Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cdk4/6 Inhibition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cdk4/6 Inhibition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cdk4/6 Inhibition"
Lu, Shuyan, Tae Sung, Marina Amaro, Brad Hirakawa, Bart Jessen und Wenyue Hu. „Phenotypic Characterization of Targeted Knockdown of Cyclin-Dependent Kinases in the Intestinal Epithelial Cells“. Toxicological Sciences 177, Nr. 1 (18.06.2020): 226–34. http://dx.doi.org/10.1093/toxsci/kfaa092.
Der volle Inhalt der QuelleShapiro, Geoffrey I. „Cyclin-Dependent Kinase Pathways As Targets for Cancer Treatment“. Journal of Clinical Oncology 24, Nr. 11 (20.04.2006): 1770–83. http://dx.doi.org/10.1200/jco.2005.03.7689.
Der volle Inhalt der QuelleFassl, Anne, Christopher Brain, Monther Abu-Remaileh, Iga Stukan, Deborah Butter, Piotr Stepien, Avery S. Feit et al. „Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition“. Science Advances 6, Nr. 25 (Juni 2020): eabb2210. http://dx.doi.org/10.1126/sciadv.abb2210.
Der volle Inhalt der QuelleBaughn, Linda B., Maurizio Di Liberto, Kaida Wu, Peter Toogood, Tracey Louie, Rachel Gottschalk, Ruben Niesvizky et al. „A Novel Orally Active Small Molecule Potently Induces G1 Arrest in Primary Myeloma Cells and Prevents Tumor Growth by Specific Inhibition of Cdk4/6.“ Blood 108, Nr. 11 (16.11.2006): 369. http://dx.doi.org/10.1182/blood.v108.11.369.369.
Der volle Inhalt der QuelleVilgelm, Anna E., Nabil Saleh, Rebecca Shattuck-Brandt, Kelsie Riemenschneider, Lauren Slesur, Sheau-Chiann Chen, C. Andrew Johnson et al. „MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21“. Science Translational Medicine 11, Nr. 505 (14.08.2019): eaav7171. http://dx.doi.org/10.1126/scitranslmed.aav7171.
Der volle Inhalt der QuelleFacharztmagazine, Redaktion. „Brustkrebs: CDK4/6-Inhibition punktet“. Im Fokus Onkologie 23, Nr. 4 (September 2020): 97. http://dx.doi.org/10.1007/s15015-020-2542-8.
Der volle Inhalt der QuelleFacharztmagazine, Redaktion. „CDK4/6 -Inhibition bei Brustkrebs“. Im Fokus Onkologie 24, Nr. 3 (Juni 2021): 73. http://dx.doi.org/10.1007/s15015-021-3516-1.
Der volle Inhalt der QuelleFacharztmagazine, Redaktion. „CDK4/6 -Inhibition bei Brustkrebs“. InFo Hämatologie + Onkologie 24, Nr. 6 (Juni 2021): 68. http://dx.doi.org/10.1007/s15004-021-8712-9.
Der volle Inhalt der QuelleDe Dominici, Marco, Patrizia Porazzi, Youcai Xiao, Allen Chao, Hsin-Yao Tang, Gaurav Kumar, Paolo Fortina et al. „Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs“. Blood 135, Nr. 18 (30.04.2020): 1560–73. http://dx.doi.org/10.1182/blood.2019003604.
Der volle Inhalt der QuelleDiRocco, Derek P., John Bisi, Patrick Roberts, Jay Strum, Kwok-Kin Wong, Norman Sharpless und Benjamin D. Humphreys. „CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury“. American Journal of Physiology-Renal Physiology 306, Nr. 4 (15.02.2014): F379—F388. http://dx.doi.org/10.1152/ajprenal.00475.2013.
Der volle Inhalt der QuelleDissertationen zum Thema "Cdk4/6 Inhibition"
Nakatani, Kana. „Inhibition of CDK4/6 and autophagy synergistically induces apoptosis in t(8;21) acute myeloid leukemia cells“. Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263584.
Der volle Inhalt der QuelleKnudsen, Erik S., und Agnieszka K. Witkiewicz. „Defining the transcriptional and biological response to CDK4/6 inhibition in relation to ER+/HER2- breast cancer“. IMPACT JOURNALS LLC, 2014. http://hdl.handle.net/10150/622114.
