Zeitschriftenartikel zum Thema „CdI2“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: CdI2.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "CdI2" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Nöth, Heinrich, und Martina Thomann. „Metal Tetrahydroborates and Tetrahydroborato Metalates, 16 [1]. An 11B and 113Cd NMR Investigation of the CdI2—MBH4 System in Dimethylformamide and Diglyme [2]“. Zeitschrift für Naturforschung B 45, Nr. 11 (01.11.1990): 1472–81. http://dx.doi.org/10.1515/znb-1990-1102.

Der volle Inhalt der Quelle
Annotation:
CdI2 dissociates in dimethylformamide (DMF) into Cd(DMF)62+, CdI(DMF)5+, CdI3- and CdI42-. Rapid scrambling occurs at ambient temperature in DMF solutions containing CdI2 and MBH4 (M = Na, Li). At 213 K these exchange processes are slowed down to allow the detection of CdI42-, CdI3-, CdI3(BH4)2-, CdI2(BH4)22-, CdI(BH4)32-, CdI(BH4)2- and Cd(BH4)3- by 113Cd NMR spectroscopy. The BH4 groups are bound to the Cd centre via two hydrogen atoms as derived from the multiplicity of the 113Cd signals. CdI2 dissolves in diglyme as a molecular entity. Its reaction with M BH4 proceeds via solvated CdI(BH4) and Cd(BH4)2 to CdI(BH4)32- and Cd(BH4)3-. Solubility restriction prevent a 113Cd NMR study of solutions in which the MBH4 : CdI2 ratio exceeds 1:1.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Barrios Lares, Rosalba María. „Integración del equipo multidisciplinario en la promoción de salud bucal para niños de alto riesgo y con necesidades especiales“. Revista de Odontopediatría Latinoamericana 8, Nr. 2 (19.01.2021): 13. http://dx.doi.org/10.47990/alop.v8i2.154.

Der volle Inhalt der Quelle
Annotation:
Los Centros de Desarrollo Infantil (CDI), espacio donde se desarrolló la investigación, son aquellos donde se realiza el diagnóstico temprano y la atención integral individualizada, por un equipo multidisciplinario. Objetivos: Identificar la presencia de actividades relacionadas con la salud bucal en el programa de atención que desarrollan los especialistas; identificar las especialidades en las cuales se pueda incorporar la salud bucal y describir los elementos vinculados a la teoría de salud que manejan los especialistas. Materiales y métodos: estudio de campo; utilizando técnicas cuantitativas y cualitativas. Resultados: Los docentes realizan actividades de prevención, incorporando a las madres; orientan la instalación y el reforzamiento de los hábitos, incluyendo el cepillado dental (CDI1 el 50%, CDI2 62%); en ambos CDI los fisioterapistas y los terapistas ocupacionales incluyen a la boca en sus actividades, el terapista de lenguaje también la incluye en el caso del CDI2. En todas las especialidades de ambos centros se puede incluir la salud bucal en el programa de atención; los especialistas afirmaron la necesidad de incluir la misma dentro de sus rutinas (el CDI1 95%, CDI2 80%). En el equipo no hay odontólogos. En los dos centros se encontró que aproximadamente un 80% de los profesionales se ubicaron en la teoría multicausal de la salud. Se concluye que al incorporar la salud bucal de manera formal en el equipo multidisciplinario de los CDI, se brindará una mejor atención a los niños que son el fin de estos centros.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zamilatskov, Ilia A., Evgeny A. Buravlev, Elena V. Savinkina, Natalya S. Roukk und Dmitry V. Albov. „Diiodidobis(thioacetamide-κS)cadmium(II)“. Acta Crystallographica Section E Structure Reports Online 63, Nr. 11 (05.10.2007): m2669. http://dx.doi.org/10.1107/s1600536807044820.

Der volle Inhalt der Quelle
Annotation:
Thioacetamide complexes are used for the synthesis of metal sulfide powders. In the title molecular complex, [CdI2(C2H5NS)2], the CdII atom is located on a twofold rotation axis and is tetrahedrally coordinated by two iodine atoms and two thioacetamide molecules. The Cd—I distance is 2.7615 (17) Å and the Cd—S distance is 2.5586 (17) Å.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Novosad, S. S., I. M. Matviishin, I. S. Novosad und O. S. Novosad. „Spectral and kinetic characteristics of CdI2 and CdI2:Pb scintillators“. Journal of Applied Spectroscopy 75, Nr. 6 (November 2008): 826–31. http://dx.doi.org/10.1007/s10812-009-9124-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dobija, Anna, Alicja Rafalska-Łasocha und Wiesław Łasocha. „Powder diffraction data of novel complexes CdX2-2(NH2-PhY), part I“. Powder Diffraction 25, Nr. 4 (Dezember 2010): 359–67. http://dx.doi.org/10.1154/1.3503662.

