Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Cell-based immunotherapy.

Zeitschriftenartikel zum Thema „Cell-based immunotherapy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Cell-based immunotherapy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Osada, Takuya, Timothy M. Clay, Christopher Y. Woo, Michael A. Morse und H. Kim Lyerly. „Dendritic Cell-Based Immunotherapy“. International Reviews of Immunology 25, Nr. 5-6 (Januar 2006): 377–413. http://dx.doi.org/10.1080/08830180600992456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sabado, Rachel L., Sreekumar Balan und Nina Bhardwaj. „Dendritic cell-based immunotherapy“. Cell Research 27, Nr. 1 (27.12.2016): 74–95. http://dx.doi.org/10.1038/cr.2016.157.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Razzak, Mina. „New cell-based immunotherapy?“ Nature Reviews Urology 9, Nr. 3 (21.02.2012): 122. http://dx.doi.org/10.1038/nrurol.2012.18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chang, Kiyuk, Jie-Young Song und Dae-Seog Lim. „Tolerogenic dendritic cell-based immunotherapy“. Oncotarget 8, Nr. 53 (17.10.2017): 90630–31. http://dx.doi.org/10.18632/oncotarget.21867.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Golán, Irene, Laura Rodríguez de la Fuente und Jose Costoya. „NK Cell-Based Glioblastoma Immunotherapy“. Cancers 10, Nr. 12 (18.12.2018): 522. http://dx.doi.org/10.3390/cancers10120522.

Der volle Inhalt der Quelle
Annotation:
Glioblastoma (GB) is the most aggressive and most common malignant primary brain tumor diagnosed in adults. GB shows a poor prognosis and, unfortunately, current therapies are unable to improve its clinical outcome, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor mass and its high capacity for invading healthy tissues. Moreover, the glioblastoma microenvironment is capable of suppressing the action of the immune system through several mechanisms such as recruitment of cell modulators. Development of new therapies that avoid this immune evasion could improve the response to the current treatments for this pathology. Natural Killer (NK) cells are cellular components of the immune system more difficult to deceive by tumor cells and with greater cytotoxic activity. Their use in immunotherapy gains strength because they are a less toxic alternative to existing therapy, but the current research focuses on mimicking the NK attack strategy. Here, we summarize the most recent studies regarding molecular mechanisms involved in the GB and immune cells interaction and highlight the relevance of NK cells in the new therapeutic challenges.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wennhold, Kerstin, Alexander Shimabukuro-Vornhagen und Michael von Bergwelt-Baildon. „B Cell-Based Cancer Immunotherapy“. Transfusion Medicine and Hemotherapy 46, Nr. 1 (2019): 36–46. http://dx.doi.org/10.1159/000496166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Urbonas, Vincas, Giedre Smailyte, Greta V. Urbonaite, Audrius Dulskas, Neringa Burokiene und Vytautas Kasiulevicius. „Natural killer cell-based immunotherapy“. Melanoma Research 29, Nr. 2 (April 2019): 208–11. http://dx.doi.org/10.1097/cmr.0000000000000552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kadowaki, Norimitsu, und Toshio Kitawaki. „V. Dendritic Cell-based Immunotherapy“. Nihon Naika Gakkai Zasshi 108, Nr. 7 (10.07.2019): 1391–96. http://dx.doi.org/10.2169/naika.108.1391.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Stagg, J., und M. J. Smyth. „NK cell-based cancer immunotherapy“. Drug News & Perspectives 20, Nr. 3 (2007): 155. http://dx.doi.org/10.1358/dnp.2007.20.3.1092096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Buckler, Lee. „Rise of Cell-Based Immunotherapy“. Genetic Engineering & Biotechnology News 33, Nr. 5 (März 2013): 12–13. http://dx.doi.org/10.1089/gen.33.5.05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

ENGLEMAN, E. „Dendritic cell-based cancer immunotherapy“. Seminars in Oncology 30 (Juni 2003): 23–29. http://dx.doi.org/10.1016/s0093-7754(03)00229-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zhang, Hao, Li Yang, Tingting Wang und Zhen Li. „NK cell-based tumor immunotherapy“. Bioactive Materials 31 (Januar 2024): 63–86. http://dx.doi.org/10.1016/j.bioactmat.2023.08.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Song, Min-Seon, Ji-Hee Nam, Kyung-Eun Noh und Dae-Seog Lim. „Dendritic Cell-Based Immunotherapy: The Importance of Dendritic Cell Migration“. Journal of Immunology Research 2024 (08.04.2024): 1–11. http://dx.doi.org/10.1155/2024/7827246.

