Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cavitation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cavitation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cavitation"
Romanov, Alexey, Sergey Evdokimov und Vladimir Seliverstov. „Cavitation research results of hydroturbine impeller blades and their analysis“. MATEC Web of Conferences 196 (2018): 02006. http://dx.doi.org/10.1051/matecconf/201819602006.
Der volle Inhalt der QuelleViitanen, Ville M., Tuomas Sipilä, Antonio Sánchez-Caja und Timo Siikonen. „Compressible Two-Phase Viscous Flow Investigations of Cavitation Dynamics for the ITTC Standard Cavitator“. Applied Sciences 10, Nr. 19 (07.10.2020): 6985. http://dx.doi.org/10.3390/app10196985.
Der volle Inhalt der QuelleHu, Xiao, und Ye Gao. „Investigation of the Disk Cavitator Cavitating Flow Characteristics under Relatively High Cavitation Number“. Applied Mechanics and Materials 29-32 (August 2010): 2555–62. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.2555.
Der volle Inhalt der QuelleSoyama, Hitoshi. „Cavitating Jet: A Review“. Applied Sciences 10, Nr. 20 (17.10.2020): 7280. http://dx.doi.org/10.3390/app10207280.
Der volle Inhalt der QuelleWang, Hao, Jian Feng, Keyang Liu, Xi Shen, Bin Xu, Desheng Zhang und Weibin Zhang. „Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer“. Journal of Marine Science and Engineering 10, Nr. 6 (12.06.2022): 806. http://dx.doi.org/10.3390/jmse10060806.
Der volle Inhalt der QuelleLiu, Qian Kun, und Ye Gao. „Numerical Simulation of Natural Cavitating Flow over Axisymmetric Bodies“. Applied Mechanics and Materials 226-228 (November 2012): 825–30. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.825.
Der volle Inhalt der QuelleLee, Insu, Sunho Park, Woochan Seok und Shin Hyung Rhee. „A Study on the Cavitation Model for the Cavitating Flow Analysis around the Marine Propeller“. Mathematical Problems in Engineering 2021 (17.06.2021): 1–8. http://dx.doi.org/10.1155/2021/2423784.
Der volle Inhalt der QuelleXu, Gaowei, Huimin Fang, Yumin Song und Wensheng Du. „Optimal Design and Analysis of Cavitating Law for Well-Cellar Cavitating Mechanism Based on MBD-DEM Bidirectional Coupling Model“. Agriculture 13, Nr. 1 (05.01.2023): 142. http://dx.doi.org/10.3390/agriculture13010142.
Der volle Inhalt der QuelleCui, Baoling, und Jie Chen. „Visual experiment and numerical simulation of cavitation instability in a high-speed inducer“. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, Nr. 4 (06.08.2019): 470–80. http://dx.doi.org/10.1177/0957650919867173.
Der volle Inhalt der QuelleZHANG, YAO, XIANWU LUO, SHUHONG LIU und HONGYUAN XU. „A TRANSPORT EQUATION MODEL FOR SIMULATING CAVITATION FLOWS IN MINIATURE MACHINES“. Modern Physics Letters B 24, Nr. 13 (30.05.2010): 1467–70. http://dx.doi.org/10.1142/s0217984910023888.
Der volle Inhalt der QuelleDissertationen zum Thema "Cavitation"
Momma, Takahiro. „Cavitation loading and erosion produced by a cavitating jet“. Thesis, University of Nottingham, 1991. http://eprints.nottingham.ac.uk/14102/.
Der volle Inhalt der QuellePeterson, Ashley Thomas. „Cavitation prediction“. Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612813.
Der volle Inhalt der QuelleJohansen, Kristoffer. „Stable-inertial cavitation“. Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30796/.
Der volle Inhalt der QuelleOdeyemi, Babatunde O. „Hydrodynamic cavitation : effects of cavitation on inactivation of Escherichia coli (E.coli)“. Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/11009.
Der volle Inhalt der QuelleKrahl, Dominik, Jürgen Weber und Maik Fuchs. „Visualization of cavitation and investigation of cavitation erosion in a valve“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199616.
Der volle Inhalt der QuelleJin, Yong-Hua. „Optical investigations of cavitation“. Thesis, Loughborough University, 1995. https://dspace.lboro.ac.uk/2134/27390.
Der volle Inhalt der QuelleWatson, Peter. „Cavitation in human joints“. Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304536.
Der volle Inhalt der QuelleHou, Hang-sheng. „Cavitation instability in solids“. Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/13697.
Der volle Inhalt der QuelleGerold, Bjoern. „Cavitation in focused ultrasound“. Thesis, University of Dundee, 2013. https://discovery.dundee.ac.uk/en/studentTheses/f41bf6b9-ae59-4a41-ba29-d5873821418b.
Der volle Inhalt der QuelleWilms, Jeffrey. „Flow visualization of cavitation“. Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/32158.
Der volle Inhalt der QuelleDepartment of Mechanical and Nuclear Engineering
Mohammad Hosni
A typical refrigeration loop is composed of an evaporator, compressor, condenser, and an expansion valve. There are many possible refrigerants that can be used, but the physical properties of water make it ineffective in the traditional refrigeration loop. But if water could be used it would have many advantages as it is abundant, cheap, and is safe for the environment. This research focuses on a different kind of refrigeration loop using water. This new refrigeration loop utilizes water flowing through a nozzle, initiating cavitation. Cavitation is generally defined as creating vapor from liquid, not through adding heat, but by decreasing the pressure. In a converging/ diverging nozzle, as the cross sectional area is constricted, the velocity of the flow will increase, decreasing the pressure. Therefore, by flowing water through the nozzle it will cavitate. Transforming liquid into gas requires a certain amount of energy, defined as the latent heat. When a liquid is turned to vapor by an increase in the temperature, the latent heat is provided by the heat transfer to the system. As no energy is being added to the nozzle to cause the cavitation, the energy transfer to create the vapor comes from the remaining liquid, effectively causing a temperature drop. This research focused on the flow visualization of water cavitating as it travelled through a converging/ diverging nozzle. Under different flow conditions and different nozzle geometries, the cavitation manifested itself in different formations. When gasses were entrained in the water they formed bubbles, which acted as nucleation sites as they moved through the nozzle. This was called travelling bubble cavitation. In venturi nozzles the cavitation nucleated off of the wall, forming attached wall cavitation. When water flowed out of an orifice, a turbulent mixture of liquid and vapor, orifice jet, was formed which caused vapor to form around it. This was known as shear cavitation. When the water was rotated prior to the throat of an orifice, the orifice jet expanded radially and formed swirl cavitation. In addition to studying how the cavitation was formed, the void fraction and velocity were measured for attached wall cavitation.
Bücher zum Thema "Cavitation"
Lecoffre, Yves, M. M. Oberai und V. H. Arakeri. Cavitation. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916.
Der volle Inhalt der Quelled’Agostino, Luca, und Maria Vittoria Salvetti, Hrsg. Fluid Dynamics of Cavitation and Cavitating Turbopumps. Vienna: Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9.
Der volle Inhalt der QuelleLuca, D'Agostino, und Guillén Salvetti María, Hrsg. Fluid dynamics of cavitation and cavitating turbopumps. Wien: Springer, 2007.
Den vollen Inhalt der Quelle findenWan, Mingxi, Yi Feng und Gail ter Haar, Hrsg. Cavitation in Biomedicine. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7255-6.
Der volle Inhalt der QuelleShah, Y. T., A. B. Pandit und V. S. Moholkar. Cavitation Reaction Engineering. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4787-7.
Der volle Inhalt der QuelleMargulis, M. A. Sonochemistry and cavitation. Australia: Gordon and Breach Publishers, 1995.
Den vollen Inhalt der Quelle findenLecoffre, Yves. Cavitation: Bubble trackers. Rotterdam, Netherlands: Balkema, 1999.
Den vollen Inhalt der Quelle findenShah, Yatish T. Cavitation reaction engineering. New York: Kluwer Academic/Plenum Publishers, 1999.
Den vollen Inhalt der Quelle findenCabrera, E., V. Espert und F. Martínez, Hrsg. Hydraulic Machinery and Cavitation. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9.
Der volle Inhalt der QuelleC, Li S., Hrsg. Cavitation of hydraulic machinery. London: Imperial College Press, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cavitation"
Lecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Phenomenon of Cavitation“. In Cavitation, 1–11. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-1.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Thermodynamic Attenuation of Cavitation“. In Cavitation, 211–43. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-10.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Single Bubble Life“. In Cavitation, 44–64. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-4.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Cavitation Erosion“. In Cavitation, 244–90. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-11.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Instrumentation“. In Cavitation, 335–62. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-14.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Parameter σ of Cavitation“. In Cavitation, 12–32. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-2.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Applications of Cavitation“. In Cavitation, 363–70. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-15.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Fixed or Attached Cavitation“. In Cavitation, 115–39. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-7.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Other Types of Cavitation“. In Cavitation, 140–76. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-8.
Der volle Inhalt der QuelleLecoffre, Yves, M. M. Oberai und V. H. Arakeri. „Types of Cavitation“. In Cavitation, 33–43. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cavitation"
Kim, Dong-Hyun, Cong-Tu Ha, Warn-Gyu Park und Chul-Min Jung. „Numerical Analysis of Ventilated Cavitation Using Non-Condensable Gas Injection on Underwater Vehicle“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-04031.
Der volle Inhalt der QuellePark, Sunho, und Shin Hyung Rhee. „Numerical Analysis of Super-Cavitating Flow Around a Two-Dimensional Cavitator Geometry“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33010.
Der volle Inhalt der QuelleKim, K. H., und P. N. Nguyen. „Propeller Cavitation and Cavitation-Induced Pressure Fluctuation: Correlation Between Theory and Experiments“. In SNAME Propellers '88 Symposium. SNAME, 1988. http://dx.doi.org/10.5957/pss-1988-10.
Der volle Inhalt der QuellePeng, Guoyi, Hideto Ito und Seiji Shimizu. „Numerical Simulation of High-Speed Cavitating Water-Jet Issuing From a Submerged Nozzle“. In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72438.
Der volle Inhalt der QuelleDular, Matevzˇ, und Olivier Coutier-Delgosha. „Numerical Modelling of Cavitation Erosion“. In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55034.
Der volle Inhalt der QuelleSoyama, Hitoshi. „Luminescent Spots Induced by a Cavitating Jet“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33018.
Der volle Inhalt der QuelleIga, Yuka, und Yoshiki Yoshida. „A Study of Propagating Speed of Rotating Cavitation Based on Numerical Analysis“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78411.
Der volle Inhalt der QuellePeng, Guoyi, Hideto Ito, Seiji Shimizu und Shigeo Fujikawa. „Numerical Investigation on the Structure of High-Speed Cavitating Water Jet Issuing From an Orifice Nozzle“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33023.
Der volle Inhalt der QuelleDe Giorgi, Maria Grazia, Fabio Chiara und Antonio Ficarella. „Experimental Study of Thermal Cavitation in an Orifice“. In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95406.
Der volle Inhalt der QuelleKarimi Noughabi, Amir, Morteza Bayati und Mehran Tadjfar. „Investigation of Cavitation Phenomena on Noise of Underwater Propeller“. In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69536.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cavitation"
Aguiar, Brandon, Paul Bianco und Arvind Agarwal. Using High-Speed Imaging and Machine Learning to Capture Ultrasonic Treatment Cavitation Area at Different Amplitudes. Florida International University, Oktober 2021. http://dx.doi.org/10.25148/mmeurs.009773.
Der volle Inhalt der QuelleWest, C. D. "Cavitation in a Mercury Target". Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/885870.
Der volle Inhalt der QuelleTullis, J. P. Cavitation guide for control valves. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10155405.
Der volle Inhalt der QuelleButtler, William Tillman. FICH: Feature instability cavitation history. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1603958.
Der volle Inhalt der QuelleWest, C. D. Cavitation in a Mercury Target. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/763224.
Der volle Inhalt der QuelleSokolow, Adam, und Chad Hovey. A Phenomenological Model for Cavitation. Office of Scientific and Technical Information (OSTI), Dezember 2020. http://dx.doi.org/10.2172/1810237.
Der volle Inhalt der QuellePease, Leonard F. Drag Reducing and Cavitation Resistant Coatings. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1419158.
Der volle Inhalt der QuelleCeccio, Steven L. Dynamics of Cavitation on Rotating Propulsors. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada416939.
Der volle Inhalt der QuelleWest, C. D. Cavitation Bubble Nucleation by Energetic Particles. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/2687.
Der volle Inhalt der QuelleSollars, Ryan, und Alfred D. Beitelman. Cavitation-Resistant Coatings for Hydropower Turbines. Fort Belvoir, VA: Defense Technical Information Center, Juni 2011. http://dx.doi.org/10.21236/ada545717.
Der volle Inhalt der Quelle