Der volle Inhalt der Quelle
Annotation:
Four new compounds with general formula CdI2-2(NH2-PhX) (Ph represents phenyl radical; X represents Cl or H atoms) were obtained and characterized. Two of them, bisaniline diiodidecadmium(II) — CdI2⋅2[NH2–C6H5] {1} and bis(2-chloroaniline) diiodidecadmium(II) — CdI2⋅2[NH2–C6H4Cl] {2}, crystallize in monoclinic system, whereas another two, bis(3-chloroaniline) diiodidecadmium(II) — CdI2⋅2[NH2–C6H4Cl]{3} and bis(4-chloroaniline) diiodidecadmium(II) hemi(4-chloroanilate) — CdI2⋅2[NH2–C6H4Cl]½[NH2–C6H4Cl] {4}, crystallize in triclinic system. The investigated compounds, from chemical point of view, are similar to the so-called cisplatin—a compound used as a chemotherapy drug to treat many types of cancers. Their syntheses and results of X-ray powder diffraction studies at room and elevated temperatures are described in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, Xin-Jing, Xiu-Ying Qiao und Yun-Yin Niu. „Synthesis, structures and properties of Cd(II) supramolecular compound based on nitrogen heterocyclic cation“. Main Group Chemistry 19, Nr. 3 (14.10.2020): 199–206. http://dx.doi.org/10.3233/mgc-190892.

Der volle Inhalt der Quelle
Annotation:
A novel supramolecular compound {(L1) [CdI4]} (L1 = 1-(3-(((1 s,3R,5S)-1,3,5,7,tetraazaadamantan-1-ium-1-yl)methyl)benzyl)-1,3,5,7,-tetraazaadamantan-1-ium) was synthesized from CdI2 and L1 by self-assembly reaction in solution. Its structure was analyzed by X-ray diffraction, and X-ray crystallography showed that the crystal was mononuclear. The compound was characterized by UV, TG, photocatalysis and adsorption.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pałosz, B., und E. Salje. „Lattice parameters and spontaneous strain in AX 2 polytypes: CdI2, PbI2 SnS2 and SnSe2“. Journal of Applied Crystallography 22, Nr. 6 (01.12.1989): 622–23. http://dx.doi.org/10.1107/s0021889889006916.

Der volle Inhalt der Quelle
Annotation:
Structural transformations between polytypes of a given material are expected to lead to lattice relaxations. Powder X-ray diffraction of basic AX 2 polytypes of CdI2, PbI2, SnS2 and SnSe2 showed these relaxations for the repetition unit along the stacking axis, conventionally the c axis. No variation of the lattice parameters were detected in the basal plane (001), except for CdI2 where small variations occur also for the a lattice parameter. The tensor of the spontaneous strain has its maximum component e 3 ≲ 12 × 10−4 for SnS2. The powder diffraction pattern and lattice parameters of the phases of CdI2 (2H, 12R, 4H), PbI2 (2H, 12R), SnS2 (2H, 18R, 4H) and SnSe2 (2H, 18R) are given. JCPDS Diffraction File Nos. are: 40-1468 for CdI2-12H; 40–1469 for CdI2-2H; 40-1466 for SnS2-18R, 40–1467 for SnS2-2H; 40–1465 for SnSe2-18R. The other polytypes studied in this paper have data in earlier sets of the PDF.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Routzomani, Anastasia, Zoi G. Lada, Varvara Angelidou, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantis F. Konidaris, Christos T. Chasapis und Spyros P. Perlepes. „Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants“. Molecules 27, Nr. 5 (28.02.2022): 1619. http://dx.doi.org/10.3390/molecules27051619.

Der volle Inhalt der Quelle
Annotation:
The present work describes the reactions of CdI2 with 2-pyridyl aldoxime (2paoH), 3-pyridyl aldoxime (3paoH), 4-pyridyl aldoxime (4paoH), 2-6-diacetylpyridine dioxime (dapdoH2) and 2,6-pyridyl diamidoxime (LH4). The primary goal was to contribute to understanding the molecular basis of the very good liquid extraction ability of 2-pyridyl ketoximes with long aliphatic chains towards toxic Cd(II) and the inability of their 4-pyridyl isomers for this extraction. Our systematic investigation provided access to coordination complexes [CdI2(2paoH)2] (1), {[CdI2(3paoH)2]}n (2), {[CdI2(4paoH)2]}n (3) and [CdI2(dapdoH2)] (4). The reaction of CdI2 and LH4 in EtOH resulted in a Cd(II)-involving reaction of the bis(amidoxime) and isolation of [CdI2(L’H2)] (5), where L’H2 is the new ligand 2,6-bis(ethoxy)pyridine diimine. A mechanism of this transformation has been proposed. The structures of 1, 2, 3, 4·2EtOH and 5 were determined by single-crystal X-ray crystallography. The complexes have been characterized by FT-IR and FT-Raman spectra in the solid state and the data are discussed in terms of structural features. The stability of the complexes in DMSO was investigated by 1H NMR spectroscopy. Our studies confirm that the excellent extraction ability of 2-pyridyl ketoximes is due to the chelating nature of the extractants leading to thermodynamically stable Cd(II) complexes. The monodentate coordination of 4-pyridyl ketoximes (as confirmed in our model complexes with 4paoH and 3paoH) seems to be responsible for their poor performance as extractants.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bolesta, I. M., S. R. Vel’gosh, I. D. Karbovnik, V. N. Lesivtsiv und I. N. Rovetskii. „Time dependence of the luminescence intensity in CdI2-Cd and CdI2-Ag crystals“. Physics of the Solid State 54, Nr. 10 (Oktober 2012): 2061–65. http://dx.doi.org/10.1134/s1063783412100083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Merkens, Carina, Khai-Nghi Truong und Ulli Englert. „3-(4-Pyridyl)-acetylacetone – a fully featured substituted pyridine and a flexible linker for complex materials“. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 70, Nr. 4 (31.07.2014): 705–13. http://dx.doi.org/10.1107/s2052520614006210.

Der volle Inhalt der Quelle
Annotation:
3-(4-Pyridyl)-acetylacetone (HacacPy) acts as a pyridine-type ligand towards CdX2(X= Cl, Br, I). Chain polymers with six-coordinated metal cations are obtained from CdCl2and with alternating five- and six-coordinated Cd centers from CdBr2. In either case, the formation of these compounds does not depend on the precise stoichiometry. In contrast, two different reaction products form with the heavier congener CdI2, namely a ligand-rich molecular complex CdI2(HacacPy)2and a ligand-deficient one-dimensional polymer [CdI2(HacacPy)]1∞. Interconversion between these two iodo derivatives is possibleviathermal degradation and mechanochemical synthesis. The acetylacetone moiety in HacacPy may be deprotonated and chelated to FeIII, and the resulting complex Fe(acacPy)3reacts analogously to a bridging polypyridine ligand towards the same Cd halides as the molecule HacacPy itself. With CdCl2and CdBr2, isomorphous chain polymers are obtained in which the Cd cations adopt distorted octahedral coordination and one of the peripheric pyridyl groups remains uncoordinated. With CdI2, the iron complex acts as a \mu _{{3}}-Fe(acacPy)3bridge between tetrahedral Cd centers and gives rise to a ladder structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Konings, R. J. M., A. S. Booij und E. H. P. Cordfunke. „High-temperature infrared study of the vaporization of CsI, CdI2 and Cs2 CdI4“. Vibrational Spectroscopy 2, Nr. 4 (Dezember 1991): 251–55. http://dx.doi.org/10.1016/0924-2031(91)85033-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Bolesta, I. M., I. N. Rovetskii, S. R. Velgosh, S. V. Rykhlyuk, I. D. Karbovnyk und N. V. Gloskovskaya. „Morphology and Optical Properties of Nanostructures Formed in Non-Stoichiometric CdI2 Crystals“. Ukrainian Journal of Physics 63, Nr. 9 (24.09.2018): 816. http://dx.doi.org/10.15407/ujpe63.9.816.

Der volle Inhalt der Quelle
Annotation:
The morphology of nanostructures formed in non-stoichiometric CdI2 crystals has been studied, by using the atomic force microscopy methods. Morphological changes are observed, when the concentration of cadmium atoms approaches a non-stoichiometric threshold value of 0.1 mol%. The features in the phase composition of nanostructures are analyzed with the help of Raman and infrared absorption spectroscopies. The influence of the researched nanostructures on the optical characteristics of non-stoichiometric CdI2 crystals is analyzed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bacewicz, R., B. Pałoz und S. Gierlotka. „Optical Band Gap of CdI2 Polytypes“. physica status solidi (b) 130, Nr. 2 (01.08.1985): K135—K137. http://dx.doi.org/10.1002/pssb.2221300259.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kondo, S., S. Matsuoka und T. Saito. „Variant UV Spectra in CdI2 Films“. physica status solidi (a) 165, Nr. 1 (Januar 1998): 271–81. http://dx.doi.org/10.1002/(sici)1521-396x(199801)165:1<271::aid-pssa271>3.0.co;2-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Beattie, I. R., P. J. Jones, B. R. Bowsher und T. R. Gilson. „Gas phase Raman spectrum of CdI2 and of a 1:8 mol ratio of CsI-CdI2“. Vibrational Spectroscopy 4, Nr. 3 (März 1993): 373–76. http://dx.doi.org/10.1016/0924-2031(93)80011-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Kasatani, Kazuo, Koji Mori, Masahiro Kawasaki und Hiroyasu Sato. „Photodissociation of Cadmium Diiodide“. Laser Chemistry 7, Nr. 2-4 (01.01.1987): 95–107. http://dx.doi.org/10.1155/lc.7.95.

Der volle Inhalt der Quelle
Annotation:
Photodissociation of cadmium diiodide was studied. The nascent vibrational distribution of CdI(X2Σ) on the photodissociation of CdI2 at 308 nm was determined by the laser-induced fluorescence (LIF) technique. The temporal variation in the density of CdI(X2Σ) radicals was monitored and it was shown that second-order recombination reactions were important under our experimental conditions. Both the ground and the highly excited states of cadmium atoms were generated on photodissociation of CdI2. The multiphoton absorption process for the production of highly excited Cd atoms is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Tyagi, Pankaj, A. G. Vedeshwar und N. C. Mehra. „Thickness dependent optical properties of CdI2 films“. Physica B: Condensed Matter 304, Nr. 1-4 (September 2001): 166–74. http://dx.doi.org/10.1016/s0921-4526(01)00392-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Vassilev, V., V. Parvanova und L. Aljihmani. „Phase equilibria in the CdI2–Ag2Se system“. Thermochimica Acta 444, Nr. 1 (Mai 2006): 53–56. http://dx.doi.org/10.1016/j.tca.2006.02.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Leinemann, Inga, Godswill Chimezie Nkwusi, Kristi Timmo, Olga Volobujeva, Mati Danilson, Jaan Raudoja, Tiit Kaljuvee, Rainer Traksmaa, Mare Altosaar und Dieter Meissner. „Reaction pathway to Cu2ZnSnSe4 formation in CdI2“. Journal of Thermal Analysis and Calorimetry 134, Nr. 1 (08.03.2018): 409–21. http://dx.doi.org/10.1007/s10973-018-7102-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Leinemann, Inga, Maris Pilvet, Tiit Kaljuvee, Rainer Traksmaa und Mare Altosaar. „Reaction pathway to CZTSe formation in CdI2“. Journal of Thermal Analysis and Calorimetry 134, Nr. 1 (04.06.2018): 433–41. http://dx.doi.org/10.1007/s10973-018-7415-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Vassilev, V., V. Parvanova und L. Aljihmani. „Phase equilibria in the CdI2-Bi2O3 system“. Journal of Thermal Analysis and Calorimetry 78, Nr. 3 (Januar 2004): 981–89. http://dx.doi.org/10.1007/s10973-005-0464-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ronda, C. R., E. Zwaal, H. F. Folkersma, A. Lenselink und C. Haas. „Absorption and luminescence of photochromic CdI2 : CuI“. Journal of Solid State Chemistry 72, Nr. 1 (Januar 1988): 80–91. http://dx.doi.org/10.1016/0022-4596(88)90011-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Idrish Miah, M. „Stimulated photoluminescence and optical limiting in CdI2“. Optical Materials 20, Nr. 4 (November 2002): 279–82. http://dx.doi.org/10.1016/s0925-3467(02)00071-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Gierlotka, S., und B. Pałosz. „Structural thermal transformation of polytypes of CdI2“. Acta Crystallographica Section B Structural Science 42, Nr. 4 (01.08.1986): 350–54. http://dx.doi.org/10.1107/s0108768186098117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Terakami, Mitsushi, Hideyuki Nakagawa, Kazutoshi Fukui, Hidekazu Okamura, Toko Hirono, Yuka Ikemoto, Taro Moriwaki und Hiroaki Kimura. „Polarized Infrared Absorption in CdI2:CN-Crystals“. Journal of the Physical Society of Japan 72, Nr. 8 (15.08.2003): 2128–29. http://dx.doi.org/10.1143/jpsj.72.2128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bolesta, I. M., I. N. Rovetskii, I. D. Karbovnik, S. V. Rykhlyuk, M. V. Partyka und N. V. Gloskovskaya. „Formation and Optical Properties of CdI2 Nanostructures“. Journal of Applied Spectroscopy 82, Nr. 1 (März 2015): 84–90. http://dx.doi.org/10.1007/s10812-015-0068-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kondo, S., S. Matsuoka und T. Saito. „New Exciton Absorption in Superthin CdI2 Films“. physica status solidi (b) 186, Nr. 2 (01.12.1994): K77—K80. http://dx.doi.org/10.1002/pssb.2221860237.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ryu, Gihun. „Superconductivity in Cu-Intercalated CdI2-Type PdTe2“. Journal of Superconductivity and Novel Magnetism 28, Nr. 11 (16.08.2015): 3275–80. http://dx.doi.org/10.1007/s10948-015-3195-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Vassilev, V., L. Aljihmani und T. Hristova-Vasileva. „Phase Equilibria in the TeO2-CdI2 System“. Journal of Phase Equilibria and Diffusion 35, Nr. 5 (30.07.2014): 575–80. http://dx.doi.org/10.1007/s11669-014-0326-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bolesta, I. M. „Luminescence of PbI2 nanoinclusions in CdI2 crystal lattice“. Functional materials 23, Nr. 3 (27.09.2016): 382–86. http://dx.doi.org/10.15407/fm23.03.382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Pickardt, Joachim, und Jing Shen. „Metallkomplexe mit 1,4,7-Trithiacyclononan: Kristallstrukturen von [CdI2 · C6H12S3]2 und [Hg(C6H12S3)2](HgI3)2 / Metal Complexes with 1,4,7-Trithiacyclononane: Crystal Structures of [CdI2 · C6H12S3]2 and [Hg(C6H12S3)2](HgI3)2“. Zeitschrift für Naturforschung B 48, Nr. 7 (01.07.1993): 969–72. http://dx.doi.org/10.1515/znb-1993-0720.

Der volle Inhalt der Quelle
Annotation:
Crystals of the complexes [CdI2 · C6H12S3]2 (1) and [Hg(C6H12S3)2](HgI3)2 (2) were obtained by diffusion of 1,4,7-trithiacyclononane (9 S 3) in ethanol into aqueous solutions of cadmium iodide and mercuric iodide/potassium iodide, resp. Both compounds crystallize monoclinically,1: space group P21/n, Z = 4, a = 1207.1(5), b = 909.9(2), c = 1240.3(7) pm, β = 92.59(9)°; 2: P21/c, Z = 2, a = 804.7(6), b = 934.0(6), c = 2167.9(4) pm, β = 94.34(7)°. 1 is dimeric, consisting of two [CdI2 · 9S3] units, connected via iodine bridges. Crystals of 2 contain sandwich-like cations [Hg(9S3)2]2+ and [HgI3]- anions, forming chains via Hg ··· S and Hg ··· I bridges.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Лахтуров, А. С., О. Є. Смірнов, М. С. Коваленко, О. А. Капуш, В. М. Джаган und В. В. Швартау. „Порівняння ефектів колоїдного розчину квантових точок на основі телуриду кадмію та іонів кадмію на проліферативну активність кореневих меристем Allium cepa L.“ Reports of the National Academy of Sciences of Ukraine, Nr. 1 (30.03.2022): 99–106. http://dx.doi.org/10.15407/dopovidi2022.01.099.

Der volle Inhalt der Quelle
Annotation:
За допомогою стандартної системи Allium-тест досліджено вплив розчину квантових точок на основі те луриду кадмію (CdTe КТ) як потужного цитостатичного ефектора. Цитостатичні ефекти експериментального розчину CdTe КТ на організменному рівні виявлялися у зниженні лінійного приросту та біомаси коренів Allium cepa L., тоді як на рівні проліферативної активності меристематичних клітин коренів зафіксовано зупинку мітотичних поділів. Вплив досліджуваного розчину CdTe КТ у концентрації 10 мкМ порівнювали з ефектами, що спричинені впливом 10 мкМ розчину CdI2. Встановлено різновекторність цитогенетичних порушень. Показано, що розчин CdTe КТ у концентрації 10 мкМ, використаний як субстрат, спричиняв значне інгібування росту коренів та проліферативної активності меристематичних клітин, пригнічуючи мітоз без виявлених кластогенних та анеугенних ефектів. У разі використання 10 мкМ розчину CdI2 як субстрату відмічено підвищення частоти кластогенних патологій мітозу на 24 %.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Harutyunyan, Valeri S. „Correlation of the Madelung constant and I—M—I bonding angle with cohesive energy contributions in layered metal diiodides (MI2) with CdI2 (2H polytype) structure“. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, Nr. 6 (12.11.2020): 1045–54. http://dx.doi.org/10.1107/s2052520620013463.

Der volle Inhalt der Quelle
Annotation:
This study uses theoretically methods to investigate, for metal diiodides MI2 (M = Mg, Ca, Mn, Fe, Cd, Pb) with CdI2 (2H polytype) structure, the mutual correlation between the structure-characterizing parameters (the flatness parameter of monolayers f, the Madelung constant A, and bonding angle I—M—I) and correlation of these parameters with contributions of the Coulomb and covalent energies to cohesive energy. The energy contributions to cohesive energy are determined with the use of empirical atomic potentials. It is demonstrated that the parameters f and A, and the bonding angle I—M—I are strictly correlated and increase in the same order: FeI2 < PbI2 < MnI2 < CdI2 < MgI2 < CaI2. It is found that with an increase of parameter A and bonding angle I—M—I the relative contribution of the Coulomb energy to cohesive energy increases, whereas the relative contribution of the covalent energy decreases. For a hypothetical MX 2 layered compound with the CdI2 (2H polytype) structure, composed of regular MX 6 octahedra (angle X—M—X = 90°), the flatness parameter and the Madelung constant are found to be f reg = 2.449 and A reg = 2.183, respectively. Correlation of the covalent energy with the type of distortion of MI6 octahedra (elongation or compression) with respect to regular configuration (angle I—M—I = 90°) is also analyzed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Kudo, Kazutaka, Hoang Yen Nguyen, Chang-geun Oh, Kensuke Takaki und Minoru Nohara. „Superconductivity of the Stuffed CdI2-type Pt1+xBi2“. Journal of the Physical Society of Japan 90, Nr. 6 (15.06.2021): 063706. http://dx.doi.org/10.7566/jpsj.90.063706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Sarna, Indu, G. K. Chadha und G. C. Trigunayat. „Atomic positions of two new polytypes of CdI2“. Zeitschrift für Kristallographie 178, Nr. 1-4 (Januar 1987): 307–10. http://dx.doi.org/10.1524/zkri.1987.178.1-4.307.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Popovitz-Biro, R., N. Sallacan und R. Tenne. „CdI2 nanoparticles with closed-cage (fullerene-like) structures“. Journal of Materials Chemistry 13, Nr. 7 (2003): 1631. http://dx.doi.org/10.1039/b302505e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Gloskovskii, A. V., M. R. Panasyuk, L. I. Yaritskaya und N. K. Gloskovskaya. „Impurity bands in the CdI2-PbI2 crystal system“. Physics of the Solid State 45, Nr. 3 (März 2003): 414–18. http://dx.doi.org/10.1134/1.1562222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Padmasree, K. P., und D. K. Kanchan. „Modulus studies of CdI2–Ag2O–V2O5–B2O3 system“. Materials Science and Engineering: B 122, Nr. 1 (August 2005): 24–28. http://dx.doi.org/10.1016/j.mseb.2005.04.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Gopalakrishnan, J., und K. S. Nanjundaswamy. „New transition metal silicoselenides possessing CdI2-type structures“. Materials Research Bulletin 23, Nr. 1 (Januar 1988): 107–12. http://dx.doi.org/10.1016/0025-5408(88)90231-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Rawat, R. S., P. Arun, A. G. Vedeshwar, P. Lee und S. Lee. „Effect of energetic ion irradiation on CdI2 films“. Journal of Applied Physics 95, Nr. 12 (15.06.2004): 7725–30. http://dx.doi.org/10.1063/1.1738538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Karbovnyk, I., V. Pankratov, S. Velgosh, I. Bolesta, R. Lys, I. Kityk, H. Klym, I. Makarenko, V. Pankratova und A. I. Popov. „Low-temperature luminescence of CdI2 under synchrotron radiation“. Low Temperature Physics 46, Nr. 12 (Dezember 2020): 1213–16. http://dx.doi.org/10.1063/10.0002476.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kawabata, Seiji, und Hideyuki Nakagawa. „Life-time resolved emission spectra in CdI2 crystals“. Journal of Luminescence 126, Nr. 1 (September 2007): 48–52. http://dx.doi.org/10.1016/j.jlumin.2006.05.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Unnikrishnan, N. V., R. D. Singh und M. Matera. „Nonlinear photoelectronic properties of CdI2 under laser excitation“. Solid State Communications 71, Nr. 11 (September 1989): 1001–3. http://dx.doi.org/10.1016/0038-1098(89)90579-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Ajithkumar, G., M. A. Ittyachen, S. K. Chaudhary und N. V. Unnikrishnan. „Growth and Optical Characterization of CdI2 Single Crystals“. Crystal Research and Technology 32, Nr. 5 (1997): 737–41. http://dx.doi.org/10.1002/crat.2170320519.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Sreelatha, K., C. Venugopal, S. K. Chaudhary und N. V. Unnikrishnan. „Nonlinear Luminescence in CdI2 under Pulsed Laser Excitation“. Crystal Research and Technology 34, Nr. 7 (August 1999): 897–900. http://dx.doi.org/10.1002/(sici)1521-4079(199908)34:7<897::aid-crat897>3.0.co;2-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Nigli, Selina, C. Jagadish und G. K. Chadha. „Surface morphology of melt-grown CdI2 single crystals“. Crystal Research and Technology 23, Nr. 4 (April 1988): K74—K76. http://dx.doi.org/10.1002/crat.2170230427.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Galchynsky, O. V. „Deep acceptor trapping centers in CdI2-PbI2 crystal system“. Functional materials 21, Nr. 3 (30.09.2014): 243–46. http://dx.doi.org/10.15407/fm21.03.243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Bolesta, I. M., I. N. Rovetskyi, M. V. Partyka, I. D. Karbovnyk und B. Ya Kulyk. „Formation of Nanostructures on the VdW-Surface of CdI2 Crystals“. Ukrainian Journal of Physics 58, Nr. 05 (Mai 2013): 490–96. http://dx.doi.org/10.15407/ujpe58.05.0490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Le Page, Y., John R. Rodgers und Peter S. White. „Modeling of hP3 intermetallics in space group P-3m1: Calculated powder patterns from CRYSTMET® X-ray cell data and ab initio coordinates“. Powder Diffraction 17, Nr. 3 (September 2002): 165–72. http://dx.doi.org/10.1154/1.1483322.

Der volle Inhalt der Quelle
Annotation:
There are 39 CRYSTMET® entries in the hexagonal space group P-3m1 (164) reporting both distinct pure phase compounds and atomic coordinates. Having the same Wyckoff positions in the same space group as the C6 structure type, all are isopointal with it. The range of observed c/a values extends from about 0.65 to 1.83. Three types are distinguished: Layered materials with CdI2 type, the CeCd2 type which is a slight distortion of the hexagonal AlB2 type, and the intermediate EuGe2 type made of the materials AuTe2, BaSi2, EuGe2, and SrGe2. Ab initio modeling of the 26 entries with CdI2 and EuGe2 type and atomic coordinates reproduces convincingly both their c/a axial ratios and z coordinates. For CoO2 and SiTe2, both c/a and z deviate to a degree from the reported values, indicating that those materials should be reexamined for superstructures, stoichiometry, etc. Ab initio modeling of the 11 cell-and-type entries with CdI2 type and no coordinates in CRYSTMET reproduced convincingly their reported axial ratios. The X-ray cell data and the ab initioz coordinates were then used in the production of reliable calculated powder patterns for CoTe2, CrSe2, HfS2, HfSe2, HfTe2, NbTe2, SnSe2, VS2, VTe2, ZrS2, and ZrTe2. All 11 patterns have been inserted in the intense diffraction line search system of CRYSTMET operated under the Materials Toolkit. Comparison of calculated patterns for SnSe2 and ZrTe2 with experimental entries in the PDF exposes the complementarity of calculated and experimental powder patterns and suggests that JCPDS pattern #15-223 should be reinterpreted in terms of the CdI2 structure type. The CeCd2⇔AlB2 type transformation is modeled and discussed on YCd2 using both ab initio methods and a hard-sphere model. For z<0.45, the ab initio solution is identical with that from the hard-sphere model while a quantum regime is predicted in the small region 0.45<z<0.467 beyond which YCd2 abruptly transforms to the AlB2 type. In spite of the new understanding gained, this modeling fell slightly short of allowing calculation of z values and powder patterns for the materials CaHg2, DyHg2, ErCd2, GdHg2, HoCd2, HoHg2, LuCd2, NdCd2, SmHg2, TbCd2, and TbHg2 with no coordinates in CRYSTMET.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Stamou, Christina, Pierre Dechambenoit, Zoi G. Lada, Patroula Gkolfi, Vassiliki Riga, Catherine P. Raptopoulou, Vassilis Psycharis, Konstantis F. Konidaris, Christos T. Chasapis und Spyros P. Perlepes. „Reactions of Cadmium(II) Halides and Di-2-Pyridyl Ketone Oxime: One-Dimensional Coordination Polymers“. Molecules 29, Nr. 2 (19.01.2024): 509. http://dx.doi.org/10.3390/molecules29020509.

Der volle Inhalt der Quelle
Annotation:
The coordination chemistry of 2-pyridyl ketoximes continues to attract the interest of many inorganic chemistry groups around the world for a variety of reasons. Cadmium(II) complexes of such ligands have provided models of solvent extraction of this toxic metal ion from aqueous environments using 2-pyridyl ketoxime extractants. Di-2-pyridyl ketone oxime (dpkoxH) is a unique member of this family of ligands because its substituent on the oxime carbon bears another potential donor site, i.e., a second 2-pyridyl group. The goal of this study was to investigate the reactions of cadmium(II) halides and dpkoxH in order to assess the structural role (if any) of the halogeno ligand and compare the products with their zinc(II) analogs. The synthetic studies provided access to complexes {[CdCl2(dpkoxH)∙2H2O]}n (1∙2H2O), {[CdBr2(dpkoxH)]}n (2) and {[CdI2(dpkoxH)]}n (3) in 50–60% yields. The structures of the complexes were determined by single-crystal X-ray crystallography. The compounds consist of structurally similar 1D zigzag chains, but only 2 and 3 are strictly isomorphous. Neighboring CdII atoms are alternately doubly bridged by halogeno and dpkoxH ligands, the latter adopting the η1:η1:η1:μ (or 2.0111 using Harris notation) coordination mode. A terminal halogeno group completes distorted octahedral coordination at each metal ion, and the coordination sphere of the CdII atoms is {CdII(η1 − X)(μ − X)2(Npyridyl)2(Noxime)} (X = Cl, Br, I). The trans-donor–atom pairs in 1∙2H2O are Clterminal/Noxime and two Clbridging/Npyridyl; on the contrary, these donor–atom pairs are Xterminal/Npyridyl, Xbridging/Noxime, and Xbridging/Npyridyl (X = Br, I). There are intrachain H-bonding interactions in the structures. The packing of the chains in 1∙2H2O is achieved via π-π stacking interactions, while the 3D architecture of the isomorphous 2 and 3 is built via C-H∙∙∙Cg (Cg is the centroid of one pyridyl ring) and π-π overlaps. The molecular structures of 1∙2H2O and 2 are different compared with their [ZnX2(dpkoxH)] (X = Cl, Br) analogs. The polymeric compounds were characterized by IR and Raman spectroscopies in the solid state, and the data were interpreted in terms of the known molecular structures. The solid-state structures of the complexes are not retained in DMSO, as proven via NMR (1H, 13C, and 113Cd NMR) spectroscopy and molar conductivity data. The complexes completely release the coordinated dpkoxH molecule, and the dominant species in solution seem to be [Cd(DMSO)6]2+ in the case of the chloro and bromo complexes and [CdI2(DMSO)4].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie