Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cationic Cellulose Derivative“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cationic Cellulose Derivative" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cationic Cellulose Derivative"
Mohan, Tamilselvan, Cíntia Salomão Pinto Zarth, Aleš Doliška, Rupert Kargl, Thomas Grießer, Stefan Spirk, Thomas Heinze und Karin Stana-Kleinschek. „Interactions of a cationic cellulose derivative with an ultrathin cellulose support“. Carbohydrate Polymers 92, Nr. 2 (Februar 2013): 1046–53. http://dx.doi.org/10.1016/j.carbpol.2012.10.026.
Der volle Inhalt der QuelleEivazi, Alireza, Bruno Medronho, Björn Lindman und Magnus Norgren. „On the Development of All-Cellulose Capsules by Vesicle-Templated Layer-by-Layer Assembly“. Polymers 13, Nr. 4 (16.02.2021): 589. http://dx.doi.org/10.3390/polym13040589.
Der volle Inhalt der QuelleGao, Xin, Keli Chen, Heng Zhang und Xuejing Yan. „Characterization of cationic parenchyma cellulose derivative by rapid preparation of low microwave power“. Iranian Polymer Journal 24, Nr. 9 (24.07.2015): 747–58. http://dx.doi.org/10.1007/s13726-015-0363-y.
Der volle Inhalt der QuelleTerada, Eiji, Yulia Samoshina, Tommy Nylander und Björn Lindman. „Adsorption of Cationic Cellulose Derivative/Anionic Surfactant Complexes onto Solid Surfaces. II. Hydrophobized Silica Surfaces“. Langmuir 20, Nr. 16 (August 2004): 6692–701. http://dx.doi.org/10.1021/la049922w.
Der volle Inhalt der QuelleDevarayan, Kesavan, Masahiro Miyamoto, Masakazu Hachisu, Jun Araki, Viswanathamurthi Periasamy und Kousaku Ohkawa. „Cationic derivative of electrospun non-woven cellulose-chitosan composite fabrics for immobilization of aminoacylase-I“. Textile Research Journal 83, Nr. 18 (08.03.2013): 1918–25. http://dx.doi.org/10.1177/0040517513478457.
Der volle Inhalt der QuelleHAYASHI, Tsuyoshi, Hiroyuki KATO, Jun ASANO und Yoshiaki MIZUNO. „Deflocculation of SiC Slips with a Cationic Cellulose Derivative and Its Effects on the Sintered Density“. Journal of the Ceramic Society of Japan 105, Nr. 1221 (1997): 428–32. http://dx.doi.org/10.2109/jcersj.105.428.
Der volle Inhalt der QuelleSirviö, Juho, Anu Honka, Henrikki Liimatainen, Jouko Niinimäki und Osmo Hormi. „Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent“. Carbohydrate Polymers 86, Nr. 1 (August 2011): 266–70. http://dx.doi.org/10.1016/j.carbpol.2011.04.046.
Der volle Inhalt der QuelleSunasee, Rajesh, Erinolaoluwa Araoye, Dejhy Pyram, Usha D. Hemraz, Yaman Boluk und Karina Ckless. „Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1β secretion associated with mitochondrial ROS production“. Biochemistry and Biophysics Reports 4 (Dezember 2015): 1–9. http://dx.doi.org/10.1016/j.bbrep.2015.08.008.
Der volle Inhalt der QuelleBeheshti, Neda, Giao T. M. Nguyen, Anna-Lena Kjøniksen, Kenneth D. Knudsen und Bo Nyström. „Structure and dynamics of aqueous mixtures of an anionic cellulose derivative and anionic or cationic surfactants“. Colloids and Surfaces A: Physicochemical and Engineering Aspects 279, Nr. 1-3 (Mai 2006): 40–49. http://dx.doi.org/10.1016/j.colsurfa.2005.12.031.
Der volle Inhalt der QuelleMilano, Francesco, Maria Rachele Guascito, Paola Semeraro, Shadi Sawalha, Tatiana Da Ros, Alessandra Operamolla, Livia Giotta, Maurizio Prato und Ludovico Valli. „Nanocellulose/Fullerene Hybrid Films Assembled at the Air/Water Interface as Promising Functional Materials for Photo-electrocatalysis“. Polymers 13, Nr. 2 (12.01.2021): 243. http://dx.doi.org/10.3390/polym13020243.
Der volle Inhalt der QuelleDissertationen zum Thema "Cationic Cellulose Derivative"
Liu, Jianzhao. „Studies of Macromolecule/Molecule Adsorption and Activity at Interfaces“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104041.
Der volle Inhalt der QuelleDoctor of Philosophy
Interfaces and surfaces are everywhere. Many critical processes, such as molecular recognition, catalysis, and charge transfer, take place at interfaces. The surfaces of plants and animals provide barriers from pathogens, prevent damage from mechanical impacts, detect external stimuli, etc. Inside the human body, nutrition and oxygen are adsorbed through interactions between substances and cell surfaces. Investigations of interfacial behaviors may help us understand our current world better and bring benefits to mankind. In this dissertation, the interface between bio-renewable natural polymers and biomimetic chelators, the interface between a self-assembled monolayer and cationic cellulose derivatives, and the interface between metal–organic frameworks (MOF) and 1,2-epoxybutane gas molecules, were studied with a quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR) and atomic force microscopy (AFM), to gain insights into biofuel conversion, gene/drug delivery and chemical fixation of CO2, respectively. Additionally, thermally and electrochemically induced phase transitions in sodium-ion battery (SIB) cathode materials were probed via in operando high energy X-ray diffraction (HEXRD). Biomimetic chelator-mediated Fenton (CMF) non-enzymatic degradations of cellulose and chitin thin films were studied by liquid-phase QCM-D and AFM. It was found that the majority of the biomass of the two model surfaces can be degraded by the CMF system. Adsorption of cationic cellulose derivatives onto self-assembled monolayer (SAM) surfaces was investigated using liquid-phase SPR. It was found that both the absorbed layer conformation and the absorbed amount depend upon the interplay between long-range electrostatic interactions and short-range interactions. Adsorption of 1,2-epoxybutane gas molecules onto/into VPI-100 MOFs was studied by gas-phase QCM-D experiments. Data from QCM-D revealed the irreversible gas molecule absorption onto/into MOFs and shed light upon tuning MOF structures for better CO2 sorption and epoxide activation to gain higher catalytic efficiency. Finally, the in operando high energy X-ray diffraction (HEXRD) was used to probe thermally and electrochemically induced phase transitions in sodium-ion battery (SIB) cathode materials. It was found that the NCM-Q cathode with triple-phase integration demonstrates highly reversible phase evolution during high voltage cycling, possibly leading to a highly reversible capacity and good cycle stability.
Marks, Joyann Audrene. „Synthesis and Applications of Cellulose Derivatives for Drug Delivery“. Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/75307.
Der volle Inhalt der QuellePh. D.
Trejo, O'Reilly José Antonio. „Synthèse d'agents de couplage, réactions de greffage en surface de fibres cellulosiques et propriétés d'interface fibres-matrices dans des matériaux composites à base de polystyrène“. Grenoble INPG, 1997. http://www.theses.fr/1997INPG0019.
Der volle Inhalt der QuelleBalan, Jean Cláudio. „Estudo da interação de derivados aquo-solúveis de celulose com tensoativos catiônicos“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/59/59138/tde-17012007-092607/.
Der volle Inhalt der QuelleThere are many industrial formulations that are consisted of a biopolymer, such as cellulose derivatives, and surfactants. However, in literature, there are some divergences if there is a cooperative interaction between non-ionic polymers, and cationic surfactants. For this reason, in this project, the interactions between three cellulose derivatives (2- hydroxyethyl cellulose, 2-HEC, hydroxypropyl cellulose, HPC, and hydroxymethylpropyl cellulose, HPMC), and cationic surfactants (benzyl hexadecyldimethylammonium chloride, CBz, phenylhexadecyldimethylammonium chloride, Fenil, and 2-phenylethyl hexadecyl dimethylammonium chloride, 2-Feniletil) were studied through conductivity, steady-state fluorescence and viscosity measurements. The critical aggregation concentration (cac), critical micelle concentration (cmc), micelle dissociation degree, and viscosity were determined for each polymer surfactant system. In addition, the cmc of a zwitterionic surfactant, coco amido propyl betaine (CAPB), was measured in aqueous solutions of different pHs. This last experiment was performed as a preliminary essay to study the interaction of zwitterionic surfactant with several types of biopolymers.