Der volle Inhalt der QuelleHe, Wei. „Mathematical Modeling of Therapies for MCF7 Breast Cancer Cells“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103967.
Der volle Inhalt der QuelleDoctor of Philosophy
Estrogen receptors are proteins found inside breast cancer cells that are activated by the hormone estrogen. Estrogen-receptor positive breast cancer is the most common type of breast cancer and accounts for about 70% of breast cancer tumors. Endocrine therapy, which inhibits estrogen receptor signaling, and Cyclin-dependent kinase 4 and 6 (Cdk4/6) inhibitors are the preferred first-line therapy for patients with estrogen receptor-positive cancers. We built a mathematical model of MCF7 cells (an estrogen receptor-positive breast cancer cell line) in response to these standard first-line therapies. This mathematical model can capture the experimentally observed protein and cell proliferation changes in response to various treatment conditions, including different drug combinations, different doses, and different treatment durations up to 28 days. The model can then be used to look for more effective treatment possibilities. In particular, our mathematical model predicted a strong synergism between Cdk4/6 inhibitors and endocrine therapy, which could allow significant reductions in drug dosage while producing the same effect. This synergism was verified by experiments. In addition to treatment methods where one drug or combination of several drugs is used continuously, we consider alternating among various therapies in a fixed cycle. The mathematical model can help us determine which drugs and which doses might be most appropriate. Since an alternating therapy doesn't inhibit one particular target non-stop, the hope is that alternating therapies can delay the onset of drug resistance, where the drug becomes less effective or stops working completely. Unfortunately, an initial 10- week experiment to test for differences in resistance to a mono-therapy versus an alternating therapy did not show a significant difference, pointing to the need for longer experiments to see if alternating therapies can actually make a difference in resistance. Mathematical models will be important for determining the drugs, doses, and time intervals to be used in these experiments, as figuring out the best options by trial and error in such long-term experiments is not practical.
Pan, Qi [Verfasser], Jürgen E. [Akademischer Betreuer] Gschwend, Roland M. [Gutachter] Schmid und Jürgen E. [Gutachter] Gschwend. „Identification of molecular mechanisms induced by CDK4/6 inhibition / Qi Pan ; Gutachter: Roland M. Schmid, Jürgen E. Gschwend ; Betreuer: Jürgen E. Gschwend“. München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1172880123/34.
Der volle Inhalt der QuelleTong, Zhichao [Verfasser], Jürgen E. [Akademischer Betreuer] Gschwend, Jürgen E. [Gutachter] Gschwend und Dieter [Gutachter] Saur. „Functional genomics identifies multiple clinically actionable resistance mechanisms to CDK4/6 inhibition in bladder cancer / Zhichao Tong ; Gutachter: Jürgen E. Gschwend, Dieter Saur ; Betreuer: Jürgen E. Gschwend“. München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1189815451/34.
Der volle Inhalt der QuelleFurnish, Robin. „Evaluating Immune Modulatory Therapeutic Strategies for Diffuse Intrinsic Pontine Glioma“. University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595849080346532.
Der volle Inhalt der QuelleEbner, Benedikt [Verfasser]. „Kombinationstherapien mit dem CDK4/6 Inhibitor Palbociclib und weiteren Target-Therapeutika im Urothelkarzinom / Benedikt Ebner“. München : Verlag Dr. Hut, 2021. http://d-nb.info/1238422977/34.
Der volle Inhalt der QuelleFischer, Luca [Verfasser], und Martin [Akademischer Betreuer] Dreyling. „Zielgerichtete Therapien beim Mantelzelllymphom : Der neue CDK4/6-Inhibitor Abemaciclib in Mono- und Kombinationstherapie / Luca Fischer ; Betreuer: Martin Dreyling“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1190033135/34.
Der volle Inhalt der QuelleKöhler, Lena. „Radiotracer für die molekulare Bildgebung: Radiomarkierung von Inhibitoren der CDK4/6 mit den Radionukliden Iod-124 und Fluor-18“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-38369.
Der volle Inhalt der QuelleHeimer, Maurice Maximilian [Verfasser], und Clemens [Akademischer Betreuer] Cyran. „18F-FDG-PET/CT und diffusionsgewichtete MRT zum Monitoring einer BRAF- und CDK4/6-Inhibitor Kombinationstherapie im murinen Modell eines humanen Melanoms / Maurice Maximilian Heimer ; Betreuer: Clemens Cyran“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1206877987/34.
Der volle Inhalt der QuelleBuchteile zum Thema "Cdk4/6 Inhibition"
Toogood, Peter L., und Nathan D. Ide. „Palbociclib (Ibrance): The First-in-Class CDK4/6 Inhibitor for Breast Cancer“. In Innovative Drug Synthesis, 167–96. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118819951.ch9.
Der volle Inhalt der QuelleTaber, Douglass. „Complex Cyclic Ethers: (+)-Conocarpan (Hashimoto), (-)-Brevisamide (Satake/ Tachibana), (+)-Bruguierol A (Fañanás/ Rodríguez), (-)-Berkelic Acid (Snider), and (-)-Aigialomycin D (Harvey)“. In Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.003.0052.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cdk4/6 Inhibition"
Zhang, Yixiang, Ewa Sicinska, Samuel Moss, Jeffrey T. Czaplinski, Yuchuan Wang, Christopher Brain, George D. Demetri, Sunkyu Kim, Andrew L. Kung und Andrew J. Wagner. „Abstract A236: Human liposarcoma growth inhibition by novel CDK4/6 inhibitor LEE011.“ In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-a236.
Der volle Inhalt der QuelleOlanich, Mary E., Wenyue Sun, Stephen M. Hewitt, Zied Abdullaev, Svetlana D. Pack und Frederic G. Barr. „Abstract 3093: CDK4 amplification reduces sensitivity to CDK4/6 inhibition in fusion-positive rhabdomyosarcoma“. In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3093.
Der volle Inhalt der QuellePandey, Kamal. „Abstract 5811: Combined inhibition of CDK2 and CDK4/6 overcomes acquired resistance to CDK4/6 inhibitors in breast cancer via RB-independent pathway“. In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-5811.
Der volle Inhalt der QuelleHall, Claire R., John E. Bisi und Jay C. Strum. „Abstract 4414: Inhibition of CDK2 overcomes primary and acquired resistance to CDK4/6 inhibitors“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4414.
Der volle Inhalt der QuelleHall, Claire R., John E. Bisi und Jay C. Strum. „Abstract 4414: Inhibition of CDK2 overcomes primary and acquired resistance to CDK4/6 inhibitors“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-4414.
Der volle Inhalt der QuelleWitzleben, A., L. Goerttler, R. Marienfeld, H. Barth, K. Mellert, P. Möller, S. Brüderlein, TK Hoffmann und TFE Barth. „Charakterisierung von Chordom Zelllinien und Inhibition des CDK4/6 Signalwegs“. In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640188.
Der volle Inhalt der QuelleDeCristo, Molly J., Shom Goel, April C. Watt, Haley BrinJones, Jaclyn Sceneay, Ben B. Li, Naveed Khan et al. „Abstract B04: CDK4/6 inhibition triggers an antitumor immune response“. In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-b04.
Der volle Inhalt der QuelleBarghi, Farinaz, Pankita H. Pandya, M. Reza Saadatzadeh, Khadijeh Bijangi-Vishehsaraei, Barbara J. Bailey, Erika A. Dobrota, Courtney Young et al. „Abstract 3043: Targeting CDK4/6 inhibitor resistance in relapsed osteosarcoma via PI3 Kinase inhibition“. In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-3043.
Der volle Inhalt der QuelleIyengar, Mangala, Lan Coffman und Ronald Buckanovich. „Abstract A73: CDK4/6 inhibition as maintenance therapy in ovarian cancer.“ In Abstracts: AACR Special Conference: Advances in Ovarian Cancer Research: Exploiting Vulnerabilities; October 17-20, 2015; Orlando, FL. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3265.ovca15-a73.
Der volle Inhalt der QuelleJeselsohn, R. „Abstract MS2-2: Targeting the cell cycle - Beyond CDK4/6 inhibition“. In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-ms2-2.
Der volle Inhalt der Quelle