Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cavitation in hydrodynamic machine“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cavitation in hydrodynamic machine" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cavitation in hydrodynamic machine"
Zakrzewska, D. E., und A. K. Krella. „Cavitation Erosion Resistance Influence of Material Properties“. Advances in Materials Science 19, Nr. 4 (01.12.2019): 18–34. http://dx.doi.org/10.2478/adms-2019-0019.
Der volle Inhalt der QuelleGhiban, Brandusa, Carmen Anca Safta und Vlad Motoiu. „Stainless Steels as Erosion Resistant Materials for Hydraulic Machines“. Key Engineering Materials 750 (August 2017): 75–79. http://dx.doi.org/10.4028/www.scientific.net/kem.750.75.
Der volle Inhalt der QuelleMicu, Lavinia Madalina, Iosif Lazar, Adrian Circiumaru, Ilare Bordeasu, Liviu Daniel Pirvulescu und mihai Hluscu. „New Results Regarding Cavitation Behavior of Polymers Modified with Anorganic Substances Coated on Bronze Surfaces“. Materiale Plastice 55, Nr. 3 (30.09.2018): 460–63. http://dx.doi.org/10.37358/mp.18.3.5051.
Der volle Inhalt der QuelleEfremova, K. D., und V. N. Pilgunov. „Glycerin-containing Working Fluids for Hydraulic Drives for Special Purposes“. Radio Engineering, Nr. 6 (26.12.2020): 1–16. http://dx.doi.org/10.36027/rdeng.0620.0000182.
Der volle Inhalt der QuelleUsman, Ali, und Cheol Woo Park. „Numerical optimization of surface texture for improved tribological performance of journal bearing at varying operating conditions“. Industrial Lubrication and Tribology 70, Nr. 9 (19.11.2018): 1608–18. http://dx.doi.org/10.1108/ilt-10-2017-0286.
Der volle Inhalt der QuelleZhang, Yu, Guoding Chen und Lin Wang. „Effects of thermal and elastic deformations on lubricating properties of the textured journal bearing“. Advances in Mechanical Engineering 11, Nr. 10 (Oktober 2019): 168781401988379. http://dx.doi.org/10.1177/1687814019883790.
Der volle Inhalt der QuelleMa, Chenbo, Yanjun Duan, Bo Yu, Jianjun Sun und Qiaoan Tu. „The comprehensive effect of surface texture and roughness under hydrodynamic and mixed lubrication conditions“. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 231, Nr. 10 (08.02.2017): 1307–19. http://dx.doi.org/10.1177/1350650117693146.
Der volle Inhalt der QuelleHatakenaka, Kiyoshi, Masato Tanaka und Kenji Suzuki. „A Theoretical Analysis of Floating Bush Journal Bearing With Axial Oil Film Rupture Being Considered“. Journal of Tribology 124, Nr. 3 (31.05.2002): 494–505. http://dx.doi.org/10.1115/1.1454104.
Der volle Inhalt der QuelleLeighton, M., Nicholas Morris, Gareth Trimmer, Paul D. King und Homer Rahnejat. „Efficiency of disengaged wet brake packs“. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, Nr. 6 (10.03.2018): 1562–69. http://dx.doi.org/10.1177/0954407018758567.
Der volle Inhalt der QuellePapulov, Vladimir. „BUILDING A THREE-DIMENSIONAL MODEL OF AXIAL JET IN SOLIDWORKS“. Interexpo GEO-Siberia 7 (2019): 76–79. http://dx.doi.org/10.33764/2618-981x-2019-7-76-79.
Der volle Inhalt der QuelleDissertationen zum Thema "Cavitation in hydrodynamic machine"
Kadlec, Jan. „Hydraulický návrh induceru palivového čerpadla pro raketový motor“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444265.
Der volle Inhalt der QuelleOdeyemi, Babatunde O. „Hydrodynamic cavitation : effects of cavitation on inactivation of Escherichia coli (E.coli)“. Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/11009.
Der volle Inhalt der QuelleChanda, Suranjit Kumar. „Disintegration of sludge using ozone-hydrodynamic cavitation“. Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43105.
Der volle Inhalt der QuelleSkelton, Hedley John. „Applying hydrodynamic cavitation to the activated sludge process“. Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613352.
Der volle Inhalt der QuelleTran, David. „Hydrodynamic cavitation applied to food waste anaerobic digestion“. Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128268.
Der volle Inhalt der QuelleAbrahamsson, Louise. „Improving methane production using hydrodynamic cavitation as pre-treatment“. Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128783.
Der volle Inhalt der QuelleDet behövs innovativa lösningar för att utveckla anaerob rötning i syfte att öka metangasutbytet från biogassubstrat. Beroende på substratets egenskaper, kan förbehandling möjliggöra sönderdelning av bakterieflockar, uppbrytning av cellväggar, elimination av inhiberande ämnen och frigörelse av intracellulära organiska ämnen, som alla kan leda till en förbättring av den biologiska nedbrytningen i rötningen. För att uppnå detta har den lågenergikrävande förebehandlingsmetoden hydrodynamisk kavitation prövats på biologiskt slam, matavfall, makroalger respektive gräs, i jämförelse med ångexplosion. Effekten på substraten av dessa två förbehandlingar har uppmäts genom att undersöka distribution av partikelstorlek, löst organiskt kol (sCOD), biometan potential (BMP) och nedbrytningshastigheten. Efter 2 minuters hydrodynamisk kavitation (8 bar) minskade partikelstorleken från 489- 1344 nm till 277- 281 nm (≤77 % reduktion) för de olika biomassorna. Liknande påverkan observerades efter tio minuters ångexplosion (210 °C, 30 bar) med en partikelstorlekreducering mellan 40 och 70 % för alla behandlade substrat. Efter behandling med hydrodynamisk kavitation, i jämförelse med obehandlad biomassa, ökade metanproduktionens hastighetskonstant (K) för matavfall (+65%), makroalgen S. latissima (+3%), gräs (+16 %) samtidigt som den minskade för A. nodosum (-17 %). Förbehandlingen med ångexplosion ökade hastighetskonstanten för S. latissima (+50 %) och A. nodosum (+65 %) medan den minskade för gräs (-37 %), i jämförelse med obehandlad biomassa. Vad gäller BMP värden, orsakade hydrodynamisk kavitation små variationer där endast A. nodosum visade en ökning efter behandling (+44 %) i jämförelse med obehandlad biomassa. Biomassa förbehandlade med ångexplosion visade en ökning för A .nodosum (+86 %), gräs (14 %) och S. latissima (4 %). Sammantaget visar hydrodynamisk kavitation potential som en effektiv behandling före rötning och kapabel att konkurrera med den traditionella ångexplosionen gällande kinetik och energibalans (+14%) samt metanutbytet för A. nodosum.
Ramirez, David A. „Improvement of Ethanol Production on Dry-Mill Process Using Hydrodynamic Cavitation Pretreatment“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354646654.
Der volle Inhalt der QuelleLunnbäck, Johan. „Hydrodynamic cavitation applied to anaerobic degradation of fats, oils and greases (FOGs)“. Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140685.
Der volle Inhalt der QuellePamidi, Taraka Rama Krishna. „Process Intensification by Ultrasound Controlled Cavitation“. Licentiate thesis, Luleå tekniska universitet, Drift, underhåll och akustik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73856.
Der volle Inhalt der QuelleBangaru, Balasundaram. „A detailed investigation of microbial cell disruption by hydrodynamic cavitation for selective product release“. Doctoral thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/5345.
Der volle Inhalt der QuelleHydrodynamic cavitation is a novel method for microbial cell disruption, mediated by intense pressure fluctuations caused by cavity oscillation and collapse. Selective release of intracellular microbial products is desirable to reduce the cost involved in their downstream processing. A study of the process variables that affect microbial cell disruption by hydrodynamic cavitation is presented in order to ascertain the conditions required for a selective release. Two model systems were considered (yeast and E. coil). Enzymes from different locations of the cell were studied and the release compared with other methods of disruption.
Bücher zum Thema "Cavitation in hydrodynamic machine"
Hydraulics of pipelines: Pumps, valves, cavitation, transients. New York: Wiley, 1989.
Den vollen Inhalt der Quelle findenBrewe, David E. Effect of vibration amplitude on vapor cavitation in journal bearings. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Den vollen Inhalt der Quelle findenRanade, Vivek V. Hydrodynamic Cavitation: Devices, Design and Applications. Wiley & Sons, Limited, John, 2021.
Den vollen Inhalt der Quelle findenOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, 2012.
Den vollen Inhalt der Quelle findenOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, 2012.
Den vollen Inhalt der Quelle findenApplication Of Hydrodynamic Cavitation In Environmental Engineering. CRC Press, 2012.
Den vollen Inhalt der Quelle findenOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, 2012.
Den vollen Inhalt der Quelle findenOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. CRC Press, 2012. http://dx.doi.org/10.1201/b11825.
Der volle Inhalt der QuelleOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, 2012.
Den vollen Inhalt der Quelle findenHydrodynamic Performance of the Large Cavitation Channel (LCC). Storming Media, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cavitation in hydrodynamic machine"
Brujan, Emil-Alexandru. „Hydrodynamic Cavitation“. In Cavitation in Non-Newtonian Fluids, 117–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15343-3_4.
Der volle Inhalt der QuelleGogate, Parag R., und Aniruddha B. Pandit. „Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation“. In Theoretical and Experimental Sonochemistry Involving Inorganic Systems, 69–106. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3887-6_3.
Der volle Inhalt der QuelleManuello, A., R. Malvano, O. Borla, A. Palumbo und A. Carpinteri. „Neutron Emissions from Hydrodynamic Cavitation“. In Fracture, Fatigue, Failure and Damage Evolution, Volume 8, 175–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21611-9_22.
Der volle Inhalt der QuelleBark, Göran, und Rickard E. Bensow. „Hydrodynamic Processes Controlling Cavitation Erosion“. In Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, 185–220. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8539-6_8.
Der volle Inhalt der QuellePandit, A. B. „Hydrodynamic Cavitation Technology: Industrial Applications“. In The Mind of an Engineer, 329–40. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0119-2_43.
Der volle Inhalt der QuelleDesikan, Ramesh, Sivakumar Uthandi und Kiruthika Thangavelu. „Pretreatment via Hydrodynamic Cavitation Process“. In Methods in Molecular Biology, 23–29. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1323-8_2.
Der volle Inhalt der QuelleCervone, Angelo, Lucio Torre, Angelo Pasini und Luca d’Agostino. „Cavitation and Turbopump Hydrodynamics Research at Alta S.P.A. and Pisa University“. In Fluid Machinery and Fluid Mechanics, 80–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_11.
Der volle Inhalt der QuelleGogate, Parag R. „Application of Hydrodynamic Cavitation for Food and Bioprocessing“. In Food Engineering Series, 141–73. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7472-3_6.
Der volle Inhalt der QuelleMahanti, Naveen Kumar, Subir Kumar Chakraborty, S. Shiva Shankar und Ajay Yadav. „Hydrodynamic Cavitation Technology for Food Processing and Preservation“. In Emerging Thermal and Nonthermal Technologies in Food Processing, 199–224. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429297335-8.
Der volle Inhalt der QuelleCeccio, Steven L., und Simo A. Mäkiharju. „Experimental Methods for the Study of Hydrodynamic Cavitation“. In Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines, 35–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49719-8_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cavitation in hydrodynamic machine"
Mishra, Chandan, und Yoav Peles. „Hydrodynamic Cavitation in Flow Through Micro-Constriction Elements Entrenched in Rectangular Microchannels“. In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77406.
Der volle Inhalt der QuellePyun, Kwon Bum, Woo Chul Kwon, Kyoung Taek Oh und Joon Yong Yoon. „Investigation of the Performance for a Heat Generator Using Hydrodynamic Cavitation“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-22045.
Der volle Inhalt der QuelleZávorka, Dalibor, und Vladimír Habán. „Monitoring of hydraulic machines and hydrodynamic cavitation using acoustic emissions“. In 37TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. Author(s), 2018. http://dx.doi.org/10.1063/1.5049930.
Der volle Inhalt der QuelleSkelley, Stephen. „Inducer Hydrodynamic Forces in a Cavitating Environment“. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56115.
Der volle Inhalt der QuellePeles, Yoav, und Chandan Mishra. „Cavitation in MicroElectroMechanical Systems (MEMS): Importance, Deviations From Conventional Scale, and Preliminary Results“. In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77405.
Der volle Inhalt der QuelleGe, Mingming, Guangjian Zhang, Navid Nematikourabbasloo, Kamel Fezzaa und Olivier Coutier-Delgosha. „Application of Fast Synchrotron X-ray Imaging in Velocimetry of Cavitating Flows“. In SNAME 26th Offshore Symposium. SNAME, 2021. http://dx.doi.org/10.5957/tos-2021-15.
Der volle Inhalt der QuelleUhkoetter, Stephan, Stefan aus der Wiesche, Michael Kursch und Christian Beck. „Development and Validation of a Three-Dimensional Multiphase Flow CFD Analysis for Journal Bearings in Steam and Heavy Duty Gas Turbines“. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68201.
Der volle Inhalt der QuelleSeto, Mae L., Rubens Campregher, Stefan Murphy und Julio Militzer. „Prediction of Ship Acoustic Signature Due to Fluid Flow“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43343.
Der volle Inhalt der QuelleKerr, Thomas, und Adolfo Delgado. „Novel Approach for Optical Characterization of Thrust Collar Lubricated Area: Experimental and Numerical Results“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15467.
Der volle Inhalt der QuelleTerence Stoop, A. H., T. W. Bakker, H. J. M. Kramer und G. J. Witkamp. „Hydrodynamic Cavitation at Elevated Backpressure“. In 8th International Symposium on Cavitation. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2826-7_203.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cavitation in hydrodynamic machine"
Park, Joel T., J. M. Cutbirth und Wesley H. Brewer. Hydrodynamic Performance of the Large Cavitation Channel (LCC). Fort Belvoir, VA: Defense Technical Information Center, Dezember 2002. http://dx.doi.org/10.21236/ada416700.
Der volle Inhalt der QuelleThomas, Catherine, Afrachanna Butler, Victor Medina, Chris Griggs und Alan Katzenmeyer. Physicochemical treatment of cyanobacteria and microcystin by hydrodynamic cavitation and advanced oxidation. Engineer Research and Development Center (U.S.), März 2019. http://dx.doi.org/10.21079/11681/32313.
Der volle Inhalt der Quelle