der QuelleAntin, Joseph H. „Reduced-Intensity Stem Cell Transplantation“. Hematology 2007, Nr. 1 (01.01.2007): 47–54. http://dx.doi.org/10.1182/asheducation-2007.1.47.
Der volle Inhalt der QuelleGranadier, David, Kirsten Cooper, Dante Dennis Acenas II, Lorenzo Iovino, Paul Deroos, Vanessa A. Hernandez und Jarrod A. Dudakov. „Hematopoietic Stem Cell Transplantation (HCT) Conditioning Leads to NK Cell Cytotoxicity Limiting Endogenous Thymus Regeneration“. Blood 142, Supplement 1 (28.11.2023): 461. http://dx.doi.org/10.1182/blood-2023-188387.
Der volle Inhalt der QuelleLimerick, Emily, und Allistair Abraham. „Across the Myeloablative Spectrum: Hematopoietic Cell Transplant Conditioning Regimens for Pediatric Patients with Sickle Cell Disease“. Journal of Clinical Medicine 11, Nr. 13 (03.07.2022): 3856. http://dx.doi.org/10.3390/jcm11133856.
Der volle Inhalt der QuelleElsabbagh, Eman M., Osama Abunar, Ammar Habbal, Mohammad Tanbour, Ahmed Mansour, Mohamed Sarhan, Ahmed Elkaryoni und Sherif M. Badawy. „Alternative-Donor Hematopoietic Stem Cell Transplantation for Sickle Cell Disease in Pediatric Patients: A Systematic Review and Meta-Analysis“. Blood 132, Supplement 1 (29.11.2018): 5875. http://dx.doi.org/10.1182/blood-2018-99-119287.
Der volle Inhalt der QuelleDissertationen zum Thema "Cell conditioning"
Lee, Elaine Linda. „Mechanical Conditioning of Cell Layers for Tissue Engineering“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1322758337.
Der volle Inhalt der QuelleBanerjee, Tamoghna. „Power Conditioning System on a Micro-Grid System“. Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7736.
Der volle Inhalt der QuelleHarfman, Todorovic Maja. „Analysis and design of power conditioning systems“. [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2721.
Der volle Inhalt der QuelleZhuang, Lihui. „Mechanisms of microenvironmental conditioning in non-Hodgkin's lymphoma“. Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6486.
Der volle Inhalt der QuelleRen, Aaron G. „Immunosuppressants used in the conditioning regimens for hematopoietic stem cell transplantation /“. Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/7957.
Der volle Inhalt der QuelleDi, Federico Erica. „Complex mechanical conditioning of cell-seeded constructs can influence chondrocyte activity“. Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/7982.
Der volle Inhalt der QuelleKhlid, Ben Hamad. „Fuel cell power conditioning multiphase converter for 1400 VDC megawatts stacks“. Thesis, Cape Peninsula University of Technology, 2019. http://hdl.handle.net/20.500.11838/3042.
Der volle Inhalt der QuelleEnergy systems based on fossil fuel have demonstrated their abilities to permit economic development. However, with the fast exhaustion of this energy source, the expansion of the world energy demand and concerns over global warming, new energy systems dependent on renewable and other sustainable energy are gaining more interests. It is a fact that future development in the energy sector is founded on the utilisation of renewable and sustainable energy sources. These energy sources can enable the world to meet the double targets of diminishing greenhouse gas emissions and ensuring reliable and cost-effective energy supply. Fuel cells are one of the advanced clean energy technologies to substitute power generation systems based on fossil fuel. They are viewed as reliable and efficient technologies to operate either tied or non-tied to the grid to power applications ranging from domestic, commercial to industrial. Multiple fuel cell stacks can be associated in series and parallel to obtain a fuel cell system with high power up to megawatts. The connection of megawatts fuel cell systems to a utility grid requires that the power condition unit serving as the interface between the fuel cell plant and the grid operates accordingly. Different power conditioning unit topologies can be adopted, this study considers a multilevel inverter. Multilevel inverters are getting more popularity and attractiveness as compared to conventional inverters in high voltage and high-power applications. These inverters are suitable for harmonic mitigation in high-power applications whereby switching devices are unable to function at high switching frequencies. For a given application, the choice of appropriate multilevel topology and its control scheme are not defined and depend on various engineering compromises, however, the most developed multilevel inverter topologies include the Diode Clamped, the Flying Capacitor and the Cascade Full Bridge inverters. On the other hand, a multilevel inverter can be either a three or a five, or a nine level, however, this research focuses on the three-level diode clamped inverters. The aim of this thesis is to model and control a three-level diode clamped inverter for the grid connection of a megawatt fuel cell stack. Besides the grid, the system consists of a 1.54 MW operating at 1400 V DC proton exchange membrane fuel cell stack, a 1.26 MW three-level diode clamped inverter with a nominal voltage of 600 V and an LCL filter which is designed to reduce harmonics and meet the standards such as IEEE 519 and IEC 61000-3-6. The inverter control scheme comprises voltage and current regulators to provide a good power factor and satisfy synchronisation requirements with the grid. The frequency and phase are synchronised with those of the grid through a phase locked loop. The modelling and simulation are performed using Matlab/Simulink. The results show good performance of the developed system with a low total harmonic distortion of about 0.35% for the voltage and 0.19% for the current.
Cochonneau, Stéphanie. „Modulating hematopoietic progenitor cell engraftment and T cell differentiation : role of conditioning and route of administration“. Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20226.
Der volle Inhalt der QuelleT cell deficiencies can be corrected by the intravenous (IV) injection of donor hematopoietic stem cells (HSCs). Using a murine model of ZAP-70-/- deficiency, our group previously showed that the intrathymic (IT) administration of histocompatible HSCs leads to a more robust and long-term thymopoiesis as compared to that achieved by the classical IV route. During my PhD, I found that the direct IT administration of semiallogeneic HSCs results in a sustained donor-derived thymopoiesis, overcoming histocompatibility barriers, even in the absence of conditioning. Furthermore, I found that donor-derived early thymic progenitors (ETPs) persist in the thymi of ZAP-70-/- transplanted mice, and present increased multi-lineage potential as compared to wild-type ETPs. Importantly, the frequency of donor-derived ETPs was augmented following IT transplantation, indicative of an increased progenitor niche. Interestingly, ZAP-70-deficient HSC could themselves be driven to a CD8 lineage fate in an environment where IL-7 potentiates continuous activation of the Notch pathway. Following IV transplantation of donor HSC into non-conditioned ZAP-70-/- mice, I determined that there is an accumulation of lineage-/Sca1+ donor progenitors lacking expression of the stem cell marker c-kit, termed LSAPT. These LSAPT show a biased differentiation towards the γδ T cell lineage with high IL-17-producing effector function, suggesting that progenitor origin regulates γδ T cell fate. The ensemble of my experiments provide new insights into the identity of T lineage progenitors and demonstrate how signaling pathways as well as environmental factors modulate T cell differentiation and effector function
Talay, Oezcan. „Efficient dendritic cell maturation and initiation of a strong T cell immune response requires B7-H1-mediated dendritic cell 'conditioning' during interaction with T cells“. [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:16-opus-89195.
Der volle Inhalt der QuelleGuyette, Jacques Paul. „Conditioning of Mesenchymal Stem Cells Initiates Cardiogenic Differentiation and Increases Function in Infarcted Hearts“. Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/32.
Der volle Inhalt der QuelleBücher zum Thema "Cell conditioning"
Pilatowsky, I., R. J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian und W. Rivera. Cogeneration Fuel Cell-Sorption Air Conditioning Systems. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-028-1.
Der volle Inhalt der QuelleFigueroa, Isaac Pilatowsky. Cogeneration fuel cell-sorption air conditioning systems. London: Springer-Verlag, 2011.
Den vollen Inhalt der Quelle findenFigueroa, Isaac Pilatowsky. Cogeneration fuel cell-sorption air conditioning systems. London: Springer-Verlag, 2011.
Den vollen Inhalt der Quelle finden1960-, Bashey Asad, und Ball Edward D. 1950-, Hrsg. Non-myeloablative allogeneic transplantation. Boston: Kluwer Academic Publishers, 2002.