Der volle Inhalt der Quelle
Annotation:
Dendritic cells (DCs) are specialized antigen-presenting cells that are crucial for maintaining self-tolerance, initiating immune responses against pathogens, and patrolling body compartments. Despite promising aspects, DC-based immunotherapy faces challenges that include limited availability, immune escape in tumors, immunosuppression in the tumor microenvironment, and the need for effective combination therapies. A further limitation in DC-based immunotherapy is the low population of migratory DC (around 5%–10%) that migrate to lymph nodes (LNs) through afferent lymphatics depending on the LN draining site. By increasing the population of migratory DCs, DC-based immunotherapy could enhance immunotherapeutic effects on target diseases. This paper reviews the importance of DC migration and current research progress in the context of DC-based immunotherapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Terrén, Iñigo, Ane Orrantia, Idoia Mikelez-Alonso, Joana Vitallé, Olatz Zenarruzabeitia und Francisco Borrego. „NK Cell-Based Immunotherapy in Renal Cell Carcinoma“. Cancers 12, Nr. 2 (29.01.2020): 316. http://dx.doi.org/10.3390/cancers12020316.

Der volle Inhalt der Quelle
Annotation:
Natural killer (NK) cells are cytotoxic lymphocytes that are able to kill tumor cells without prior sensitization. It has been shown that NK cells play a pivotal role in a variety of cancers, highlighting their relevance in tumor immunosurveillance. NK cell infiltration has been reported in renal cell carcinoma (RCC), the most frequent kidney cancer in adults, and their presence has been associated with patients’ survival. However, the role of NK cells in this disease is not yet fully understood. In this review, we summarize the biology of NK cells and the mechanisms through which they are able to recognize and kill tumor cells. Furthermore, we discuss the role that NK cells play in renal cell carcinoma, and review current strategies that are being used to boost and exploit their cytotoxic capabilities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ghoneim, Hazem E., Anthony E. Zamora, Paul G. Thomas und Ben A. Youngblood. „Cell-Intrinsic Barriers of T Cell-Based Immunotherapy“. Trends in Molecular Medicine 22, Nr. 12 (Dezember 2016): 1000–1011. http://dx.doi.org/10.1016/j.molmed.2016.10.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Gitlitz, Barbara J., Robert A. Figlin, Allan J. Pantuck und Arie S. Belldegrun. „Dendritic cell-based immunotherapy of renal cell carcinoma“. Current Urology Reports 2, Nr. 1 (Februar 2001): 46–52. http://dx.doi.org/10.1007/s11934-001-0025-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Janikashvili, Nona, Nicolas Larmonier und Emmanuel Katsanis. „Personalized dendritic cell-based tumor immunotherapy“. Immunotherapy 2, Nr. 1 (Januar 2010): 57–68. http://dx.doi.org/10.2217/imt.09.78.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Charles, Ronald, Lina Lu, Shiguang Qian und John J. Fung. „Stromal cell-based immunotherapy in transplantation“. Immunotherapy 3, Nr. 12 (Dezember 2011): 1471–85. http://dx.doi.org/10.2217/imt.11.132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Cornelissen, Robin, Lysanne A. Lievense, Marlies E. Heuvers, Alexander P. Maat, Rudi W. Hendriks, Henk C. Hoogsteden, Joost P. Hegmans und Joachim G. Aerts. „Dendritic cell-based immunotherapy in mesothelioma“. Immunotherapy 4, Nr. 10 (Oktober 2012): 1011–22. http://dx.doi.org/10.2217/imt.12.108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Zitvogel, Laurence, Eric Angevin und Thomas Tursz. „Dendritic cell-based immunotherapy of cancer“. Annals of Oncology 11 (2000): 199–206. http://dx.doi.org/10.1093/annonc/11.suppl_3.199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Schaar, Bruce, Venkatesh Krishnan, Supreeti Tallapragada und Oliver Dorigo. „Cell-based immunotherapy in gynecologic malignancies“. Current Opinion in Obstetrics and Gynecology 30, Nr. 1 (Februar 2018): 23–30. http://dx.doi.org/10.1097/gco.0000000000000433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Schaar, Bruce, Venkatesh Krishnan, Supreeti Tallapragada, Anita Chanana und Oliver Dorigo. „Cell-based immunotherapy in gynecologic malignancies“. Current Opinion in Obstetrics and Gynecology 31, Nr. 1 (Februar 2019): 43–48. http://dx.doi.org/10.1097/gco.0000000000000518.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Fang, Fang, Weihua Xiao und Zhigang Tian. „NK cell-based immunotherapy for cancer“. Seminars in Immunology 31 (Juni 2017): 37–54. http://dx.doi.org/10.1016/j.smim.2017.07.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Tran, Tuan Hiep, Thi Thu Phuong Tran, Hanh Thuy Nguyen, Cao Dai Phung, Jee-Heon Jeong, Martina H. Stenzel, Sung Giu Jin, Chul Soon Yong, Duy Hieu Truong und Jong Oh Kim. „Nanoparticles for dendritic cell-based immunotherapy“. International Journal of Pharmaceutics 542, Nr. 1-2 (Mai 2018): 253–65. http://dx.doi.org/10.1016/j.ijpharm.2018.03.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kamat, Kalika, Venkatesh Krishnan, Jonathan S. Berek und Oliver Dorigo. „Cell-based immunotherapy in gynecologic malignancies“. Current Opinion in Obstetrics & Gynecology 33, Nr. 1 (03.12.2020): 13–18. http://dx.doi.org/10.1097/gco.0000000000000676.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Lo Presti, Elena, Anna Maria Corsale, Francesco Dieli und Serena Meraviglia. „γδ cell-based immunotherapy for cancer“. Expert Opinion on Biological Therapy 19, Nr. 9 (23.06.2019): 887–95. http://dx.doi.org/10.1080/14712598.2019.1634050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Höltl, Lorenz, Claudia Zelle-Rieser, Hubert Gander, Christine Papesh, Reinhold Ramoner, Georg Bartsch und Martin Thurnher. „Dendritic cell-based immunotherapy for metastatic renal cell cancer“. European Urology Supplements 1, Nr. 1 (Januar 2002): 110. http://dx.doi.org/10.1016/s1569-9056(02)80423-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Fang, Fang, Wei Wang, Minhua Chen, Zhigang Tian und Weihua Xiao. „Technical advances in NK cell-based cellular immunotherapy“. Cancer Biology & Medicine 16, Nr. 4 (01.11.2019): 647–54. http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0187.

Der volle Inhalt der Quelle
Annotation:
Natural killer (NK) cells represent a promising future for tumor immunotherapy because of their unique biological functions and characteristics. This review focuses on technical advances in NK cell-based cellular immunotherapy and summarizes the developments of recent years in cell sources, genetic modification, manufacturing systems, clinical programs, and outcomes. Future prospects and challenges in NK cell immunotherapy are also discussed, including off-the-shelf NK cell exploitation, automatic and closed manufacturing systems, cryopreservation, and therapies involving regulatory checkpoints.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ulivieri, Cristina, und Cosima T. Baldari. „T-cell-based immunotherapy of autoimmune diseases“. Expert Review of Vaccines 12, Nr. 3 (März 2013): 297–310. http://dx.doi.org/10.1586/erv.12.146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

A. Rabinovich, Brian, und Caius G. Radu. „Imaging Adoptive Cell Transfer Based Cancer Immunotherapy“. Current Pharmaceutical Biotechnology 11, Nr. 6 (01.09.2010): 672–84. http://dx.doi.org/10.2174/138920110792246528.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Salgaller, M. L., B. A. Tjoa, P. A. Lodge, H. Ragde, G. Kenny, A. Boynton und G. P. Murphy. „Dendritic Cell-Based Immunotherapy of Prostate Cancer“. Critical Reviews™ in Immunology 18, Nr. 1-2 (1998): 109–19. http://dx.doi.org/10.1615/critrevimmunol.v18.i1-2.120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Della Chiesa, Mariella, Chiara Setti, Chiara Giordano, Valentina Obino, Marco Greppi, Silvia Pesce, Emanuela Marcenaro et al. „NK Cell-Based Immunotherapy in Colorectal Cancer“. Vaccines 10, Nr. 7 (28.06.2022): 1033. http://dx.doi.org/10.3390/vaccines10071033.

Der volle Inhalt der Quelle
Annotation:
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zhou, Yang, Tiffany Husman, Xinjian Cen, Tasha Tsao, James Brown, Aarushi Bajpai, Miao Li, Kuangyi Zhou und Lili Yang. „Interleukin 15 in Cell-Based Cancer Immunotherapy“. International Journal of Molecular Sciences 23, Nr. 13 (30.06.2022): 7311. http://dx.doi.org/10.3390/ijms23137311.

Der volle Inhalt der Quelle
Annotation:
Cell-based cancer immunotherapy, such as chimeric antigen receptor (CAR) engineered T and natural killer (NK) cell therapies, has become a revolutionary new pillar in cancer treatment. Interleukin 15 (IL-15), a potent immunostimulatory cytokine that potentiates T and NK cell immune responses, has demonstrated the reliability and potency to potentially improve the therapeutic efficacy of current cell therapy. Structurally similar to interleukin 2 (IL-2), IL-15 supports the persistence of CD8+ memory T cells while inhibiting IL-2-induced T cell death that better maintains long-term anti-tumor immunity. In this review, we describe the biology of IL-15, studies on administrating IL-15 and/or its derivatives as immunotherapeutic agents, and IL-15-armored immune cells in adoptive cell therapy. We also discuss the advantages and challenges of incorporating IL-15 in cell-based immunotherapy and provide directions for future investigation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Tjoa, B. A., P. A. Lodge, M. L. Salgaller, A. L. Boynton und G. P. Murphy. „Dendritic cell-based immunotherapy for prostate cancer“. CA: A Cancer Journal for Clinicians 49, Nr. 2 (01.03.1999): 117–28. http://dx.doi.org/10.3322/canjclin.49.2.117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Li, Yingrui, Kang Dong, Xueke Fan, Jun Xie, Miao Wang, Songtao Fu und Qin Li. „DNT Cell-based Immunotherapy: Progress and Applications“. Journal of Cancer 11, Nr. 13 (2020): 3717–24. http://dx.doi.org/10.7150/jca.39717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Sivori, Simona, Raffaella Meazza, Concetta Quintarelli, Simona Carlomagno, Mariella Della Chiesa, Michela Falco, Lorenzo Moretta, Franco Locatelli und Daniela Pende. „NK Cell-Based Immunotherapy for Hematological Malignancies“. Journal of Clinical Medicine 8, Nr. 10 (16.10.2019): 1702. http://dx.doi.org/10.3390/jcm8101702.

Der volle Inhalt der Quelle
Annotation:
Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an “off-the-shelf” NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Coosemans, An, Ignace Vergote und Stefaan W. Van Gool. „Dendritic cell-based immunotherapy in ovarian cancer“. OncoImmunology 2, Nr. 12 (Dezember 2013): e27059. http://dx.doi.org/10.4161/onci.27059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Akasaki, Yasuharu, Keith L. Black und John S. Yu. „Dendritic cell-based immunotherapy for malignant gliomas“. Expert Review of Neurotherapeutics 5, Nr. 4 (Juli 2005): 497–508. http://dx.doi.org/10.1586/14737175.5.4.497.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zhong, Hua, Michael R. Shurin und Baohui Han. „Optimizing dendritic cell-based immunotherapy for cancer“. Expert Review of Vaccines 6, Nr. 3 (Juni 2007): 333–45. http://dx.doi.org/10.1586/14760584.6.3.333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Schott, Matthias, Werner A. Scherbaum und Jochen Seissler. „Dendritic Cell-Based Immunotherapy in Thyroid Malignancies“. Current Drug Targets - Immune, Endocrine & Metabolic Disorders 4, Nr. 3 (01.09.2004): 245–51. http://dx.doi.org/10.2174/1568008043339820.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Lorenzo-Herrero, Seila, Alejandro López-Soto, Christian Sordo-Bahamonde, Ana Gonzalez-Rodriguez, Massimo Vitale und Segundo Gonzalez. „NK Cell-Based Immunotherapy in Cancer Metastasis“. Cancers 11, Nr. 1 (28.12.2018): 29. http://dx.doi.org/10.3390/cancers11010029.

Der volle Inhalt der Quelle
Annotation:
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Liu, Gang, Magdalena Swierczewska, Gang Niu, Xiaoming Zhang und Xiaoyuan Chen. „Molecular imaging of cell-based cancer immunotherapy“. Molecular BioSystems 7, Nr. 4 (2011): 993. http://dx.doi.org/10.1039/c0mb00198h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Kriegsmann, Katharina, Mark Kriegsmann, Martin Cremer, Michael Schmitt, Peter Dreger, Hartmut Goldschmidt, Carsten Müller-Tidow und Michael Hundemer. „Cell-based immunotherapy approaches for multiple myeloma“. British Journal of Cancer 120, Nr. 1 (06.12.2018): 38–44. http://dx.doi.org/10.1038/s41416-018-0346-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Cheng, Min, Yongyan Chen, Weihua Xiao, Rui Sun und Zhigang Tian. „NK cell-based immunotherapy for malignant diseases“. Cellular & Molecular Immunology 10, Nr. 3 (22.04.2013): 230–52. http://dx.doi.org/10.1038/cmi.2013.10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Motohashi, Shinichiro, und Toshinori Nakayama. „Translational research of NKT cell-based immunotherapy“. Folia Pharmacologica Japonica 136, Nr. 6 (2010): 344–47. http://dx.doi.org/10.1254/fpj.136.344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Jung, Nam-Chul, Jun-Ho Lee, Kwang-Hoe Chung, Yi Sub Kwak und Dae-Seog Lim. „Dendritic Cell-Based Immunotherapy for Solid Tumors“. Translational Oncology 11, Nr. 3 (Juni 2018): 686–90. http://dx.doi.org/10.1016/j.tranon.2018.03.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Felzmann, Thomas. „Dendritic cell based immunotherapy in solid tumours“. European Journal of Molecular & Clinical Medicine 1 (07.09.2017): 1. http://dx.doi.org/10.1016/j.nhccr.2017.06.135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ray, Moumita, Yi-Wei Lee, Joseph Hardie, Rubul Mout, Gulen Yeşilbag Tonga, Michelle E. Farkas und Vincent M. Rotello. „CRISPRed Macrophages for Cell-Based Cancer Immunotherapy“. Bioconjugate Chemistry 29, Nr. 2 (22.01.2018): 445–50. http://dx.doi.org/10.1021/acs.bioconjchem.7b00768.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Jenne, Lars, Gerold Schuler und Alexander Steinkasserer. „Viral vectors for dendritic cell-based immunotherapy“. Trends in Immunology 22, Nr. 2 (Februar 2001): 102–7. http://dx.doi.org/10.1016/s1471-4906(00)01813-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chakravarti, Deboki, und Wilson W. Wong. „Synthetic biology in cell-based cancer immunotherapy“. Trends in Biotechnology 33, Nr. 8 (August 2015): 449–61. http://dx.doi.org/10.1016/j.tibtech.2015.05.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie