Zeitschriftenartikel zum Thema „CaVβ1“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "CaVβ1" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Cohen, Risa M., Jason D. Foell, Ravi C. Balijepalli, Vaibhavi Shah, Johannes W. Hell und Timothy J. Kamp. „Unique modulation of L-type Ca2+ channels by short auxiliary β1d subunit present in cardiac muscle“. American Journal of Physiology-Heart and Circulatory Physiology 288, Nr. 5 (Mai 2005): H2363—H2374. http://dx.doi.org/10.1152/ajpheart.00348.2004.
Der volle Inhalt der QuelleFoell, Jason D., Ravi C. Balijepalli, Brian P. Delisle, Anne Marie R. Yunker, Seth L. Robia, Jeffrey W. Walker, Maureen W. McEnery, Craig T. January und Timothy J. Kamp. „Molecular heterogeneity of calcium channel β-subunits in canine and human heart: evidence for differential subcellular localization“. Physiological Genomics 17, Nr. 2 (13.04.2004): 183–200. http://dx.doi.org/10.1152/physiolgenomics.00207.2003.
Der volle Inhalt der QuelleDespang, Patrick, Sarah Salamon, Alexandra Breitenkamp, Elza Kuzmenkina und Jan Matthes. „Inhibitory effects on L- and N-type calcium channels by a novel CaVβ1 variant identified in a patient with autism spectrum disorder“. Naunyn-Schmiedeberg's Archives of Pharmacology 395, Nr. 4 (05.02.2022): 459–70. http://dx.doi.org/10.1007/s00210-022-02213-7.
Der volle Inhalt der QuelleTraoré, Massiré, Christel Gentil, Chiara Benedetto, Jean-Yves Hogrel, Pierre De la Grange, Bruno Cadot, Sofia Benkhelifa-Ziyyat et al. „An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse“. Science Translational Medicine 11, Nr. 517 (06.11.2019): eaaw1131. http://dx.doi.org/10.1126/scitranslmed.aaw1131.
Der volle Inhalt der QuelleBelkacemi, Anouar, Andreas Beck, Barbara Wardas, Petra Weissgerber und Veit Flockerzi. „IP3-dependent Ca2+ signals are tightly controlled by Cavβ3, but not by Cavβ1, 2 and 4“. Cell Calcium 104 (Juni 2022): 102573. http://dx.doi.org/10.1016/j.ceca.2022.102573.
Der volle Inhalt der QuelleHeneghan, John F., Tora Mitra-Ganguli, Lee F. Stanish, Liwang Liu, Rubing Zhao und Ann R. Rittenhouse. „The Ca2+ channel β subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current“. Journal of General Physiology 134, Nr. 5 (26.10.2009): 369–84. http://dx.doi.org/10.1085/jgp.200910203.
Der volle Inhalt der QuelleBrown, Betty, M. Steven Oberste, Kaija Maher und Mark A. Pallansch. „Complete Genomic Sequencing Shows that Polioviruses and Members of Human Enterovirus Species C Are Closely Related in the Noncapsid Coding Region“. Journal of Virology 77, Nr. 16 (15.08.2003): 8973–84. http://dx.doi.org/10.1128/jvi.77.16.8973-8984.2003.
Der volle Inhalt der QuelleTaylor, Jackson, Tan Zhang, Laura Messi, Jiang Qian, Cristina Furdui, Claudia Hereñú und Osvaldo Delbono. „The Cavβ1 Subunit Regulates Gene Expression in Muscle Progenitor Cells“. Biophysical Journal 102, Nr. 3 (Januar 2012): 365a. http://dx.doi.org/10.1016/j.bpj.2011.11.1993.
Der volle Inhalt der QuelleTraore, M., C. Gentil, C. Benedetto, J. Hogrel, P. De la Grange, S. Benkhelifa-Ziyyat, L. Julien, M. Lemaitre, A. Ferry und S. Falcone. „P.133A novel CaVβ1 isoform connecting voltage sensing with muscle mass homeostasis“. Neuromuscular Disorders 29 (Oktober 2019): S87. http://dx.doi.org/10.1016/j.nmd.2019.06.189.
Der volle Inhalt der QuelleBuraei, Zafir, und Jian Yang. „The β Subunit of Voltage-Gated Ca2+ Channels“. Physiological Reviews 90, Nr. 4 (Oktober 2010): 1461–506. http://dx.doi.org/10.1152/physrev.00057.2009.
Der volle Inhalt der QuellePark, Won Sun, Soon Chul Heo, Eun Su Jeon, Da Hye Hong, Youn Kyoung Son, Jae-Hong Ko, Hyoung Kyu Kim, Sun Young Lee, Jae Ho Kim und Jin Han. „Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells“. American Journal of Physiology-Cell Physiology 305, Nr. 4 (15.08.2013): C377—C391. http://dx.doi.org/10.1152/ajpcell.00404.2012.
Der volle Inhalt der QuelleXie, Mian, Xiang Li, Jing Han, Daniel L. Vogt, Silke Wittemann, Melanie D. Mark und Stefan Herlitze. „Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavβ4 versus Cavβ2 subunits to synaptic terminals“. Journal of Cell Biology 178, Nr. 3 (30.07.2007): 489–502. http://dx.doi.org/10.1083/jcb.200702072.
Der volle Inhalt der QuelleBéguin, Pascal, Kazuaki Nagashima, Ramasubbu N. Mahalakshmi, Réjan Vigot, Atsuko Matsunaga, Takafumi Miki, Mei Yong Ng et al. „BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis“. Journal of Cell Biology 205, Nr. 2 (21.04.2014): 233–49. http://dx.doi.org/10.1083/jcb.201304101.
Der volle Inhalt der QuelleFindeisen, Felix, und Daniel L. Minor. „Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation“. Journal of General Physiology 133, Nr. 3 (23.02.2009): 327–43. http://dx.doi.org/10.1085/jgp.200810143.
Der volle Inhalt der QuelleGonzalez-Gutierrez, Giovanni, Erick Miranda-Laferte, David Naranjo, Patricia Hidalgo und Alan Neely. „Mutations of Nonconserved Residues within the Calcium Channel α1-interaction Domain Inhibit β-Subunit Potentiation“. Journal of General Physiology 132, Nr. 3 (25.08.2008): 383–95. http://dx.doi.org/10.1085/jgp.200709901.
Der volle Inhalt der QuelleRomano, Antonella, Antonia Feola, Antonio Porcellini, Vincenzo Gigantino, Maurizio Di Bonito, Annabella Di Mauro, Rocco Caggiano, Raffaella Faraonio und Candida Zuchegna. „Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms“. International Journal of Molecular Sciences 21, Nr. 17 (20.08.2020): 5989. http://dx.doi.org/10.3390/ijms21175989.
Der volle Inhalt der QuelleJha, Mithilesh, Archana Jha, Ashish Singh, Petra Weissgerber, Marc Freichel, Veit Flockerzi und Richard Flavell. „Essential role of Cavβ2 in T Cell development and homeostasis. (LYM7P.715)“. Journal of Immunology 192, Nr. 1_Supplement (01.05.2014): 193.3. http://dx.doi.org/10.4049/jimmunol.192.supp.193.3.
Der volle Inhalt der QuelleTaylor, Jackson, Andrea Pereyra, Tan Zhang, Maria Laura Messi, Zhong-Min Wang, Claudia Hereñú, Pei-Fen Kuan und Osvaldo Delbono. „The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells“. Journal of Cell Biology 205, Nr. 6 (16.06.2014): 829–46. http://dx.doi.org/10.1083/jcb.201403021.
Der volle Inhalt der QuelleAn, Mingwei, Xueling Chen, Zhuhong Yang, Jianyu Zhou, Shan Ye und Zhong Ding. „Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor“. International Journal of Molecular Sciences 23, Nr. 2 (11.01.2022): 784. http://dx.doi.org/10.3390/ijms23020784.
Der volle Inhalt der QuelleCatalucci, Daniele, Deng-Hong Zhang, Jaime DeSantiago, Franck Aimond, Guillaume Barbara, Jean Chemin, Désiré Bonci et al. „Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability“. Journal of Cell Biology 184, Nr. 6 (23.03.2009): 923–33. http://dx.doi.org/10.1083/jcb.200805063.
Der volle Inhalt der QuellePuckerin, Akil A., Donald D. Chang, Zunaira Shuja, Papiya Choudhury, Joachim Scholz und Henry M. Colecraft. „Engineering selectivity into RGK GTPase inhibition of voltage-dependent calcium channels“. Proceedings of the National Academy of Sciences 115, Nr. 47 (05.11.2018): 12051–56. http://dx.doi.org/10.1073/pnas.1811024115.
Der volle Inhalt der QuelleMitra-Ganguli, Tora, Iuliia Vitko, Edward Perez-Reyes und Ann R. Rittenhouse. „Orientation of palmitoylated CaVβ2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation“. Journal of General Physiology 134, Nr. 5 (26.10.2009): 385–96. http://dx.doi.org/10.1085/jgp.200910204.
Der volle Inhalt der QuelleMeissner, Marcel, Petra Weissgerber, Juan E. Camacho Londoño, Jean Prenen, Sabine Link, Sandra Ruppenthal, Jeffery D. Molkentin et al. „Moderate Calcium Channel Dysfunction in Adult Mice with Inducible Cardiomyocyte-specific Excision of the cacnb2 Gene“. Journal of Biological Chemistry 286, Nr. 18 (28.02.2011): 15875–82. http://dx.doi.org/10.1074/jbc.m111.227819.
Der volle Inhalt der QuelleChen, Xingjuan, Degang Liu, Donghui Zhou, Yubing Si, David Xu, Christopher W. Stamatkin, Mona K. Ghozayel et al. „Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking“. Proceedings of the National Academy of Sciences 115, Nr. 45 (24.10.2018): E10566—E10575. http://dx.doi.org/10.1073/pnas.1813157115.
Der volle Inhalt der QuelleAl Katat, Aya, Juan Zhao, Angelino Calderone und Lucie Parent. „Sympathetic Stimulation Upregulates the Ca2+ Channel Subunit, CaVα2δ1, via the β1 and ERK 1/2 Pathway in Neonatal Ventricular Cardiomyocytes“. Cells 11, Nr. 2 (06.01.2022): 188. http://dx.doi.org/10.3390/cells11020188.
Der volle Inhalt der QuelleJangsangthong, Wanchana, Elza Kuzmenkina, Ann Kristin Böhnke und Stefan Herzig. „Single-Channel Monitoring of Reversible L-Type Ca2+ Channel CaVα1-CaVβ Subunit Interaction“. Biophysical Journal 101, Nr. 11 (Dezember 2011): 2661–70. http://dx.doi.org/10.1016/j.bpj.2011.09.063.
Der volle Inhalt der QuelleJha, Archana, Ashish K. Singh, Petra Weissgerber, Marc Freichel, Veit Flockerzi, Richard A. Flavell und Mithilesh K. Jha. „Essential roles for Cavβ2 and Cav1 channels in thymocyte development and T cell homeostasis“. Science Signaling 8, Nr. 399 (20.10.2015): ra103. http://dx.doi.org/10.1126/scisignal.aac7538.
Der volle Inhalt der QuelleRoberts-Crowley, Mandy L., und Ann R. Rittenhouse. „Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVβ subunits“. Journal of General Physiology 133, Nr. 4 (30.03.2009): 387–403. http://dx.doi.org/10.1085/jgp.200810047.
Der volle Inhalt der QuelleBennett, Robert. „Reflecting on Editorial and Publishing Challenges: Government and Policy; The First 25 Years“. Environment and Planning C: Government and Policy 26, Nr. 1 (Januar 2008): 1–16. http://dx.doi.org/10.1068/cav1.
Der volle Inhalt der QuellePark, Heonyong, Young-Mi Go, Ritesh Darji, Jong-Whan Choi, Michael P. Lisanti, Matthew C. Maland und Hanjoong Jo. „Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase“. American Journal of Physiology-Heart and Circulatory Physiology 278, Nr. 4 (01.04.2000): H1285—H1293. http://dx.doi.org/10.1152/ajpheart.2000.278.4.h1285.
Der volle Inhalt der QuelleVan Petegem, Filip, Karl E. Duderstadt, Kimberly A. Clark, Michelle Wang und Daniel L. Minor. „Alanine-Scanning Mutagenesis Defines a Conserved Energetic Hotspot in the CaVα1 AID-CaVβ Interaction Site that Is Critical for Channel Modulation“. Structure 16, Nr. 2 (Februar 2008): 280–94. http://dx.doi.org/10.1016/j.str.2007.11.010.
Der volle Inhalt der QuelleColvin, Robert B. „CADI, Canti, Cavi1“. Transplantation 83, Nr. 6 (März 2007): 677–78. http://dx.doi.org/10.1097/01.tp.0000262011.05196.a1.
Der volle Inhalt der QuelleCroager, Emma. „CAV1 connection“. Nature Reviews Cancer 4, Nr. 2 (Februar 2004): 90–91. http://dx.doi.org/10.1038/nrc1283.
Der volle Inhalt der QuelleBernardo, José F., Clara E. Magyar, W. Bruce Sneddon und Peter A. Friedman. „Impaired renal calcium absorption in mice lacking calcium channel β3 subunits“. Canadian Journal of Physiology and Pharmacology 87, Nr. 7 (Juli 2009): 522–30. http://dx.doi.org/10.1139/y09-035.
Der volle Inhalt der QuelleCopeland, Courtney A., Bing Han, Ajit Tiwari, Eric D. Austin, James E. Loyd, James D. West und Anne K. Kenworthy. „A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal“. Molecular Biology of the Cell 28, Nr. 22 (November 2017): 3095–111. http://dx.doi.org/10.1091/mbc.e17-06-0421.
Der volle Inhalt der QuelleEl-Yazbi, Ahmed F., Woo Jung Cho, Richard Schulz und Edwin E. Daniel. „Caveolin-1 knockout alters β-adrenoceptors function in mouse small intestine“. American Journal of Physiology-Gastrointestinal and Liver Physiology 291, Nr. 6 (Dezember 2006): G1020—G1030. http://dx.doi.org/10.1152/ajpgi.00159.2006.
Der volle Inhalt der QuelleRathor, Navneeta, Ran Zhuang, Jian-Ying Wang, James M. Donahue, Douglas J. Turner und Jaladanki N. Rao. „Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering Ca2+ influx after wounding“. American Journal of Physiology-Gastrointestinal and Liver Physiology 306, Nr. 8 (15.04.2014): G650—G658. http://dx.doi.org/10.1152/ajpgi.00003.2014.
Der volle Inhalt der QuelleGeletu, Mulu, Zaid Taha, Rozanne Arulanandam, Reva Mohan, Hikmat H. Assi, Maria G. Castro, Ivan Robert Nabi, Patrick T. Gunning und Leda Raptis. „Effect of caveolin-1 on Stat3-ptyr705 levels in breast and lung carcinoma cells“. Biochemistry and Cell Biology 97, Nr. 5 (Oktober 2019): 638–46. http://dx.doi.org/10.1139/bcb-2018-0367.
Der volle Inhalt der QuelleGodina, Christopher, Somayeh Khazaei, Mattias Belting, Johan Vallon-Christersson, Björn Nodin, Karin Jirström, Karolin Isaksson, Ana Bosch und Helena Jernström. „Abstract A006: Spatial localization of Caveolin-1 protein in triple negative breast cancer is related to different molecular features“. Cancer Research 84, Nr. 3_Supplement_1 (01.02.2024): A006. http://dx.doi.org/10.1158/1538-7445.advbc23-a006.
Der volle Inhalt der QuelleJoshi, Bharat, Michele Bastiani, Scott S. Strugnell, Cecile Boscher, Robert G. Parton und Ivan R. Nabi. „Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation“. Journal of Cell Biology 199, Nr. 3 (22.10.2012): 425–35. http://dx.doi.org/10.1083/jcb.201207089.
Der volle Inhalt der QuelleTang, Wenqing, Xuemei Feng, Si Zhang, Zhenggang Ren, Yinkun Liu, Biwei Yang, Bei lv, Yu Cai, Jinglin Xia und Ningling Ge. „Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway“. Cellular Physiology and Biochemistry 36, Nr. 3 (2015): 1223–36. http://dx.doi.org/10.1159/000430292.
Der volle Inhalt der QuelleFeldman, Rebecca, Zoran Gatalica, Sandeep K. Reddy, Michael Castro und Jasgit C. Sachdev. „Caveolin-1: Oncogenic role in breast cancer? Clues from molecular profiling.“ Journal of Clinical Oncology 33, Nr. 28_suppl (01.10.2015): 134. http://dx.doi.org/10.1200/jco.2015.33.28_suppl.134.
Der volle Inhalt der QuelleCai, Ting, Haojie Wang, Yiliang Chen, Lijun Liu, William T. Gunning, Luis Eduardo M. Quintas und Zi-Jian Xie. „Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase“. Journal of Cell Biology 182, Nr. 6 (15.09.2008): 1153–69. http://dx.doi.org/10.1083/jcb.200712022.
Der volle Inhalt der QuelleAvchalumov, Yosef, Alison D. Kreisler, Wulfran Trenet, Mahasweta Nayak, Brian P. Head, Juan C. Piña-Crespo und Chitra D. Mandyam. „Caveolin-1 Expression in the Dorsal Striatum Drives Methamphetamine Addiction-Like Behavior“. International Journal of Molecular Sciences 22, Nr. 15 (30.07.2021): 8219. http://dx.doi.org/10.3390/ijms22158219.
Der volle Inhalt der QuelleGodina, Christopher, Somayeh Khazaei, Mattias Belting, Johan Vallon-Christersson, Björn Nodin, Karin Jirström, Karolin Isaksson, Ana Bosch und Helena Jernström. „High Caveolin-1 mRNA expression in triple-negative breast cancer is associated with an aggressive tumor microenvironment, chemoresistance, and poor clinical outcome“. PLOS ONE 19, Nr. 7 (03.07.2024): e0305222. http://dx.doi.org/10.1371/journal.pone.0305222.
Der volle Inhalt der QuelleZimnicka, Adriana M., Yawer S. Husain, Ayesha N. Shajahan, Maria Sverdlov, Oleg Chaga, Zhenlong Chen, Peter T. Toth et al. „Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae“. Molecular Biology of the Cell 27, Nr. 13 (Juli 2016): 2090–106. http://dx.doi.org/10.1091/mbc.e15-11-0756.
Der volle Inhalt der QuelleAl Madhoun, Ashraf, Shihab Kochumon, Dania Haddad, Reeby Thomas, Rasheeba Nizam, Lavina Miranda, Sardar Sindhu, Milad S. Bitar, Rasheed Ahmad und Fahd Al-Mulla. „Adipose Tissue Caveolin-1 Upregulation in Obesity Involves TNF-α/NF-κB Mediated Signaling“. Cells 12, Nr. 7 (27.03.2023): 1019. http://dx.doi.org/10.3390/cells12071019.
Der volle Inhalt der QuelleLobos-González, Lorena, Lorena Oróstica, Natalia Díaz-Valdivia, Victoria Rojas-Celis, America Campos, Eduardo Duran-Jara, Nicole Farfán, Lisette Leyton und Andrew F. G. Quest. „Prostaglandin E2 Exposure Disrupts E-Cadherin/Caveolin-1-Mediated Tumor Suppression to Favor Caveolin-1-Enhanced Migration, Invasion, and Metastasis in Melanoma Models“. International Journal of Molecular Sciences 24, Nr. 23 (29.11.2023): 16947. http://dx.doi.org/10.3390/ijms242316947.
Der volle Inhalt der QuelleGairhe, Salina, Keytam S. Awad, Edward J. Dougherty, Gabriela A. Ferreyra, Shuibang Wang, Zu-Xi Yu, Kazuyo Takeda et al. „Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension“. Proceedings of the National Academy of Sciences 118, Nr. 11 (08.03.2021): e2010206118. http://dx.doi.org/10.1073/pnas.2010206118.
Der volle Inhalt der QuelleZhang, Chengbiao, Xiaotong Su, Lars Bellner und Dao-Hong Lin. „Caveolin-1 regulates corneal wound healing by modulating Kir4.1 activity“. American Journal of Physiology-Cell Physiology 310, Nr. 11 (01.06.2016): C993—C1000. http://dx.doi.org/10.1152/ajpcell.00023.2016.
Der volle Inhalt der Quelle