Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cdc42 isoformes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cdc42 isoformes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cdc42 isoformes"
Ravindran, Priyadarshini, und Andreas W. Püschel. „An isoform-specific function of Cdc42 in regulating mammalian Exo70 during axon formation“. Life Science Alliance 6, Nr. 3 (21.12.2022): e202201722. http://dx.doi.org/10.26508/lsa.202201722.
Der volle Inhalt der QuelleJansson, Thomas, Marisol Castillo-Castrejon, Madhulika B. Gupta, Theresa L. Powell und Fredrick J. Rosario. „Down-regulation of placental Cdc42 and Rac1 links mTORC2 inhibition to decreased trophoblast amino acid transport in human intrauterine growth restriction“. Clinical Science 134, Nr. 1 (Januar 2020): 53–70. http://dx.doi.org/10.1042/cs20190794.
Der volle Inhalt der QuelleKolyada, Alexey Y., Kathleen N. Riley und Ira M. Herman. „Rho GTPase signaling modulates cell shape and contractile phenotype in an isoactin-specific manner“. American Journal of Physiology-Cell Physiology 285, Nr. 5 (November 2003): C1116—C1121. http://dx.doi.org/10.1152/ajpcell.00177.2003.
Der volle Inhalt der QuelleFediuk, Jena, Anurag S. Sikarwar, Nora Nolette und Shyamala Dakshinamurti. „Thromboxane-induced actin polymerization in hypoxic neonatal pulmonary arterial myocytes involves Cdc42 signaling“. American Journal of Physiology-Lung Cellular and Molecular Physiology 307, Nr. 11 (01.12.2014): L877—L887. http://dx.doi.org/10.1152/ajplung.00036.2014.
Der volle Inhalt der QuelleWirth, Alexander, Chen Chen-Wacker, Yao-Wen Wu, Nataliya Gorinski, Mikhail A. Filippov, Ghanshyam Pandey und Evgeni Ponimaskin. „Dual lipidation of the brain-specific Cdc42 isoform regulates its functional properties“. Biochemical Journal 456, Nr. 3 (22.11.2013): 311–22. http://dx.doi.org/10.1042/bj20130788.
Der volle Inhalt der QuelleZhou, Rihong, Zhen Guo, Charles Watson, Emily Chen, Rong Kong, Wenxian Wang und Xuebiao Yao. „Polarized Distribution of IQGAP Proteins in Gastric Parietal Cells and Their Roles in Regulated Epithelial Cell Secretion“. Molecular Biology of the Cell 14, Nr. 3 (März 2003): 1097–108. http://dx.doi.org/10.1091/mbc.e02-07-0425.
Der volle Inhalt der QuelleFotiadou, Poppy P., Chiaki Takahashi, Hasan N. Rajabi und Mark E. Ewen. „Wild-Type NRas and KRas Perform Distinct Functions during Transformation“. Molecular and Cellular Biology 27, Nr. 19 (16.07.2007): 6742–55. http://dx.doi.org/10.1128/mcb.00234-07.
Der volle Inhalt der QuelleCARGINALE, Vincenzo, Rosaria SCUDIERO, Clemente CAPASSO, Antonio CAPASSO, Peter KILLE, Guido di PRISCO und Elio PARISI. „Cadmium-induced differential accumulation of metallothionein isoforms in the Antarctic icefish, which exhibits no basal metallothionein protein but high endogenous mRNA levels“. Biochemical Journal 332, Nr. 2 (01.06.1998): 475–81. http://dx.doi.org/10.1042/bj3320475.
Der volle Inhalt der QuelleChen, Hung-Hsi, Yu-Chiuan Wang und Ming-Ji Fann. „Identification and Characterization of the CDK12/Cyclin L1 Complex Involved in Alternative Splicing Regulation“. Molecular and Cellular Biology 26, Nr. 7 (01.04.2006): 2736–45. http://dx.doi.org/10.1128/mcb.26.7.2736-2745.2006.
Der volle Inhalt der QuelleScalia, Pierluigi, Carmen Merali, Carlos Barrero, Antonio Suma, Vincenzo Carnevale, Salim Merali und Stephen J. Williams. „Novel Isoform DTX3c Associates with UBE2N-UBA1 and Cdc48/p97 as Part of the EphB4 Degradation Complex Regulated by the Autocrine IGF-II/IRA Signal in Malignant Mesothelioma“. International Journal of Molecular Sciences 24, Nr. 8 (17.04.2023): 7380. http://dx.doi.org/10.3390/ijms24087380.
Der volle Inhalt der QuelleDissertationen zum Thema "Cdc42 isoformes"
Ravichandran, Yamini. „Cdc42 isoforms : localization, functions and regulation“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS405.
Der volle Inhalt der QuelleMutations in proteins cause diverse developmental disorders, particularly for individuals with rare diseases or for whom a unifying clinical diagnosis is unknown. Cdc42 is one such protein; vital for establishing cell polarity, a crucial step in many biological processes such as cell migration, division and immune responses. Not surprisingly, mutations in Cdc42 cause a range of diseases such as growth dysregulation, facial dysmorphism and neurodevelopmental, immunological, and hematological abnormalities. In vertebrates there are two isoforms of Cdc42. The first being the ubiquitous isoform, has almost exclusively been studied and the role of the second isoform, being the brain isoform, is largely unknown. We have shown that the two isoforms are localized differently in cells. The ubiquitous isoform is mostly found in the cell cytoplasm and at the plasma membrane, while the Brain isoform localizes at the Golgi apparatus and on intracellular vesicles. We have also shown that the two isoforms carry out different functions during cell migration, suggesting that the differences between these two isoforms which only differs by the last 10 amino acids are responsible for their distinct localisation and function. Interestingly, a mutation in the C-ter sequence of Cdc42 ubiquitous isoform alters Cdc42 localisation and causes a generalized pustular psoriasis disease. Two main objectives have been studied in this project 1) the impact of the last amino acids of the protein in Cdc42 localization; and 2) new regulatory mechanisms of Cdc42 responsible for its intracellular localization. These findings will bring a better understanding of pathologies related to Cdc42 mutations
Fediuk, Jena. „Thromboxane receptor signaling and Rho GTPase activation on actin polymerization and contraction in hypoxic neonatal pulmonary arterial myocytes“. Am J Physiol Lung Cell Mol Physiol, 2012. http://hdl.handle.net/1993/23862.
Der volle Inhalt der QuelleKiso, Marina. „Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network“. Kyoto University, 2018. http://hdl.handle.net/2433/235980.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cdc42 isoformes"
Kiso, Marina, Sunao Tanaka, Masakazu Toi und Fumiaki Sato. „Abstract 2862: Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2862.
Der volle Inhalt der QuelleKiso, Marina, Sunao Tanaka, Masakazu Toi und Fumiaki Sato. „Abstract 2862: Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2862.
Der volle Inhalt der Quelle