Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CCD-On-CMOS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CCD-On-CMOS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CCD-On-CMOS"
Zhang, Tao, Xinyang Li, Jianfeng Li und Zhi Xu. „CMOS Fixed Pattern Noise Elimination Based on Sparse Unidirectional Hybrid Total Variation“. Sensors 20, Nr. 19 (28.09.2020): 5567. http://dx.doi.org/10.3390/s20195567.
Der volle Inhalt der QuelleKarpov, S., A. Christov, A. Bajat, R. Cunniffe und M. Prouza. „CHARACTERIZATION OF MODERN CCD AND CMOS SENSORS FOR SKY SURVEYS“. Revista Mexicana de Astronomía y Astrofísica Serie de Conferencias 53 (01.09.2021): 190–97. http://dx.doi.org/10.22201/ia.14052059p.2021.53.38.
Der volle Inhalt der QuelleNgo, Nguyen Hoai, Kazuhiro Shimonomura, Taeko Ando, Takayoshi Shimura, Heiji Watanabe, Kohsei Takehara, Anh Quang Nguyen, Edoardo Charbon und Takeharu Goji Etoh. „A Pixel Design of a Branching Ultra-Highspeed Image Sensor“. Sensors 21, Nr. 7 (03.04.2021): 2506. http://dx.doi.org/10.3390/s21072506.
Der volle Inhalt der QuelleShi, Chenhao. „Applications of CMOS image sensors: Applications and innovations“. Applied and Computational Engineering 11, Nr. 1 (25.09.2023): 95–103. http://dx.doi.org/10.54254/2755-2721/11/20230216.
Der volle Inhalt der QuelleQiu, Peng, Yong Zhao, Jie Zheng, Jian-Feng Wang und Xiao-Jun Jiang. „Research on performances of back-illuminated scientific CMOS for astronomical observations“. Research in Astronomy and Astrophysics 21, Nr. 10 (01.11.2021): 268. http://dx.doi.org/10.1088/1674-4527/21/10/268.
Der volle Inhalt der QuelleStepanov, Valery R., und Dmitry M. Nikulin. „COMPARISON OF THE CALCULATED WORKING RANGE OF THE THIRD GENERATION EOS AND MATRIX FOR NEAR IR RANGE“. Interexpo GEO-Siberia 6, Nr. 2 (08.07.2020): 88–92. http://dx.doi.org/10.33764/2618-981x-2020-6-2-88-92.
Der volle Inhalt der QuelleJeon, Gwang Gil. „Performance Analysis on Yamanaka Patterned Color Filter Array“. Advanced Materials Research 717 (Juli 2013): 497–500. http://dx.doi.org/10.4028/www.scientific.net/amr.717.497.
Der volle Inhalt der QuelleSeung-Hoon Lee und Tae-Hwan Oh. „Single-chip CMOS CCD camera interface based on digitally controlled capacitor-segment combination“. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 47, Nr. 11 (2000): 1338–43. http://dx.doi.org/10.1109/82.885145.
Der volle Inhalt der QuelleOprean, Luiza Sonia, und Corina-Mihaela Gruescu. „Design of the Cemented Doublet – Software Application“. Robotica & Management 26, Nr. 1 (2021): 13–16. http://dx.doi.org/10.24193/rm.2021.1.3.
Der volle Inhalt der QuelleAdam, Martin, Eric Hovestreydt, Holger Ott, Bruce Noll und Michael Ruf. „CMOS – Shutterless Operation Boosts Speed and Quality“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C682. http://dx.doi.org/10.1107/s2053273314093176.
Der volle Inhalt der QuelleDissertationen zum Thema "CCD-On-CMOS"
Salih, Alj Antoine. „Effets des radiations et propriétés électriques d’un capteur CCD-sur-CMOS à tranchées profondes actives pour l’imagerie haute-performance“. Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0048.
Der volle Inhalt der QuelleCMOS imaging devices (Complementary Metal Oxide Semiconductor) have numerous applications in high-resolution terrestrial imaging and scientific imaging (e.g., Sentinel-2, MSL2020, and MMX). The remarkable advancements made in CMOS imaging technology over the past five years, both in terms of photodetection performance and noise reduction, have paved the way for very high-performance applications, where CCDs (Charge Coupled Devices) were previously considered the best candidates.For such applications, the development of this technology must focus on improving the signal-to-noise ratio (SNR) to achieve optimal spatial resolution in satellite images for terrestrial observation (sub-meter resolution). The first lever for improvement is increasing detector sensitivity, to optimize inter-pixel charge transfer and reduce parasitic dark currents. The second lever is maximizing charge collection capacity and controlling saturation effects. All these parameters must be evaluated considering the space environment, particularly the effects of radiation (ionization and displacement), which can significantly degrade the electrical properties of image sensors.The CMOS technology currently favored for future high-resolution terrestrial imaging projects integrates a specific feature of active deep trench isolation. When combined with the appropriate trench potential, this technology allows the control of charge movements within the silicon. As a result, CCD-on-CMOS charge transfer registers using this technology have been successfully implemented. Theoretical analysis and characterization of certain two-phase CCD register architectures have yielded very promising results and opened up new perspectives.The objectives of this thesis are multiple: to improve the understanding of this new type of charge transfer pixel, particularly the active deep trench isolation feature, through an in-depth analysis of the physical phenomena involved and the effects of radiation (both in terms of ionizing dose and displacement). Additionally, it aims to evaluate and propose design optimizations for various operating modes (Time Delay Integration, Electron Multiplication), to achieve the targeted SNR performance while meeting radiation tolerance requirements for high-resolution imaging
Lillro, Ejla. „Image Sensor System for Detection of Bacteria and Antibiotic Resistance“. Thesis, KTH, Skolan för teknik och hälsa (STH), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179399.
