Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cathodes hybrides“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cathodes hybrides" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cathodes hybrides"
Dolphijn, Guillaume, Fernand Gauthy, Alexandru Vlad und Jean-François Gohy. „High Power Cathodes from Poly(2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate)/Li(NixMnyCoz)O2 Hybrid Composites“. Polymers 13, Nr. 6 (23.03.2021): 986. http://dx.doi.org/10.3390/polym13060986.
Der volle Inhalt der QuelleHuang, Kevin. „Performance of Several Excellent Oxide-Based Intercalation Cathodes for Aqueous Zn-Ion Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 5 (28.08.2023): 921. http://dx.doi.org/10.1149/ma2023-015921mtgabs.
Der volle Inhalt der QuelleChoudhury, Soumyadip, Marco Zeiger, Pau Massuti-Ballester, Simon Fleischmann, Petr Formanek, Lars Borchardt und Volker Presser. „Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries“. Sustainable Energy & Fuels 1, Nr. 1 (2017): 84–94. http://dx.doi.org/10.1039/c6se00034g.
Der volle Inhalt der QuelleWong, Min Hao, Zixuan Zhang, Xianfeng Yang, Xiaojun Chen und Jackie Y. Ying. „One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes“. Chemical Communications 51, Nr. 71 (2015): 13674–77. http://dx.doi.org/10.1039/c5cc04694g.
Der volle Inhalt der QuelleEdwards, Sean L., Ronen Fogel, Kudzai Mtambanengwe, Chamunorwa Togo, Richard Laubscher und Janice L. Limson. „Metallophthalocyanine/carbon nanotube hybrids: extending applications to microbial fuel cells“. Journal of Porphyrins and Phthalocyanines 16, Nr. 07n08 (Juli 2012): 917–26. http://dx.doi.org/10.1142/s1088424612501027.
Der volle Inhalt der QuelleCuentas-Gallegos, A. K., R. Vijayaraghavan, M. Lira-Cantú, N. Casañ-Pastor und P. Gómez-Romero. „Materiales híbridos basados en fosfato de vanadilo y polímeros conductores como cátodos en baterías reversibles de litio“. Boletín de la Sociedad Española de Cerámica y Vidrio 43, Nr. 2 (30.04.2004): 429–33. http://dx.doi.org/10.3989/cyv.2004.v43.i2.545.
Der volle Inhalt der QuelleHu, Ting, Lie Chen, Kai Yuan und Yiwang Chen. „Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells“. Nanoscale 7, Nr. 20 (2015): 9194–203. http://dx.doi.org/10.1039/c5nr01456e.
Der volle Inhalt der QuelleAn, Meichun, Mohammad Abdul Aziz und Yong Lak Joo. „Hybridization of Mesoporous Carbon and Iron Oxide for Better Mitigation of Polysulfide Shuttling in Li-S Batteries“. ECS Meeting Abstracts MA2022-01, Nr. 7 (07.07.2022): 660. http://dx.doi.org/10.1149/ma2022-017660mtgabs.
Der volle Inhalt der QuelleCuentas-Gallegos, A. K., M. R. Palacín, M. T. Colomer, J. R. Jurado und P. Gómez-Romero. „Estudios de materiales de cátodos híbridos y ánodos vítreos. Caracterización en celdas de ion litio“. Boletín de la Sociedad Española de Cerámica y Vidrio 41, Nr. 1 (28.02.2002): 115–21. http://dx.doi.org/10.3989/cyv.2002.v41.i1.708.
Der volle Inhalt der QuelleYang, Yiqun, Kayla Strong, Gaind P. Pandey und Lamartine Meda. „Nanostructured V2O5/Nitrogen-doped Graphene Hybrids for High Rate Lithium Storage“. MRS Advances 3, Nr. 60 (2018): 3495–500. http://dx.doi.org/10.1557/adv.2018.424.
Der volle Inhalt der QuelleDissertationen zum Thema "Cathodes hybrides"
Adjez, Yanis. „Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids“. Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Der volle Inhalt der QuelleNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions
Moraw, Franz Christian. „Hybrid PEM fuel cell : redox cathode approach“. Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/7720.
Der volle Inhalt der QuelleOsiecki, Tomasz, Colin Gerstenberger, Holger Seidlitz, Alexander Hackert und Lothar Kroll. „Behavior of Cathodic dip Paint Coated Fiber Reinforced Polymer/Metal Hybrids“. Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175536.
Der volle Inhalt der QuelleGustavsson, Lars-Erik. „Hollow Cathode Deposition of Thin Films“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6925.
Der volle Inhalt der QuelleSöderström, Daniel. „Modelling and Applications of the Hollow Cathode Plasma“. Doctoral thesis, Uppsala universitet, Elektricitetslära, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8747.
Der volle Inhalt der QuelleEzzedine, Mariam. „Fabrication of hierarchical hybrid nanostructured electrodes based on nanoparticles decorated carbon nanotubes for Li-Ion batteries“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX105/document.
Der volle Inhalt der QuelleThis thesis is devoted to the bottom-up fabrication of hierarchical hybrid nanostructured materials based on active vertically aligned carbon nanotubes (VACNTs) decorated with nanoparticles (NPs). Owing to their unique structure and electronic properties, VACNTs act as a support matrix and an excellent current collector, and thus enhance the electronic and ionic transport pathways. The nanostructuration and the confinement of sulfur (S) in a conductive host material improve its conductivity, while the nanostructuration of silicon (Si) accommodates better the volume change during the electrochemical reactions. In the first part of the thesis, we have synthesized VACNTs by a hot filament chemical vapor deposition (HF-CVD) method directly over aluminum and copper commercial foils without any pretreatment of the substrates. In the second part, we have decorated the sidewalls and the surface of the VACNT carpets with various LIB's active electrode materials, including S and Si NPs. We have also deposited and characterized nickel (Ni) NPs on CNTs as alternative materials for the cathode electrode. No conductive additives or any polymer binder have been added to the electrode composition. The CNTs decoration has been done systematically through two different methods: wet method by electrodeposition and dry method by physical vapor deposition (PVD). The obtained hybrid structures have been electrochemically tested separately in a coin cell against a lithium counter-electrode. Regarding the S evaporationon VACNTs, and the S@VACNTs structure, these topics are investigated for the first time to the best of our knowledge.Preliminary tests on the obtained nanostructured cathodes (S@VACNTs coated with alumina or polyaniline) have shown that it is possible to attain a specific capacity close to S theoretical storage capacity. The surface capacity of S@VACNTs, with 0.76 mg cm-2 of S, at C/20 rate reaches 1.15 mAh cm-2 at the first cycle. For the nanostructured anodes Si@VACNTs, with 4.11 mg cm-2 of Si showed an excellent surface capacity of 12.6 mAh cm-2, the highest value for nanostructured silicon anodes obtained so far. In the last part of the thesis, the fabricated nanostructured electrodes have been assembled in a full battery (Li2S/Si) and its electrochemical performances experimentally tested. The high and well-balanced surface capacities obtained for S and Si nanostructured electrodes pave the way for realization of high energy density, all-nanostructured LIBs and demonstrate the large potentialities of the proposed hierarchical hybrid nanostructures' concept
Holmes, Steven. „An investigation into the practical and theoretical aspects of hybrid cathodic protection“. Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/12280.
Der volle Inhalt der QuelleMyalo, Zolani. „Graphenised Lithium Iron Phosphate and Lithium Manganese Silicate Hybrid Cathode Systems for Lithium-Ion Batteries“. University of the Western Cape, 2017. http://hdl.handle.net/11394/6036.
Der volle Inhalt der QuelleThis research was based on the development and characterization of graphenised lithium iron phosphate-lithium manganese silicate (LiFePO4-Li2MnSiO4) hybrid cathode materials for use in Li-ion batteries. Although previous studies have mainly focused on the use of a single cathode material, recent works have shown that a combination of two or more cathode materials provides better performances compared to a single cathode material. The LiFePO4- Li2MnSiO4 hybrid cathode material is composed of LiFePO4 and Li2MnSiO4. The Li2MnSiO4 contributes its high working voltage ranging from 4.1 to 4.4 V and a specific capacity of 330 mA h g-1, which is twice that of the LiFePO4 which, in turn, offers its long cycle life, high rate capacity as well as good electrochemical and thermal stability. The two cathode materials complement each other's properties however they suffer from low electronic conductivities which were suppressed by coating the hybrid material with graphene nanosheets. The synthetic route entailed a separate preparation of the individual pristine cathode materials, using a sol-gel protocol. Then, the graphenised LiFePO4-Li2MnSiO4 and LiFePO4-Li2MnSiO4 hybrid cathodes were obtained in two ways: the hand milling (HM) method where the pristine cathodes were separately prepared and then mixed with graphene using a pestle and mortar, and the in situ sol-gel (SG) approach where the Li2MnSiO4 and graphene were added into the LiFePO4 sol, stirred and calcined together.
2021-04-30
El, jouad Zouhair. „Réalisation et caractérisation des cellules photovoltaïques organiques“. Thesis, Angers, 2016. http://www.theses.fr/2016ANGE0022/document.
Der volle Inhalt der QuelleThis thesis concerns elaboration and characterization of classical and inverse organic photovoltaic cells, specifically improving the anodic and cathodic buffer layers. We started by improving the cathode buffer layers with different electron donors: copper phthalocyanine CuPc, subphtalocyanine SubPc and thiophene derivatives (BSTV and BOTV). In the first case of electron donor (CuPc), we highlighted the effect of the thin layer of cesium compound, used as a cathodic buffer layer in inverse cells, on the collection of electrons after heat treatment.We have also shown that the hybrid cathodic buffer layer, Alq3 (9 nm) / Ca (3nm) improves the cell performance whatever the electron donor without annealing. In the case of thiophene derivatives, we have shown how the morphology of the organic layers surface can influence the performance of organic photovoltaic cells. In the case of SubPc used in inverse cells, we studied the effect of the deposition rate of the layer on the morphology of SubPc surface.Regarding the improvement of the anodic buffer layers, we investigated those based on the SubPc and pentathiophene (5T) in classical cells. After optimization of the electron donors thickness, we have shown that the bilayer MoO3 (3 nm) / CuI (1.5 nm) used as an anodic buffer layer, improves cell performances, whatever the electron donor. In the case of SubPc, we obtained a efficiency approaching 5%
Vickers, Simon. „Particle in cell and hybrid simulations of the Z double-post-hole convolute cathode plasma evolution and dynamics“. Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/17874.
Der volle Inhalt der QuelleBuchteile zum Thema "Cathodes hybrides"
Wen, Zhenhai, Suqin Ci und Junhong Chen. „Nanocarbon-Based Hybrids as Cathode Electrocatalysts for Microbial Fuel Cells“. In Nanocarbons for Advanced Energy Conversion, 215–32. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527680016.ch8.
Der volle Inhalt der QuelleMurugesan, Chinnasamy, Baskar Senthilkumar, Kriti Choudhary und Prabeer Barpanda. „Cobalt–Phosphate-Based Insertion Material as a Multifunctional Cathode for Rechargeable Hybrid Sodium–Air Batteries“. In Recent Research Trends in Energy Storage Devices, 35–41. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6394-2_5.
Der volle Inhalt der QuelleGodefroidt, Emile, Bjorn Van Belleghem und Tim Soetens. „Effectiveness and Throwing Power of Hybrid Anode Cathodic Protection in Chloride Contaminated Reinforced Concrete“. In RILEM Bookseries, 175–86. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-75507-1_18.
Der volle Inhalt der QuelleGoyal, Megha, und Tapas Kumar Mandal. „Influence of Different Precipitating Agents on the Synthesis of NiMn-LDHs Based Cathode Materials for High Performance Hybrid Devices“. In Springer Proceedings in Physics, 187–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1971-0_28.
Der volle Inhalt der QuelleParbey, Joseph, Fehrs Adu-Gyamfi und Michael Gyan. „Progress in Cathode Materials for Methanol Fuel Cells“. In Methanol Fuel - New Developments, Perspectives and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1003869.
Der volle Inhalt der QuelleRajpurohit, Praveen, und Manaswini Behera. „Light-assisted microbial electrochemical technologies for bioelectricity generation and product recovery“. In Resource Recovery from Industrial Wastewater through Microbial Electrochemical Technologies, 61–80. IWA Publishing, 2024. http://dx.doi.org/10.2166/9781789063813_0061.
Der volle Inhalt der QuelleLitovko, Iryna, Alexey Goncharov, Andrew Dobrovolskyi und Iryna Naiko. „The Emerging Field Trends Erosion-Free Electric Hall Thrusters Systems“. In Plasma Science and Technology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99096.
Der volle Inhalt der QuelleM. Orona-Hinojos, Jesus. „Innovative Double Cathode Configuration for Hybrid ECM + EDM Blue Arc Drilling“. In Drilling Technology. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97547.
Der volle Inhalt der QuelleArif, Khizra, Abdul Shakoor, Muhammad Awais, Marvi Dashi, Behram Khan Ajat Khel, Bentham Science Publisher Sami Ur Rehman, Khansa Masood, Farah Hussain, Waheed Alam und Muhammad Atif. „Graphene-based Materials for Electrochemical Energy Storage Devices-EESDs; Opportunities and Future Perspective“. In The 2-Dimensional World of Graphene, 160–76. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815238938124010011.
Der volle Inhalt der QuelleMohammadi, Arash. „Hybrid nanomaterials of hollow carbon spheres as cathode materials“. In Nanostructured Lithium-ion Battery Materials, 87–109. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-443-13338-1.00024-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cathodes hybrides"
Major, K., G. Brisard und J. Veilleux. „Lithium Iron Phosphate Coatings Deposited by Means of Inductively-Coupled Thermal Plasma“. In ITSC2015, herausgegeben von A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen und C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0566.
Der volle Inhalt der QuelleTucker, David, Larry Lawson, Thomas P. Smith und Comas Haynes. „Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation“. In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97107.
Der volle Inhalt der QuellePezzini, Paolo, Sue Celestin und David Tucker. „Control Impacts of Cold-Air Bypass on Pressurized Fuel Cell Turbine Hybrids“. In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6523.
Der volle Inhalt der QuelleMagistri, Loredana, Mario L. Ferrari, Alberto Traverso, Paola Costamagna und Aristide F. Massardo. „Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part C — Whole-Cycle Model“. In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53845.
Der volle Inhalt der QuelleLambruschini, Fabio, Mario L. Ferrari, Alberto Traverso und Luca Larosa. „Emergency Shutdown Management in Fuel Cell Gas Turbine Hybrid Systems“. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25432.
Der volle Inhalt der QuelleZaccaria, Valentina, Zachary Branum und David Tucker. „Fuel Cell Temperature Control With a Pre-Combustor in SOFC Gas Turbine Hybrids During Load Changes“. In ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59278.
Der volle Inhalt der QuelleKroll, Florian, Annette Nielsen und Stephan Staudacher. „Transient Performance and Control System Design of Solid Oxide Fuel Cell/Gas Turbine Hybrids“. In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50232.
Der volle Inhalt der QuelleHao, Xia, Shenghao Wang, Takeaki Sakurai und Katsuhiro Akimoto. „The effect of cathode buffer in small molecule organic solar cells“. In 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.047.
Der volle Inhalt der QuelleChen, Jinwei, Kuanying Gao, Maozong Liang und Huisheng Zhang. „Performance Evaluation of a SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63745.
Der volle Inhalt der QuelleBanta, Larry E., Bernardo Restrepo, Alex J. Tsai und David Tucker. „Cathode Temperature Management During Hybrid System Startup“. In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33121.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cathodes hybrides"
Lawson und Thompson. L52100 Hot-Spot Protection for Impressed Current Systems. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2003. http://dx.doi.org/10.55274/r0010153.
Der volle Inhalt der Quelle