Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cell-based immunotherapy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cell-based immunotherapy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cell-based immunotherapy"
Osada, Takuya, Timothy M. Clay, Christopher Y. Woo, Michael A. Morse und H. Kim Lyerly. „Dendritic Cell-Based Immunotherapy“. International Reviews of Immunology 25, Nr. 5-6 (Januar 2006): 377–413. http://dx.doi.org/10.1080/08830180600992456.
Der volle Inhalt der QuelleSabado, Rachel L., Sreekumar Balan und Nina Bhardwaj. „Dendritic cell-based immunotherapy“. Cell Research 27, Nr. 1 (27.12.2016): 74–95. http://dx.doi.org/10.1038/cr.2016.157.
Der volle Inhalt der QuelleRazzak, Mina. „New cell-based immunotherapy?“ Nature Reviews Urology 9, Nr. 3 (21.02.2012): 122. http://dx.doi.org/10.1038/nrurol.2012.18.
Der volle Inhalt der QuelleChang, Kiyuk, Jie-Young Song und Dae-Seog Lim. „Tolerogenic dendritic cell-based immunotherapy“. Oncotarget 8, Nr. 53 (17.10.2017): 90630–31. http://dx.doi.org/10.18632/oncotarget.21867.
Der volle Inhalt der QuelleGolán, Irene, Laura Rodríguez de la Fuente und Jose Costoya. „NK Cell-Based Glioblastoma Immunotherapy“. Cancers 10, Nr. 12 (18.12.2018): 522. http://dx.doi.org/10.3390/cancers10120522.
Der volle Inhalt der QuelleWennhold, Kerstin, Alexander Shimabukuro-Vornhagen und Michael von Bergwelt-Baildon. „B Cell-Based Cancer Immunotherapy“. Transfusion Medicine and Hemotherapy 46, Nr. 1 (2019): 36–46. http://dx.doi.org/10.1159/000496166.
Der volle Inhalt der QuelleUrbonas, Vincas, Giedre Smailyte, Greta V. Urbonaite, Audrius Dulskas, Neringa Burokiene und Vytautas Kasiulevicius. „Natural killer cell-based immunotherapy“. Melanoma Research 29, Nr. 2 (April 2019): 208–11. http://dx.doi.org/10.1097/cmr.0000000000000552.
Der volle Inhalt der QuelleKadowaki, Norimitsu, und Toshio Kitawaki. „V. Dendritic Cell-based Immunotherapy“. Nihon Naika Gakkai Zasshi 108, Nr. 7 (10.07.2019): 1391–96. http://dx.doi.org/10.2169/naika.108.1391.
Der volle Inhalt der QuelleStagg, J., und M. J. Smyth. „NK cell-based cancer immunotherapy“. Drug News & Perspectives 20, Nr. 3 (2007): 155. http://dx.doi.org/10.1358/dnp.2007.20.3.1092096.
Der volle Inhalt der QuelleBuckler, Lee. „Rise of Cell-Based Immunotherapy“. Genetic Engineering & Biotechnology News 33, Nr. 5 (März 2013): 12–13. http://dx.doi.org/10.1089/gen.33.5.05.
Der volle Inhalt der QuelleDissertationen zum Thema "Cell-based immunotherapy"
Cabezón, Cabello Raquel. „Tolerogenic dendritic cell-based immunotherapy in Crohn’s disease“. Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/310604.
Der volle Inhalt der QuelleEsta tesis doctoral estudia el proceso de generación de células dendríticas tolerogénicas en grado clínico, con el objetivo de establecer un protocolo destinado al tratamiento de la enfermedad de Crohn. El estudio realizado ha permitido la caracterización de dichas células y sus propiedades tolerogénicas, incluyendo la descripción novedosa de un marcador de células tolerogénicas y el estudio de sus propiedades funcionales relacionadas con la inducción de tolerancia.
Vertuani, Simona. „Strategies to optimize T cell-based cancer immunotherapy /“. Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-891-6/.
Der volle Inhalt der QuelleChen, Hung-Chang. „Human γδ T cell-based immunotherapy for breast cancer“. Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/86751/.
Der volle Inhalt der QuelleCheong, Siew Chiat. „Development of cancer immunotherapy based on parvoviral vectors and hybrid cell vaccination“. Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211033.
Der volle Inhalt der QuelleWe have developed a novel ELISPOT titration method for viral vectors that is based on the actual expression of the transgene in target cells. This method was developed with recombinant parvovirus MVM-IL2, but it should be adaptable for other vectors carrying expression cassettes for secreted transgene products for which antibodies are available. The ELISPOT titration method allows for faster and better quantification of transducing units present in vector stocks as opposed to titration by in situ hybridisation (annexe I). The MVMIL2 vector has shown an anti-tumour effect against melanoma in an immunocompetent mouse model (annexe IV). Previous work concerns photodynamic inactivation of adenoviral vectors for biosafety and an in vivo study in which a synergistic effect of antiangiogenesis gene therapy combined with radiotherapy could be shown (annexes V and VI).
DC/TC hybrids have been proposed as cancer vaccines for their simultaneous expression of antigen presentation machinery and tumour associated antigens. Hybrids are classically generated by polyethylene glycol (PEG) or electrofusion. These methods however require special skills and equipment and cause rather high cell lethality. Fusion via the expression of viral fusogenic membrane glycoproteins (FMG), such as the vesicular stomatitis virus-G (VSV-G) (annexe III) or the Gibbon ape Leukemia Virus (GaLV) FMG, have recently been described. We have mainly focussed on the latter. Transduction of cells with GaLV-FMG proved to be a limiting step for an efficient generation of hybrids. On the other hand, constitutive expression of GaLV-FMG leads to lethal syncytia formation in human cells. Therefore we developed a novel fusion strategy for the generation of DC/TC cell hybrids that involves the use of a non-human fusogenic cell line that constitutively expresses the GaLV-FMG. With this method we were able to generate reproducible yields of DC/TC triparental hybrids. The formation of tri-parental hybrids via the fusogenic cell line is an interesting alternative to existing DC/TC fusion methods because of its simplicity and its flexibility in the choice of fusion partners, i.e. autologous or allogeneic DCs and tumour cells.
Moreover, the tri-parent hybrid system offers the possibility to further enhance the immune response by the addition of transgenes that code for immuno-modulating factors to the fusogenic cell line (annexe II).
Doctorat en sciences biomédicales
info:eu-repo/semantics/nonPublished
Klammer, Matthias. „Development of a dendritic cell-based vaccine for the immunotherapy of Acute Myeloid Leukaemia“. Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/29202.
Der volle Inhalt der QuelleCostigliola, Emanuele. „Development of herpes simplex virus 1 vectors for dendritic cell based immunotherapy of malaria“. Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1444585/.
Der volle Inhalt der QuelleWahid, S. Fadilah Binti Abdul. „Development of functional human dendritic cell subsets in vitro and in vivo in hu/NOD/SCID chimeric mice : important implications in dentritic cell-based immunotherapy /“. [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19089.pdf.
Der volle Inhalt der QuelleDe, la Pena H. „Development of a novel nanotechnology based artificial antigen presenting cell system for adoptive and active immunotherapy“. Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1446304/.
Der volle Inhalt der QuelleBOLLI, ELISABETTA. „Dendritic-Cell (DC)-Based Immunotherapy: Tumor Endothelial Marker 8 (TEM8) Gene Expression of DC Vaccines Correlates with Clinical Outcome“. Doctoral thesis, Università degli Studi di Camerino, 2008. http://hdl.handle.net/11581/401881.
Der volle Inhalt der QuellePIZZITOLA, IRENE. „Chimeric antigen receptor: a cell therapy based approach for the treatment of acute myeloid leukemia“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40113.
Der volle Inhalt der QuelleBücher zum Thema "Cell-based immunotherapy"
García-Olmo, Damián. Cell therapy. Herausgegeben von García-Verdugo José Manuel. New York: McGraw-Hill Interamerica, 2008.
Den vollen Inhalt der Quelle findenKang, Chʻang-yul. Pairŏsŭ pektʻŏ ro hyŏngjil toiptoen hangwŏn chesi sepʻo ŭi myŏnyŏk chʻiryoje yuhyosŏng pʻyŏngka mit sihŏmpŏp yŏnʼgu =: Development and estimation of immunotherapeutic cell-based vaccine approaches using antigen presenting cells transduced with viral vector. [Seoul]: Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng, 2007.
Den vollen Inhalt der Quelle findenCell-Based Cancer Immunotherapy. Elsevier Science & Technology Books, 2024.
Den vollen Inhalt der Quelle findenBorrego, Francisco, Susana Larrucea, Rafael Solana und Raquel Tarazona, Hrsg. NK Cell-Based Cancer Immunotherapy. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-934-1.
Der volle Inhalt der QuelleSantich, Brian H., Nai-Kong Cheung und Christian Klein, Hrsg. Bispecific Antibodies for T-Cell Based Immunotherapy. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-415-3.
Der volle Inhalt der QuelleDal Col, Jessica, Alejandro López-Soto und Riccardo Dolcetti, Hrsg. Dendritic Cell-Based Immunotherapy in Solid and Haematologic Tumors. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-726-3.
Der volle Inhalt der QuelleAscierto, Paolo A., David F. Stroncek und Ena Wang. Developments in T Cell Based Cancer Immunotherapies. Humana, 2019.
Den vollen Inhalt der Quelle findenAscierto, Paolo A., David F. Stroncek und Ena Wang. Developments in T Cell Based Cancer Immunotherapies. Humana, 2015.
Den vollen Inhalt der Quelle findenAscierto, Paolo A., David F. Stroncek und Ena Wang. Developments in T Cell Based Cancer Immunotherapies. Humana Press, 2015.
Den vollen Inhalt der Quelle findenBarisa, Marta. ?dT Cell Cancer Immunotherapy: Evidence-Based Perspectives for Clinical Translation. Elsevier Science & Technology Books, 2024.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cell-based immunotherapy"
Motohashi, Shinichiro. „NKT Cell-Based Immunotherapy“. In Immunotherapy of Cancer, 75–86. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55031-0_6.
Der volle Inhalt der QuelleBerger, T. G., und E. S. Schultz. „Dendritic Cell-Based Immunotherapy“. In Current Topics in Microbiology and Immunology, 163–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-06508-2_8.
Der volle Inhalt der QuelleOkamoto, Masato. „Dendritic Cell-Based Vaccine for Cancer“. In Immunotherapy of Cancer, 197–220. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55031-0_14.
Der volle Inhalt der QuelleMatsushita, Hirokazu, und Kazuhiro Kakimi. „γδ T Cell-Based Cancer Immunotherapy“. In Immunotherapy of Cancer, 99–119. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55031-0_8.
Der volle Inhalt der QuelleWestdorp, H., K. F. Bol, M. Coşkuntürk, G. Schreibelt, I. J. M. de Vries und C. G. Figdor. „Dendritic Cell-Based Cancer Vaccines“. In Cancer Immunotherapy Meets Oncology, 69–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05104-8_8.
Der volle Inhalt der QuelleBol, K. F., G. Schreibelt, E. H. J. G. Aarntzen, I. J. M. de Vries und C. G. Figdor. „Dendritic Cell-Based Cancer Immunotherapy: Achievements and Novel Concepts“. In Cancer Immunotherapy, 71–108. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4732-0_4.
Der volle Inhalt der QuelleFoltz, Jennifer A., Jeffrey S. Miller und Dean A. Lee. „Natural Killer Cell-Based Immunotherapy“. In Immunotherapy in Translational Cancer Research, 215–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781118684535.ch16.
Der volle Inhalt der QuelleShojaeefar, Ehsan, und Nima Rezaei. „Dendritic Cell-Based Cancer Immunotherapy“. In Handbook of Cancer and Immunology, 1–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80962-1_193-1.
Der volle Inhalt der QuelleDeschoolmeester, Vanessa, David Kerr, Patrick Pauwels und Jan B. Vermorken. „Cell Based Therapy: Modified Cancer Cells“. In Immunotherapy for Gastrointestinal Cancer, 23–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43063-8_2.
Der volle Inhalt der QuelleMirza, Noweeda, und Dmitry Gabrilovich. „Different Approaches to Dendritic Cell-Based Cancer Immunotherapy“. In Immunotherapy of Cancer, 127–38. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1-59745-011-1:127.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cell-based immunotherapy"
Thielemans, Kris. „Abstract B36: mRNA and dendritic cell based immunotherapy“. In Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-b36.
Der volle Inhalt der QuelleTent, Michiel. „Allogenic T-cell-based immunotherapy for PML in development“. In AAN 2023, herausgegeben von Prof Hans-Peter Hartung. Baarn, the Netherlands: Medicom Medical Publishers, 2023. http://dx.doi.org/10.55788/6fcade78.
Der volle Inhalt der QuelleHoke, Austin T., Yoko Takahashi, Michelle R. Padget, Moran Amit, Jared Burks, Javier Gomez, Diana Bell et al. „NK Cell-Based Immunotherapy Approaches to Sinonasal Undifferentiated Carcinoma“. In 32nd Annual Meeting North American Skull Base Society. Georg Thieme Verlag KG, 2023. http://dx.doi.org/10.1055/s-0043-1762160.
Der volle Inhalt der QuelleKim, Hyunjoon, Peter Larson, Tamara A. Kucaba, Katherine A. Murphy, David M. Ferguson, Thomas S. Griffith und Jayanth Panyam. „Abstract 718: Nanoparticle-based tumor cell lysate vaccine for cancer immunotherapy“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-718.
Der volle Inhalt der QuelleFunk, MA, PM Brunner, C. Jonak, M. Deseke, I. Prinz, J. Leitner, J. Stöckl und P. Steinberger. „P09.09 A CAR-T cell-based approach for the treatment of malignant T cell diseases“. In iTOC9 – 9th Immunotherapy of Cancer Conference, September 22–24, 2022 – Munich, Germany. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-itoc9.65.
Der volle Inhalt der QuelleAscic, Ervin, Fritiof Åkerström, Malavika Sreekumar Nair, André Rosa, Ilia Kurochkin, Olga Zimmermannova, Xavier Catena et al. „1281 A cancer immunotherapy modality based on dendritic cell reprogramming in vivo“. In SITC 39th Annual Meeting (SITC 2024) Abstracts, A1436. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/jitc-2024-sitc2024.1281.
Der volle Inhalt der QuelleBeyrend, G. „PO-362 Rational designing combinatorial T-cell based immunotherapy by high-dimensional profiling“. In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.874.
Der volle Inhalt der QuelleBeyrend, G. „PO-375 Rational designing combinatorial T-cell based immunotherapy by high-dimensional profiling“. In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.886.
Der volle Inhalt der QuelleKorbelik, Mladen, und Jinghai Sun. „Cancer treatment by photodynamic therapy combined with NK-cell-line-based adoptive immunotherapy“. In BiOS '98 International Biomedical Optics Symposium, herausgegeben von Steven L. Jacques. SPIE, 1998. http://dx.doi.org/10.1117/12.308148.
Der volle Inhalt der QuelleKumai, Takumi, Ryusuke Hayashi, Tatsuya Hayashi, Hiroya Kobayashi und Yasuaki Harabuchi. „Abstract 6622: The identification of extranodal NK/T cell lymphoma-associated antigen for helper T cell-based immunotherapy“. In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-6622.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cell-based immunotherapy"
Mathis, James M. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2007. http://dx.doi.org/10.21236/ada491946.
Der volle Inhalt der QuelleMathis, James M. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2008. http://dx.doi.org/10.21236/ada518244.
Der volle Inhalt der QuelleMathis, James M. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2005. http://dx.doi.org/10.21236/ada462730.
Der volle Inhalt der QuelleBaar, Joseph. Dendritic Cell-Based Immunotherapy of Breast Cancer: Modulation by CpG. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada431640.
Der volle Inhalt der QuelleBaar, Joseph. Dendritic Cell-Based Immunotherapy of Breast Cancer: Modulation by CpG DNA. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada412155.
Der volle Inhalt der QuelleRausch, Matthew. Enhancement of Dendritic Cell-Based Immunotherapy Using a Small Molecule TGF-beta Receptor Type I Kinase Inhibitor. Fort Belvoir, VA: Defense Technical Information Center, Juni 2008. http://dx.doi.org/10.21236/ada487435.
Der volle Inhalt der QuelleOuyang, Zhiqiang, Qian Li, Guangrong Zheng, Tengfei Ke, Jun Yang und Chengde Liao. Radiomics for predicting tumor microenvironment phenotypes in non-small cell lung cance: A systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2022. http://dx.doi.org/10.37766/inplasy2022.9.0060.
Der volle Inhalt der QuelleWangi, Yuanyuan, Lin Zhang, Yu Liu, Yu Liu, Hui Yu, Anlin Li, Tingting Liu et al. The ICI-based therapy landscape in resectable non-small cell lung cancer: a comparative analysis of treatment efficacy and safety between neo-adjuvant, adjuvant and perioperative immunotherapy. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Oktober 2023. http://dx.doi.org/10.37766/inplasy2023.10.0084.
Der volle Inhalt der QuelleParikh, Romil R., Alexander Troester, Bronwyn Southwell, Elizabeth Ester, Shahnaz Sultan, Amy M. Claussen, Edward Greeno et al. Treatment of Stages I–III Squamous Cell Anal Cancer: A Systematic Review. Agency for Healthcare Research and Quality (AHRQ), August 2024. http://dx.doi.org/10.23970/ahrqepccer273.
Der volle Inhalt der Quelle