Der volle Inhalt der QuelleŠpaňhel, Petr. „Automobilová on-board kamera se záznamem telemetrie“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236541.
Der volle Inhalt der QuelleBücher zum Thema "CCD-On-CMOS"
Kang, Moon Gi. Selected papers on CCD and CMOS imagers. Bellingham, Wash., USA: SPIE Press, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "CCD-On-CMOS"
Orekhov, Feodor, und Oleg Gradov. „Target Chip Based Single-Cell Biotyping and Telemetric Bioluminescence Lensless Microscopy of the Buried Sandwich-Slides as a Novel Way for Measurement, Mapping and Molecular Imaging of Biodegradation/Biofouling of Plastic Surfaces in Real Soils“. In Advances in Transdisciplinary Engineering. IOS Press, 2023. http://dx.doi.org/10.3233/atde230317.
Der volle Inhalt der QuelleChennamma, H. R., und Lalitha Rangarajan. „Source Camera Identification Based on Sensor Readout Noise“. In Crime Prevention Technologies and Applications for Advancing Criminal Investigation, 21–34. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1758-2.ch003.
Der volle Inhalt der Quelle„Mach–Zehnder Digital Holographic Interferometry and Related Techniques: Recording Mach–Zehnder Digital Interferograms/Holograms on CCD/CMOS Sensors and Their Applications“. In Holographic Interferometry, 119–20. CRC Press, 2012. http://dx.doi.org/10.1201/b11582-14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CCD-On-CMOS"
Zhou, Hengyan, Chao Li, Hang Zhao, Tiancheng Yu und Zhenghao Qin. „Comparison of 632nm laser dazzling effect on CCD and CMOS image sensors“. In Conference on Spectral Technology and Applications (CSTA 2024), herausgegeben von Zhe Wang und Hongbin Ding, 271. SPIE, 2024. https://doi.org/10.1117/12.3037275.
Der volle Inhalt der QuelleGambheer, Ramachandra, und M. S. Bhat. „Vision in Versatility: Dual CCD-CMOS Imaging With Compressed Sensing for Sustainable IoT Surveillance Drones“. In 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/conecct62155.2024.10677022.
Der volle Inhalt der QuelleSawada, Kazuaki. „Ion image sensors based on CCD/CMOS technology“. In 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411558.
Der volle Inhalt der QuelleWang, Zhi-Wei, und Xiang Shi. „Comparisons between CCD and CMOS based on Freescale“. In 2015 International Conference on Industrial Technology and Management Science. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/itms-15.2015.381.
Der volle Inhalt der QuelleHauri, Christoph P., Mostafa Shalaby und Carlo Vicario. „Visualization of Terahertz radiation on silicon-based CMOS and CCD sensors“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/up.2016.utu2b.1.
Der volle Inhalt der QuelleHong Lingwei, Zhang Haipeng und Dong Chenhao. „Electric driving requirements of large CMOS CCD array based on a 3-phase CCD cell by SOI LDMOS“. In 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5987891.
Der volle Inhalt der QuelleCheremkhin, Pavel A., Nikolay N. Evtikhiev, Vladislav G. Rodin, Rostislav S. Starikov und Vitaly V. Krasnov. „Effect of CCD and CMOS fixed pattern noise on digital hologram reconstruction“. In Practical Holography XXXII: Displays, Materials, and Applications, herausgegeben von Hans I. Bjelkhagen und V. Michael Bove. SPIE, 2018. http://dx.doi.org/10.1117/12.2288926.
Der volle Inhalt der QuelleQiu, Su, und Weiqi Jin. „Estimation method of CCD and CMOS response functions based on a single image“. In International Conference on Optical Instrumentation and Technology, herausgegeben von Toru Yoshizawa, Ping Wei und Jesse Zheng. SPIE, 2009. http://dx.doi.org/10.1117/12.838024.
Der volle Inhalt der QuelleShalaby, M., C. Vicario und C. P. Hauri. „Anomalous visualization of sub-2 THz radiation on silicon-based CMOS and CCD sensors“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_si.2016.sth3i.4.
Der volle Inhalt der QuelleKonnik, Mikhail V., und James Stuart Welsh. „On numerical simulation of high-speed CCD/CMOS-based wavefront sensors in adaptive optics“. In SPIE Optical Engineering + Applications, herausgegeben von Robert K. Tyson und Michael Hart. SPIE, 2011. http://dx.doi.org/10.1117/12.892667.
Der volle Inhalt der Quelle