Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cell Annotation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cell Annotation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cell Annotation"
Huang, Xiaoqian, Ruiqi Liu, Shiwei Yang, Xiaozhou Chen und Huamei Li. „scAnnoX: an R package integrating multiple public tools for single-cell annotation“. PeerJ 12 (28.03.2024): e17184. http://dx.doi.org/10.7717/peerj.17184.
Der volle Inhalt der QuelleVădineanu, Serban, Daniël M. Pelt, Oleh Dzyubachyk und Kees Joost Batenburg. „Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations“. Journal of Imaging 10, Nr. 7 (17.07.2024): 172. http://dx.doi.org/10.3390/jimaging10070172.
Der volle Inhalt der QuelleHia, Nazifa Tasnim, und Sumon Ahmed. „Automatic cell type annotation using supervised classification: A systematic literature review“. Systematic Literature Review and Meta-Analysis Journal 3, Nr. 3 (21.10.2022): 99–108. http://dx.doi.org/10.54480/slrm.v3i3.45.
Der volle Inhalt der QuelleXu, Yang, Simon J. Baumgart, Christian M. Stegmann und Sikander Hayat. „MACA: marker-based automatic cell-type annotation for single-cell expression data“. Bioinformatics 38, Nr. 6 (22.12.2021): 1756–60. http://dx.doi.org/10.1093/bioinformatics/btab840.
Der volle Inhalt der QuelleGill, Jaidip, Abhijit Dasgupta, Brychan Manry und Natasha Markuzon. „Abstract 4927: Combining single-cell ATAC and RNA sequencing for supervised cell annotation“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 4927. http://dx.doi.org/10.1158/1538-7445.am2024-4927.
Der volle Inhalt der QuelleZhou, Xiao, Miao Gu und Zhen Cheng. „Local Integral Regression Network for Cell Nuclei Detection“. Entropy 23, Nr. 10 (14.10.2021): 1336. http://dx.doi.org/10.3390/e23101336.
Der volle Inhalt der QuelleZhou, Xiao, Miao Gu und Zhen Cheng. „Local Integral Regression Network for Cell Nuclei Detection“. Entropy 23, Nr. 10 (14.10.2021): 1336. http://dx.doi.org/10.3390/e23101336.
Der volle Inhalt der QuelleCheng, Changde, Wenan Chen, Hongjian Jin und Xiang Chen. „A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell–Cell Communication“. Cells 12, Nr. 15 (30.07.2023): 1970. http://dx.doi.org/10.3390/cells12151970.
Der volle Inhalt der QuelleLong, Helen, Richard Reeves und Michelle M. Simon. „Mouse genomic and cellular annotations“. Mammalian Genome 33, Nr. 1 (05.02.2022): 19–30. http://dx.doi.org/10.1007/s00335-021-09936-7.
Der volle Inhalt der QuelleWei, Ziyang, und Shuqin Zhang. „CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data“. Bioinformatics 37, Supplement_1 (01.07.2021): i51—i58. http://dx.doi.org/10.1093/bioinformatics/btab286.
Der volle Inhalt der QuelleDissertationen zum Thema "Cell Annotation"
Raoux, Corentin. „Review and Analysis of single-cell RNA sequencing cell-type identification and annotation tools“. Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297852.
Der volle Inhalt der QuelleEbenezer, ThankGod Echezona. „The genome of Euglena gracilis : annotation, function and expression“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275885.
Der volle Inhalt der QuelleAbbey, Simon. „Annotation of the human odontoblast cell layer and dental pulp proteomes and N-terminomes“. Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62403.
Der volle Inhalt der QuelleDentistry, Faculty of
Graduate
Hoffman, Matthew P. „The Cortical response to RhoA is regulated during mitosis. Annotation of cytoskeletal and motility proteins in the sea urchin genome assembly“. Thesis, Boston College, 2008. http://hdl.handle.net/2345/bc-ir:107671.
Der volle Inhalt der QuelleThis doctoral thesis addresses two central topics divided into separate chapters. In Chapter 1: The cortical response to RhoA is regulated during mitosis, experimental findings using sea urchin embryos are presented that demonstrate that the small GTPase RhoA participates in positive signaling for cell division and that this activity is negatively regulated prior to anaphase. In a second series of experiments, myosin phosphatase is shown to be a central negative regulator of myosin activity during the cell cycle through metaphase of mitosis and experimental findings support the conclusion that myosin phosphatase opposes RhoA signaling until anaphase onset. These experiments also reveal that myosin activation alone is insufficient to stimulate cortical contractions during S phase and during metaphase arrest following activation of the spindle checkpoint. In Chapter 2: Annotation of cytoskeletal and motility proteins in the sea urchin genome assembly, as part of a collaborative project, homologs of cytoskeletal genes and gene families were derived and annotated from the sea urchin genome assembly. In addition, phylogenetic analysis of multiple gene families is presented based on these findings
Thesis (PhD) — Boston College, 2008
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Collin, Antoine. „Annotation cellulaire automatique pour la construction d'un atlas cellulaire“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6039.
Der volle Inhalt der QuelleSingle-cell gene expression analysis technologies, which have emerged over the last ten years, are profoundly changing approaches to cell biology. The analysis of single-cell data is a complex process involving many steps. A key step is cell annotation, which involves assigning the most relevant cell type to the different cells analysed. Correct cell annotation determines the quality of subsequent analyses. This complex task requires biological expertise of the tissue of interest and computational expertise to carry out data analysis. Initiatives such as the HCA provide large reference atlases with curated annotation. As such, they represent an opportunity to develop deep learning models capable of automating the annotation process.The aim of this thesis was to set up automatic annotation tools that could operate on large datasets. To achieve this, two lines of work were developed: first, I created an atlas of the human airways comprising more than 400,000 cells based on several dozen biopsies obtained from patients with early forms of chronic obstructive pulmonary disease (COPD), which were compared with as many biopsies from healthy volunteers of the same age. I then developed an automatic annotation method after reviewing the state of the art existing tools.In the first part, I was able to characterise the central role played by cigarette smoke, mainly in the epithelial cells located on the surface of the tracheobronchial airways, and thus directly exposed to cigarette smoke. The populations affected are characterised by the expression of genes coding for detoxification enzymes or enzymes involved in xenobiotic metabolism. None of these genes were affected in either ex-smokers or healthy patients. There appears to be a reversibility of the pathology following cessation of smoking, despite the molecular changes induced during initial exposure to cigarette smoke. My work is now currently extended by spatial transcriptomic approaches and analysis of the expression of different transcript isoforms.In the second part, I explored existing automatic annotation methods in the light of the knowledge acquired when annotating the COPD atlas. I began with an extensive review of the literature, with a particular interest in methods using deep learning models. I then developed an automatic annotation tool, scMusketeers, whose architecture favours the construction of a latent space reinforcing cell type while minimising experimental inter-batch effects. It compared favorably to 7 currently available tools on 12 different datasets, particularly in the task of detecting rare cell types
Lehmann, Nathalie. „Development of bioinformatics tools for single-cell transcriptomics applied to the search for signatures of symmetric versus asymmetric division mode in neural progenitors“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLE070.
Der volle Inhalt der QuelleIn recent years, single-cell RNA-seq (scRNA-seq) has fostered the characterization of cell heterogeneity at a remarkable high resolution. Despite their democratization, the analysis of scRNA-seq remains a challenge, particularly for organisms whose genomic annotations are partial. During my PhD, I observed that the chick genomic annotations are often incomplete, thus resulting in a loss of a large number of sequencing reads. I investigated how an enriched annotation affects the biological results and conclusions from these analyses. We developed a novel approach based on the re-annotation of the genome with scRNA-seq data and long reads bulk RNA-seq. This computational biology project capitalises on a tight collaboration with the experimental team of Xavier Morin (IBENS). The main biological focus is the search for signatures of symmetric versus asymmetric division mode in neural progenitors. In order to identify the key transcriptional switches that occur during the neurogenic transition, I have implemented bioanalysis approaches dedicated to the search for gene signatures from scRNA-seq data
Planas, Iglesias Joan 1980. „On the study of 3D structure of proteins for developing new algorithms to complete the interactome and cell signalling networks“. Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/104152.
Der volle Inhalt der QuelleLes proteïnes tenen un paper indispensable en virtualment qualsevol procés biològic. Les funcions de les proteïnes estan determinades per la seva estructura tridimensional (3D) i són coordinades per mitjà d’una complexa xarxa d’interaccions protiques (en anglès, protein-protein interactions, PPIs). Axí doncs, una comprensió en profunditat d’aquestes xarxes és fonamental per entendre la biologia cel•lular. Per a l’anàlisi de les xarxes d’interacció de proteïnes, l’ús de tècniques computacionals ha esdevingut fonamental als darrers temps. Els mètodes in silico aprofiten el coneixement actual sobre les interaccions proteiques per fer prediccions de noves interaccions o de les funcions de les proteïnes. Actualment existeixen diferents mètodes per a la predicció de noves interaccions de proteines. De tota manera, resultats recents demostren que aquests mètodes poden beneficiar-se del coneixement sobre parelles de proteïnes no interaccionants (en anglès, non-interacting pairs, NIPs). Per a la tasca de predir la funció de les proteïnes, el principi de “culpable per associació” (en anglès, guilt by association, GBA) és usat per extendre l’anotació de proteïnes de funció coneguda a través de xarxes d’interacció de proteïnes. En aquesta tesi es presenta un nou mètode pre a la predicció d’interaccions proteiques i un nou protocol basat per a completar xarxes de senyalització cel•lular. iLoops és un mètode que utilitza dades de parells no interaccionants i coneixement de l’estructura 3D de les proteïnes per a predir interaccions de proteïnes. També s’ha desenvolupat un nou protocol per a completar xarxes de senyalització cel•lular, una tasca relacionada amb la predicció de les funcions de les proteïnes. Aquest protocol es basa en aplicar el principi GBA a xarxes d’interaccions proteiques.
Ghadie, Mohamed A. „Analysis and Reconstruction of the Hematopoietic Stem Cell Differentiation Tree: A Linear Programming Approach for Gene Selection“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32048.
Der volle Inhalt der QuelleKhattra, Jaswinder. „Cloning and annotation of novel transcripts from human embryonic stem cells“. Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/343.
Der volle Inhalt der QuelleLux, Markus [Verfasser], und Barbara [Akademischer Betreuer] Hammer. „Efficient Grouping Methods for the Annotation and Sorting of Single Cells / Markus Lux ; Betreuer: Barbara Hammer“. Bielefeld : Universitätsbibliothek Bielefeld, 2018. http://d-nb.info/1160033226/34.
Der volle Inhalt der QuelleBuchteile zum Thema "Cell Annotation"
Wang, Zuhui, und Zhaozheng Yin. „Annotation-Efficient Cell Counting“. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 405–14. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87237-3_39.
Der volle Inhalt der QuelleO’Connor, Maria F., Arthur Hughes, Chaoxin Zheng, Anthony Davies, Dermot Kelleher und Khurshid Ahmad. „Annotation and Retrieval of Cell Images“. In Intelligent Data Engineering and Automated Learning – IDEAL 2010, 218–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15381-5_27.
Der volle Inhalt der QuelleLi, Dongshunyi, Jun Ding und Ziv Bar-Joseph. „Unsupervised Cell Functional Annotation for Single-Cell RNA-Seq“. In Lecture Notes in Computer Science, 349–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04749-7_24.
Der volle Inhalt der QuelleVădineanu, Şerban, Daniël M. Pelt, Oleh Dzyubachyk und K. Joost Batenburg. „Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations“. In Medical Image Learning with Limited and Noisy Data, 3–13. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44917-8_1.
Der volle Inhalt der QuelleValkiers, Sebastiaan, Sofie Gielis, Vincent M. L. Van Deuren, Kris Laukens und Pieter Meysman. „Clustering and Annotation of T Cell Receptor Repertoires“. In Computational Vaccine Design, 33–51. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3239-0_3.
Der volle Inhalt der QuelleShui, Zhongyi, Shichuan Zhang, Chenglu Zhu, Bingchuan Wang, Pingyi Chen, Sunyi Zheng und Lin Yang. „End-to-End Cell Recognition by Point Annotation“. In Lecture Notes in Computer Science, 109–18. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16440-8_11.
Der volle Inhalt der QuelleLi, Chao-Ting, Hung-Wen Tsai, Tseng-Lung Yang, Jung-Chi Lin, Nan-Haw Chow, Yu Hen Hu, Kuo-Sheng Cheng und Pau-Choo Chung. „Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection“. In Interpretable and Annotation-Efficient Learning for Medical Image Computing, 223–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_24.
Der volle Inhalt der QuelleÇiçek, Özgün, Yassine Marrakchi, Enoch Boasiako Antwi, Barbara Di Ventura und Thomas Brox. „Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins“. In Interpretable and Annotation-Efficient Learning for Medical Image Computing, 85–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_9.
Der volle Inhalt der QuelleBashir, Raja Muhammad Saad, Talha Qaiser, Shan E. Ahmed Raza und Nasir M. Rajpoot. „HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification“. In Interpretable and Annotation-Efficient Learning for Medical Image Computing, 164–71. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_18.
Der volle Inhalt der QuelleKhalid, Nabeel, Tiago Comassetto Froes, Maria Caroprese, Gillian Lovell, Johan Trygg, Andreas Dengel und Sheraz Ahmed. „PACE: Point Annotation-Based Cell Segmentation for Efficient Microscopic Image Analysis“. In Artificial Neural Networks and Machine Learning – ICANN 2023, 545–57. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44210-0_44.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cell Annotation"
Li, Tianhao, Yugui Xu, Sihan He, Yuhang Liu, Zixuan Wang, Zhigan Zhou, Yongqing Zhang und Quan Zou. „Cell-Specific Highly Correlated Network for Self-Supervised Distillation in Cell Type Annotation“. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 988–93. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822095.
Der volle Inhalt der QuelleTang, Binhua, und Guowei Cheng. „A Novel GCN-Based Cell Annotation Method for Single-Cell RNA Sequencing Data“. In 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 1–5. IEEE, 2024. https://doi.org/10.1109/cisp-bmei64163.2024.10906231.
Der volle Inhalt der QuelleLi, Jiawei, Shizhan Chen, Zongbo Han, Wei Li, Jijun Tang und Fei Guo. „Multi-Task Driven Multi-Level Dynamical Fusion for Single-Cell Multi-Omics Cell Type Annotation“. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1009–14. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822524.
Der volle Inhalt der QuelleZhu, Chi, Fengcui Qian, Yongbin Liu, Ying Yu, Chunquan Li und Chunping Ouyang. „PEGCN: A Single-Cell Type Annotation model based on GCN with Pseudo Labels and Ensemble Learning“. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1414–21. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822733.
Der volle Inhalt der QuelleNeelapala, Satya Deepika, Soumya Jana und Lopamudra Giri. „U-Net-Based HeLa Cell Segmentation with Zero Manual Labeling Using DBSCAN-Generated Annotations“. In 2024 IEEE International Conference on E-health Networking, Application & Services (HealthCom), 1–3. IEEE, 2024. https://doi.org/10.1109/healthcom60970.2024.10880723.
Der volle Inhalt der QuelleChen, Jian, Chengliang Wang, Xing Wu, Longrong Ran, Zailin Yang und Yao Liu. „Weakly Supervised Segmentation of Plasma Cells in Bone Marrow via Scribble Annotations“. In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651396.
Der volle Inhalt der QuelleZhai, Yuyao, Liang Chen und Minghua Deng. „Realistic Cell Type Annotation and Discovery for Single-cell RNA-seq Data“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/552.
Der volle Inhalt der QuelleZhai, Yuyao, Liang Chen und Minghua Deng. „Distribution-Independent Cell Type Identification for Single-Cell RNA-seq Data“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/679.
Der volle Inhalt der QuelleJiang, Yangbo, Shuting Zhang, Jinggen Wu, Xumei Zhu, Xiao Liu und Nenggan Zheng. „AL-Annotator: An Active Learning-based Cervical Cell Annotation System“. In 2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2023. http://dx.doi.org/10.1109/icpads60453.2023.00079.
Der volle Inhalt der QuelleLin, Lu, Wen Xue, Xindian Wei, Wenjun Shen, Cheng Liu, Si Wu und Hau San Wong. „SCTrans: Multi-scale scRNA-seq Sub-vector Completion Transformer for Gene-selective Cell Type Annotation“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/658.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cell Annotation"
Blumwald, Eduardo, und Avi Sadka. Sugar and Acid Homeostasis in Citrus Fruit. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7697109.bard.
Der volle Inhalt der QuelleRabethge, Nico, und Kurt-Georg Ciesinger. KI in der Schmutzwäsche-Sortierung. Kompetenzzentrum Arbeitswelt.Plus, Januar 2023. http://dx.doi.org/10.55594/wgct6835.
Der volle Inhalt der Quelle