Den vollen Inhalt der Quelle findenMorozov, Vladimir I. Exercise and cellular mechanisms of muscle injury. Hauppauge, N.Y: Nova Science, 2009.
Den vollen Inhalt der Quelle findenPilatowsky, I., Rosenberg J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian und W. Rivera. Cogeneration Fuel Cell-Sorption Air Conditioning Systems. Springer, 2014.
Den vollen Inhalt der Quelle findenRomero, Rosenberg J., C. A. Isaza, S. A. Gamboa, P. J. Sebastian und I. Pilatowsky. Cogeneration Fuel Cell-Sorption Air Conditioning Systems. Springer London, Limited, 2011.
Den vollen Inhalt der Quelle findenEnjeti, Prasad, Marja Harfman Todorovic und Leonardo Palma. Power Conditioning Systems for Fuel Cell Applications. Wiley & Sons, Incorporated, John, 2009.
Den vollen Inhalt der Quelle findenProvan, Drew, Trevor Baglin, Inderjeet Dokal, Johannes de Vos und Hassan Al-Sader. Haematopoietic stem cell transplantation. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199683307.003.0009.
Der volle Inhalt der QuelleThe 2006-2011 World Outlook for Chemically Blown Closed-Cell Rubber Sponge for Appliances, Air Conditioning, and Refrigeration. Icon Group International, Inc., 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cell conditioning"
Mohty, Mohamad, und Monique C. Minnema. „Lymphodepleting Conditioning Regimens“. In The EBMT/EHA CAR-T Cell Handbook, 131–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94353-0_25.
Der volle Inhalt der QuelleShimoni, Avichai, Vera Radici und Arnon Nagler. „Conditioning“. In The EBMT Handbook, 125–34. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-44080-9_13.
Der volle Inhalt der QuelleZulu, Sara, und Michelle Kenyon. „Principles of Conditioning Therapy and Cell Infusion“. In The European Blood and Marrow Transplantation Textbook for Nurses, 91–99. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23394-4_6.
Der volle Inhalt der QuelleSharma, Sanjeev Kumar. „Classification of Conditioning Regimens“. In Basics of Hematopoietic Stem Cell Transplant, 183–202. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5802-1_16.
Der volle Inhalt der QuelleSmith, Sonali M., und Ginna G. Laport. „Non-Hodgkin’s Lymphoma: Allogeneic Reduced Intensity Conditioning“. In Allogeneic Stem Cell Transplantation, 109–25. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-478-0_8.
Der volle Inhalt der QuelleShimahara, T., G. Czternasty, J. Stinnakre und J. Bruner. „Calcium Action Potential Induction in a “Nonexcitable” Motor Neuron Cell Body“. In Neural Mechanisms of Conditioning, 283–89. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2115-6_18.
Der volle Inhalt der QuellePilatowsky, I., R. J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian und W. Rivera. „Cogeneration Fuel Cells – Air Conditioning Systems“. In Cogeneration Fuel Cell-Sorption Air Conditioning Systems, 103–20. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-028-1_6.
Der volle Inhalt der QuelleYüksel, Meltem Kurt, und Taner Demirer. „Toxicity of Conditioning Regimens in Haploidentical SCT“. In Stem Cell Biology and Regenerative Medicine, 43–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65319-8_4.
Der volle Inhalt der QuelleZulu, Sara, und Michelle Kenyon. „Principles of Conditioning Therapy and Cell Infusion“. In The European Blood and Marrow Transplantation Textbook for Nurses, 89–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50026-3_6.
Der volle Inhalt der QuelleCoffey, Chelsea E., Zachary R. Mussett und Vassilios I. Sikavitsas. „Conditioning Cells In Vitro to Facilitate Tendons and Ligament Regeneration“. In Biomaterials for Cell Delivery, 263–80. Boca Raton : Taylor & Francis, 2018. | Series: Gene and cell therapy series: CRC Press, 2018. http://dx.doi.org/10.1201/9781315151755-11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cell conditioning"
Castro Vallenas, J. D., E. Paiva-Peredo und C. A. Sotomayor Beltrán. „Prototype Peltier Cell Air Conditioning Using Photovoltaic Energy“. In 2023 IEEE XXX International Conference on Electronics, Electrical Engineering and Computing (INTERCON). IEEE, 2023. http://dx.doi.org/10.1109/intercon59652.2023.10326092.
Der volle Inhalt der QuellePolenov, Dieter, Heiko Mehlich und Josef Lutz. „Requirements for MOSFETs in Fuel Cell Power Conditioning Applications“. In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.283149.
Der volle Inhalt der QuellePolenov, Dieter, Heiko Mehlich und Josef Lutz. „Requirements for MOSFETs in Fuel Cell Power Conditioning Applications“. In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.4778695.
Der volle Inhalt der QuelleTakano, Atsushi, Masato Tanaka und Nobuyuki Futai. „Microfluidic cell culture system with on-chip hypoxic conditioning“. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610540.
Der volle Inhalt der QuelleLawrence, C. P., M. M. A. Salama und R. A. El Shatshat. „Optimization of a Fuel-Cell EV Air-Conditioning System“. In 2007 Canadian Conference on Electrical and Computer Engineering. IEEE, 2007. http://dx.doi.org/10.1109/ccece.2007.373.
Der volle Inhalt der QuelleDu, Yilin, Jan Muehlbauer, Jiazhen Ling, Vikrant Aute, Yunho Hwang und Reinhard Radermacher. „Rechargeable Personal Air Conditioning Device“. In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59253.
Der volle Inhalt der QuelleVinnikov, Dmitri, Indrek Roasto, Tanel Jalakas, Tonu Lehtla und Juhan Laugis. „New fuel cell power conditioning system for supplying dedicated loads“. In 9th International Conference on Environment and Electrical Engineering (EEEIC 2010). IEEE, 2010. http://dx.doi.org/10.1109/eeeic.2010.5489939.
Der volle Inhalt der QuelleSeok, Hwasoo, Byeongcheol Han, Soo-Hong Kim, Jae-Geun Lee und Minsung Kim. „Rippleless resonant boost converter for fuel-cell power conditioning systems“. In 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2018. http://dx.doi.org/10.1109/apec.2018.8341081.
Der volle Inhalt der QuelleJalakas, T., I. Roasto, D. Vinnikov und H. Agabus. „Novel power conditioning system for residential fuel cell power plants“. In 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2012. http://dx.doi.org/10.1109/pedg.2012.6254060.
Der volle Inhalt der QuelleLee, J., B. Han und H. Cha. „Grid-tied power conditioning system for fuel cell power generation“. In Energy Society General Meeting. IEEE, 2010. http://dx.doi.org/10.1109/pes.2010.5589928.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cell conditioning"
Sudip K. Mazumder, Chuck McKintyre, Dan Herbison, Doug Nelson, Comas Haynes, Michael von Spakovsky, Joseph Hartvigsen und S. Elangovan. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/895119.
Der volle Inhalt der QuelleSudip K. Mazumder. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads. US: University Of Illinois, Dezember 2005. http://dx.doi.org/10.2172/899235.
Der volle Inhalt der QuelleYahav, Shlomo, John McMurtry und Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Der volle Inhalt der QuelleLee, You-Kee, Jung-Yeul Kim, Young-Ki Lee, Insoo Kim, Hee-Soo Moon, Jong-Wan Park, Craig P. Jacobson und Steven J. Visco. Conditioning effects on La1-xSrxMnO3-Yttria stabilized Zirconia electrodes for thin-film solid oxide fuel cells. Office of Scientific and Technical Information (OSTI), Dezember 2002. http://dx.doi.org/10.2172/810538.
Der volle Inhalt der QuellePorat, Ron, Gregory T. McCollum, Amnon Lers und Charles L. Guy. Identification and characterization of genes involved in the acquisition of chilling tolerance in citrus fruit. United States Department of Agriculture, Dezember 2007. http://dx.doi.org/10.32747/2007.7587727.bard.
Der volle Inhalt der QuelleMeiri, Noam, Michael D. Denbow und Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Der volle Inhalt der Quelle