Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Catalyzed Transamidation.

Zeitschriftenartikel zum Thema „Catalyzed Transamidation“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Catalyzed Transamidation" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Laclef, Sylvain, Maria Kolympadi Marković und Dean Marković. „Amide Synthesis by Transamidation of Primary Carboxamides“. Synthesis 52, Nr. 21 (04.06.2020): 3231–42. http://dx.doi.org/10.1055/s-0040-1707133.

Der volle Inhalt der Quelle
Annotation:
The amide functionality is one of the most important and widely used groups in nature and in medicinal and industrial chemistry. Because of its importance and as the actual synthetic methods suffer from major drawbacks, such as the use of a stoichiometric amount of an activating agent, epimerization and low atom economy, the development of new and efficient amide bond forming reactions is needed. A number of greener and more effective strategies have been studied and developed. The transamidation of primary amides is particularly attractive in terms of atom economy and as ammonia is the single byproduct. This review summarizes the advancements in metal-catalyzed and organocatalyzed transamidation methods. Lewis and Brønsted acid transamidation catalysts are reviewed as a separate group. The activation of primary amides by promoter, as well as catalyst- and promoter-free protocols, are also described. The proposed mechanisms and key intermediates of the depicted transamidation reactions are shown.1 Introduction2 Metal-Catalyzed Transamidations3 Organocatalyzed Transamidations4 Lewis and Brønsted Acid Catalysis5 Promoted Transamidation of Primary Amides6 Catalyst- and Promoter-Free Protocols7 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chandrasekaran, Srinivasan, und Rajagopal Ramkumar. „Catalyst-Free, Metal-Free, and Chemoselective Transamidation of Activated Secondary Amides“. Synthesis 51, Nr. 04 (18.10.2018): 921–32. http://dx.doi.org/10.1055/s-0037-1610664.

Der volle Inhalt der Quelle
Annotation:
A simple protocol, which is catalyst-free, metal-free, and chemoselective, for transamidation of activated secondary amides in ethanol as solvent under mild conditions is reported. A wide range of amines, amino acids, amino alcohols, and the substituents, which are problematic in catalyzed transamidation, are tolerated in this methodology. The transamidation reaction was successfully extended to water as the medium as well. The present methodology appears to be better than the other catalyzed transamidations reported recently.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Szostak, Michal, und Guangchen Li. „Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage“. Synthesis 52, Nr. 18 (15.05.2020): 2579–99. http://dx.doi.org/10.1055/s-0040-1707101.

Der volle Inhalt der Quelle
Annotation:
In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal-catalyzed, transition-metal-free, or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN → π*C=O delocalization in amides and nO → π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC-catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods.1 Introduction2 Transamidation of Amides2.1 Transamidation by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)2.2 Transition-Metal-Free Transamidation via Tetrahedral Intermediates2.3 Reductive Transamidation2.4 New Acyl-Transfer Reagents2.5 Tandem Transamidations3 Amidation of Esters3.1 Amidation of Esters by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)3.2 Transition-Metal-Free Amidation of Esters via Tetrahedral Intermediates3.3 Reductive Amidation of Esters4 Transamidations of Amides by Other Mechanisms5 Conclusions and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rachel, N. M., und J. N. Pelletier. „One-pot peptide and protein conjugation: a combination of enzymatic transamidation and click chemistry“. Chemical Communications 52, Nr. 12 (2016): 2541–44. http://dx.doi.org/10.1039/c5cc09163b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sharma, Manu, Harikrishnan K, Umesh Kumar Gaur und Ashok K. Ganguli. „Synthesis of mesoporous SiO2–CeO2 hybrid nanostructures with high catalytic activity for transamidation reaction“. RSC Advances 13, Nr. 19 (2023): 13134–41. http://dx.doi.org/10.1039/d3ra01552a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dander, Jacob E., Emma L. Baker und Neil K. Garg. „Nickel-catalyzed transamidation of aliphatic amide derivatives“. Chemical Science 8, Nr. 9 (2017): 6433–38. http://dx.doi.org/10.1039/c7sc01980g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yang, Dahyeon, Taeil Shin, Hyunwoo Kim und Sunwoo Lee. „Nickel/briphos-catalyzed transamidation of unactivated tertiary amides“. Organic & Biomolecular Chemistry 18, Nr. 31 (2020): 6053–57. http://dx.doi.org/10.1039/d0ob01271h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ojeda-Porras, Andrea, und Diego Gamba-Sánchez. „Transamidation of thioacetamide catalyzed by SbCl3“. Tetrahedron Letters 56, Nr. 29 (Juli 2015): 4308–11. http://dx.doi.org/10.1016/j.tetlet.2015.05.067.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yedage, Subhash L., Denvert S. D'silva und Bhalchandra M. Bhanage. „MnO2 catalyzed formylation of amines and transamidation of amides under solvent-free conditions“. RSC Advances 5, Nr. 98 (2015): 80441–49. http://dx.doi.org/10.1039/c5ra13094h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Arefi, Marzban, und Akbar Heydari. „Transamidation of primary carboxamides, phthalimide, urea and thiourea with amines using Fe(OH)3@Fe3O4 magnetic nanoparticles as an efficient recyclable catalyst“. RSC Advances 6, Nr. 29 (2016): 24684–89. http://dx.doi.org/10.1039/c5ra27680b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yang, Xin, Linlin Fan und Ying Xue. „Mechanistic insights into l-proline-catalyzed transamidation of carboxamide with benzylamine from density functional theory calculations“. RSC Adv. 4, Nr. 57 (2014): 30108–17. http://dx.doi.org/10.1039/c4ra04105d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Guo, Weijie, Jingjun Huang, Hongxiang Wu, Tingting Liu, Zhongfeng Luo, Junsheng Jian und Zhuo Zeng. „One-pot transition-metal free transamidation to sterically hindered amides“. Organic Chemistry Frontiers 5, Nr. 20 (2018): 2950–54. http://dx.doi.org/10.1039/c8qo00591e.

Der volle Inhalt der Quelle
Annotation:
A highly efficient one-pot transamidation of primary amides has been developed under transition-metal free conditions, generating a variety of amides including hindered amides in good yield (up to 86%) catalyzed by CsF.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Feng, Fang-Fang, Xuan-Yu Liu, Chi Wai Cheung und Jun-An Ma. „Tungsten-Catalyzed Transamidation of Tertiary Alkyl Amides“. ACS Catalysis 11, Nr. 12 (02.06.2021): 7070–79. http://dx.doi.org/10.1021/acscatal.1c01840.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Yang, Yang, Jian Liu, Fadhil S. Kamounah, Gianluca Ciancaleoni und Ji-Woong Lee. „A CO2-Catalyzed Transamidation Reaction“. Journal of Organic Chemistry 86, Nr. 23 (01.11.2021): 16867–81. http://dx.doi.org/10.1021/acs.joc.1c02077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Vanjari, Rajeshwer, Bharat Kumar Allam und Krishna Nand Singh. „Hypervalent iodine catalyzed transamidation of carboxamides with amines“. RSC Adv. 3, Nr. 6 (2013): 1691–94. http://dx.doi.org/10.1039/c2ra22459c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Skoczinski, Pia, Mónica K. Espinoza Cangahuala, Dina Maniar und Katja Loos. „Lipase-Catalyzed Transamidation of Urethane-Bond-Containing Ester“. ACS Omega 5, Nr. 3 (23.12.2019): 1488–95. http://dx.doi.org/10.1021/acsomega.9b03203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Ojeda-Porras, Andrea, und Diego Gamba-Sanchez. „ChemInform Abstract: Transamidation of Thioacetamide Catalyzed by SbCl3.“ ChemInform 46, Nr. 43 (Oktober 2015): no. http://dx.doi.org/10.1002/chin.201543076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Rao, Sadu Nageswara, Darapaneni Chandra Mohan und Subbarayappa Adimurthy. „H-β-zeolite catalyzed transamidation of carboxamides, phthalimide, formamides and thioamides with amines under neat conditions“. RSC Advances 5, Nr. 115 (2015): 95313–17. http://dx.doi.org/10.1039/c5ra16933j.

Der volle Inhalt der Quelle
Annotation:
Efficient transamidation of unactivated carboxamides, phthalimides, formamides and thioamides with amines under solvent-free conditions using H-β-zeolite as a green and recyclable heterogeneous catalyst is described.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Liu, Juyan, und Congying Zhao. „Lactic Acid-Catalyzed Transamidation Reactions of Carboxamides with Amines“. Chinese Journal of Organic Chemistry 41, Nr. 6 (2021): 2310. http://dx.doi.org/10.6023/cjoc202010010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Becerra-Figueroa, Liliana, Andrea Ojeda-Porras und Diego Gamba-Sánchez. „Transamidation of Carboxamides Catalyzed by Fe(III) and Water“. Journal of Organic Chemistry 79, Nr. 10 (05.05.2014): 4544–52. http://dx.doi.org/10.1021/jo500562w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Cheung, Chi Wai, Marten Leendert Ploeger und Xile Hu. „Nickel-Catalyzed Reductive Transamidation of Secondary Amides with Nitroarenes“. ACS Catalysis 7, Nr. 10 (22.09.2017): 7092–96. http://dx.doi.org/10.1021/acscatal.7b02859.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Hoerter, Justin M., Karin M. Otte, Samuel H. Gellman und Shannon S. Stahl. „Mechanism of AlIII-Catalyzed Transamidation of Unactivated Secondary Carboxamides“. Journal of the American Chemical Society 128, Nr. 15 (April 2006): 5177–83. http://dx.doi.org/10.1021/ja060331x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Tian, Qingqiang, Zongjie Gan, Xuetong Wang, Dan Li, Wen Luo, Huajun Wang, Zeshu Dai und Jianyong Yuan. „Imidazolium Chloride: An Efficient Catalyst for Transamidation of Primary Amines“. Molecules 23, Nr. 9 (02.09.2018): 2234. http://dx.doi.org/10.3390/molecules23092234.

Der volle Inhalt der Quelle
Annotation:
A highly efficient and convenient protocol of imidazolium chloride (30 mol %) catalyzed amidation of amines with moderate to excellent yields was reported. The protocol shows broad substrate scope for aromatic, aliphatic, and heterocyclic primary amines.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ding, Wen, Shaoyu Mai und Qiuling Song. „Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles“. Beilstein Journal of Organic Chemistry 11 (11.11.2015): 2158–65. http://dx.doi.org/10.3762/bjoc.11.233.

Der volle Inhalt der Quelle
Annotation:
A copper-catalyzed oxidative direct formation of amides from nonactivated carboxylic acids and azoles with dioxygen as an activating reagent is reported. The azole amides were produced in good to excellent yields with a broad substrate scope. The mechanistic studies reveal that oxygen plays an essential role in the success of the amidation reactions with copper peroxycarboxylate as the key intermediate. Transamidation occurs smoothly between azole amide and a variety of amines.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Atkinson, Benjamin N., A. Rosie Chhatwal, Helen V. Lomax, James W. Walton und Jonathan M. J. Williams. „Transamidation of primary amides with amines catalyzed by zirconocene dichloride“. Chemical Communications 48, Nr. 95 (2012): 11626. http://dx.doi.org/10.1039/c2cc37427g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Iordanidou, Domna, Michael G. Kallitsakis, Marina A. Tzani, Dimitris I. Ioannou, Tryfon Zarganes-Tzitzikas, Constantinos G. Neochoritis, Alexander Dömling, Michael A. Terzidis und Ioannis N. Lykakis. „Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones“. Molecules 27, Nr. 14 (08.07.2022): 4395. http://dx.doi.org/10.3390/molecules27144395.

Der volle Inhalt der Quelle
Annotation:
The synthesis of 3,4-dihydroquinoxalin-2-ones via the selective reduction of aromatic, multifunctional nitro precursors catalyzed by supported gold nanoparticles is reported. The reaction proceeds through the in situ formation of the corresponding amines under heterogeneous transfer hydrogenation of the initial nitro compounds catalyzed by the commercially available Au/TiO2-Et3SiH catalytic system, followed by an intramolecular C-N transamidation upon treatment with silica acting as a mild acid. Under the present conditions, the Au/TiO2-TMDS system was also found to catalyze efficiently the present selective reduction process. Both transfer hydrogenation processes showed very good functional-group tolerance and were successfully applied to access more structurally demanding products bearing other reducible moieties such as chloro, aldehyde or methyl ketone. An easily scalable (up to 1 mmol), low catalyst loading (0.6 mol%) synthetic protocol was realized, providing access to this important scaffold. Under these mild catalytic conditions, the desired products were isolated in good to high yields and with a TON of 130. A library analysis was also performed to demonstrate the usefulness of our synthetic strategy and the physicochemical profile of the derivatives.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Buchspies, Jonathan, Md Mahbubur Rahman und Michal Szostak. „Transamidation of Amides and Amidation of Esters by Selective N–C(O)/O–C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)–NHC Complexes“. Molecules 26, Nr. 1 (02.01.2021): 188. http://dx.doi.org/10.3390/molecules26010188.

Der volle Inhalt der Quelle
Annotation:
The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Hoerter, Justin M., Karin M. Otte, Samuel H. Gellman, Qiang Cui und Shannon S. Stahl. „Discovery and Mechanistic Study of AlIII-Catalyzed Transamidation of Tertiary Amides“. Journal of the American Chemical Society 130, Nr. 2 (Januar 2008): 647–54. http://dx.doi.org/10.1021/ja0762994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Grover, Rajesh K., Amit P. Kesarwani, Gaurav K. Srivastava, Bijoy Kundu und Raja Roy. „Base catalyzed intramolecular transamidation of 2-aminoquinazoline derivatives on solid phase“. Tetrahedron 61, Nr. 21 (Mai 2005): 5011–18. http://dx.doi.org/10.1016/j.tet.2005.03.047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ma, Juan, Feng Zhang, Jingyu Zhang und Hang Gong. „Cobalt(II)-Catalyzed N -Acylation of Amines through a Transamidation Reaction“. European Journal of Organic Chemistry 2018, Nr. 35 (12.06.2018): 4940–48. http://dx.doi.org/10.1002/ejoc.201800253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Becerra-Figueroa, Liliana, Andrea Ojeda-Porras und Diego Gamba-Sanchez. „ChemInform Abstract: Transamidation of Carboxamides Catalyzed by Fe(III) and Water.“ ChemInform 45, Nr. 45 (23.10.2014): no. http://dx.doi.org/10.1002/chin.201445062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Yu, Subeen, Taeil Shin, Maosheng Zhang, Yuanzhi Xia, Hyunwoo Kim und Sunwoo Lee. „Nickel/Briphos-Catalyzed Direct Transamidation of Unactivated Secondary Amides Using Trimethylsilyl Chloride“. Organic Letters 20, Nr. 23 (16.11.2018): 7563–66. http://dx.doi.org/10.1021/acs.orglett.8b03304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Atkinson, Benjamin N., A. Rosie Chhatwal, Helen V. Lomax, James W. Walton und Jonathan M. J. Williams. „ChemInform Abstract: Transamidation of Primary Amides with Amines Catalyzed by Zirconocene Dichloride.“ ChemInform 44, Nr. 14 (20.03.2013): no. http://dx.doi.org/10.1002/chin.201314083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ayub Ali, Md, S. M. A. Hakim Siddiki, Kenichi Kon und Ken-ichi Shimizu. „Fe3+-exchanged clay catalyzed transamidation of amides with amines under solvent-free condition“. Tetrahedron Letters 55, Nr. 7 (Februar 2014): 1316–19. http://dx.doi.org/10.1016/j.tetlet.2013.12.111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Bhattacharya, Suchandra, Pranab Ghosh und Basudeb Basu. „Graphene oxide (GO) catalyzed transamidation of aliphatic amides: An efficient metal-free procedure“. Tetrahedron Letters 59, Nr. 10 (März 2018): 899–903. http://dx.doi.org/10.1016/j.tetlet.2018.01.060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wu, Ji-Wei, Ya-Dong Wu, Jian-Jun Dai und Hua-Jian Xu. „Benzoic Acid-Catalyzed Transamidation Reactions of Carboxamides, Phthalimide, Ureas and Thioamide with Amines“. Advanced Synthesis & Catalysis 356, Nr. 11-12 (20.06.2014): 2429–36. http://dx.doi.org/10.1002/adsc.201400068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wagh, Ganesh D., Sagar P. Pathare und Krishnacharya G. Akamanchi. „Sulfated-Tungstate-Catalyzed Synthesis of Ureas/Thioureas via Transamidation and Synthesis of Forchlorofenuron“. ChemistrySelect 3, Nr. 25 (02.07.2018): 7049–53. http://dx.doi.org/10.1002/slct.201800954.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Mali, Anil S., Krishna Indalkar und Ganesh U. Chaturbhuj. „Solvent-free, Efficient Transamidation of Carboxamides with Amines Catalyzed by Recyclable Sulfated Polyborate Catalyst“. Organic Preparations and Procedures International 53, Nr. 4 (04.07.2021): 369–78. http://dx.doi.org/10.1080/00304948.2021.1908047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Shi, Min, und Shi‐Cong Cui. „Transamidation Catalyzed by a Recoverable and Reusable PolyDMAP‐Based Hafnium Chloride and Montmorillonite KSF“. Synthetic Communications 35, Nr. 22 (November 2005): 2847–58. http://dx.doi.org/10.1080/00397910500297180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Çalimsiz, Selçuk, und Mark A. Lipton. „Synthesis ofN-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine: An Application of Lanthanide-Catalyzed Transamidation“. Journal of Organic Chemistry 70, Nr. 16 (August 2005): 6218–21. http://dx.doi.org/10.1021/jo050518r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Dai, Y., N. L. Dudek, T. B. Patel und N. A. Muma. „Transglutaminase-Catalyzed Transamidation: A Novel Mechanism for Rac1 Activation by 5-Hydroxytryptamine2A Receptor Stimulation“. Journal of Pharmacology and Experimental Therapeutics 326, Nr. 1 (09.04.2008): 153–62. http://dx.doi.org/10.1124/jpet.107.135046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Zhang, Min, Sebastian Imm, Sebastian Bähn, Lorenz Neubert, Helfried Neumann und Matthias Beller. „Efficient Copper(II)-Catalyzed Transamidation of Non-Activated Primary Carboxamides and Ureas with Amines“. Angewandte Chemie International Edition 51, Nr. 16 (07.03.2012): 3905–9. http://dx.doi.org/10.1002/anie.201108599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Mishra, Ankush, Sundaram Singh und Vandana Srivastava. „Cerium Catalyzed Transamidation of Secondary Amides under Ultrasound Irradiation: A Breakthrough in Organic Synthesis“. Asian Journal of Organic Chemistry 7, Nr. 8 (25.06.2018): 1600–1604. http://dx.doi.org/10.1002/ajoc.201800258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Zhang, Min, Sebastian Imm, Sebastian Bähn, Lorenz Neubert, Helfried Neumann und Matthias Beller. „Efficient Copper(II)-Catalyzed Transamidation of Non-Activated Primary Carboxamides and Ureas with Amines“. Angewandte Chemie 124, Nr. 16 (07.03.2012): 3971–75. http://dx.doi.org/10.1002/ange.201108599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Wu, Ji-Wei, Ya-Dong Wu, Jian-Jun Dai und Hua-Jian Xu. „ChemInform Abstract: Benzoic Acid-Catalyzed Transamidation Reactions of Carboxamides, Phthalimide, Ureas and Thioamide with Amines.“ ChemInform 46, Nr. 7 (29.01.2015): no. http://dx.doi.org/10.1002/chin.201507058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ayub Ali, Md, S. M. A. Hakim Siddiki, Kenichi Kon und Ken-ichi Shimizu. „ChemInform Abstract: Fe3+-Exchanged Clay Catalyzed Transamidation of Amides with Amines under Solvent-Free Condition.“ ChemInform 45, Nr. 31 (17.07.2014): no. http://dx.doi.org/10.1002/chin.201431086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wu, Weirong. „Theoretical Insight into the Mechanism of an Efficient ʟ-Proline-catalyzed Transamidation of Acetamide with Benzylamine“. Bulletin of the Korean Chemical Society 35, Nr. 9 (20.09.2014): 2673–78. http://dx.doi.org/10.5012/bkcs.2014.35.9.2673.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Zhang, Min, Sebastian Imm, Sebastian Baehn, Lorenz Neubert, Helfried Neumann und Matthias Beller. „ChemInform Abstract: Efficient Copper(II)-Catalyzed Transamidation of Non-Activated Primary Carboxamides and Ureas with Amines.“ ChemInform 43, Nr. 36 (09.08.2012): no. http://dx.doi.org/10.1002/chin.201236064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Fu, Renzhong, Yang Yang, Zhikai Chen, Wenchen Lai, Yongfeng Ma, Quan Wang und Rongxin Yuan. „Microwave-assisted heteropolyanion-based ionic liquids catalyzed transamidation of non-activated carboxamides with amines under solvent-free conditions“. Tetrahedron 70, Nr. 50 (Dezember 2014): 9492–99. http://dx.doi.org/10.1016/j.tet.2014.10.066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Rao, Sadu Nageswara, Darapaneni Chandra Mohan und Subbarayappa Adimurthy. „ChemInform Abstract: H-β-Zeolite Catalyzed Transamidation of Carboxamides, Phthalimide, Formamides and Thioamides with Amines under Neat Conditions.“ ChemInform 47, Nr. 12 (März 2016): no. http://dx.doi.org/10.1002/chin.201612077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie