Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Catalytic performance“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Catalytic performance" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Catalytic performance"
Alom, Jahangir, Md Saif Hasan, Md Asaduzaman, Mohammad Taufiq Alam, Dalel Belhaj, Raja Selvaraj, Md Ashraf Hossain, Masoumeh Zargar und Mohammad Boshir Ahmed. „Catalytical Performance of Heteroatom Doped and Undoped Carbon-Based Materials“. Catalysts 13, Nr. 5 (29.04.2023): 823. http://dx.doi.org/10.3390/catal13050823.
Der volle Inhalt der QuelleVogt, Claus Dieter, E. Ohara, M. Brayer, M. Makino und E. R. Becker. „Predicting catalytic performance“. ATZautotechnology 1, Nr. 4 (Juli 2001): 62–65. http://dx.doi.org/10.1007/bf03246625.
Der volle Inhalt der QuelleParkinson, Gareth S. „Single-Atom Catalysis: How Structure Influences Catalytic Performance“. Catalysis Letters 149, Nr. 5 (25.02.2019): 1137–46. http://dx.doi.org/10.1007/s10562-019-02709-7.
Der volle Inhalt der QuelleSun, Zhengxiang, Rui Wang, Vitaly Edwardovich Matulis und Korchak Vladimir. „Structure, Synthesis, and Catalytic Performance of Emerging MXene-Based Catalysts“. Molecules 29, Nr. 6 (14.03.2024): 1286. http://dx.doi.org/10.3390/molecules29061286.
Der volle Inhalt der QuelleMitra, Suchareeta, Harry W. Jarrett und Luis A. Jurado. „High-performance catalytic chromatography“. Journal of Chromatography A 1076, Nr. 1-2 (Mai 2005): 71–82. http://dx.doi.org/10.1016/j.chroma.2005.04.019.
Der volle Inhalt der QuelleNurhadi, Mukhamad, Ratna Kusumawardani und Hadi Nur. „Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant“. Bulletin of Chemical Reaction Engineering & Catalysis 13, Nr. 1 (02.04.2018): 113. http://dx.doi.org/10.9767/bcrec.13.1.1171.113-118.
Der volle Inhalt der QuelleCheong, Ying-Wai, Ka-Lun Wong, Boon Seng Ooi, Tau Chuan Ling, Fitri Khoerunnisa und Eng-Poh Ng. „Effects of Synthesis Parameters on Crystallization Behavior of K-MER Zeolite and Its Morphological Properties on Catalytic Cyanoethylation Reaction“. Crystals 10, Nr. 2 (23.01.2020): 64. http://dx.doi.org/10.3390/cryst10020064.
Der volle Inhalt der QuelleLiu, Yuxi, Guofeng Zhao, Dingsheng Wang und Yadong Li. „Heterogeneous catalysis for green chemistry based on nanocrystals“. National Science Review 2, Nr. 2 (30.04.2015): 150–66. http://dx.doi.org/10.1093/nsr/nwv014.
Der volle Inhalt der QuelleLiu, Yanbiao, Xiang Liu, Shengnan Yang, Fang Li, Chensi Shen, Chunyan Ma, Manhong Huang und Wolfgang Sand. „Ligand-Free Nano-Au Catalysts on Nitrogen-Doped Graphene Filter for Continuous Flow Catalysis“. Nanomaterials 8, Nr. 9 (05.09.2018): 688. http://dx.doi.org/10.3390/nano8090688.
Der volle Inhalt der QuelleSang, Chao, und Yunjun Luo. „Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer“. Polymers 16, Nr. 15 (24.07.2024): 2107. http://dx.doi.org/10.3390/polym16152107.
Der volle Inhalt der QuelleDissertationen zum Thema "Catalytic performance"
Afshar, Farniya Ali. „Development and performance analysis of autonomous catalytic micropumps“. Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/284892.
Der volle Inhalt der QuelleOne of the main challenges in the engineering of nanomachines, besides the difficulties to fabricate complex nanometric objects, is how to power them. The application of external fields is a common and easy way to actuate relatively large machines. However, when the size of the machines becomes smaller, the transfer of power from the macroscopic scale to the nanoscale becomes problematic. Therefore, the development of fully autonomous nanoscale systems which can self-generate their required power is very desirable. Biological systems are the source of numerous examples of natural micro/nanoscale autonomous motors. The conversion of chemical energy into directional motion is the key point behind the high efficient nanofactory of biomolecular machines. Therefore there is a high interest to create novel artificial machines which can self-propel and perform autonomous activities in a similar way the impressive molecular machinery does in living organisms. Many research activities have recently focused on chemically powered motors and micropumps based on the local self-generation of gradients. The present research work deals with the catalytic micropump concept which was reported for the first time in 2005. A catalytic micropump is an active system which has the capability of triggering electrohydrodynamic phenomena due to an (electro)chemical reaction taken place on a micro/nano bimetallic structure. Although catalytic devices have been the subject of previous reports in which their nanotechnological applications have started to be demonstrated, the mechanism of the chemo-mechanical actuation has been less studied. That is in part due to the complex interrelation between the catalytic reactions and the electro-hydrodynamic phenomena. As a consequence there is still a number of intriguing questions that require further investigation for establishing the role played by the different processes and for achieving a better understanding of the mechanism behind them. Therefore, the research was focused on the full characterization of the chemomechanical actuation and the understanding of the main physicochemical factors governing the operating mechanism of Au-Pt bimetallic micropumps in presence of hydrogen peroxide fuel. The investigations were supported not only by experimental findings but also by numerical simulations. These fundamental studies are of high importance not only for catalytic micropumps but also for other autonomous micro/nano swimmers or active self-propelled colloids. The studies were also extended to other bimetallic structures (Au-Ag, Au-Ru, Au-Rh, Cu-Ag, Cu-Ni, Ni-Ru and Ni-Ag) and to semiconductor/metallic structures (p-doped Si/Pt, n-doped Si/Pt) to evaluate their potentialities as catalytic micropumps in presence of the same chemical fuel. In the last case photoactivation of the catalytic reactions can be accomplished which provides an added value to these pumps as novel photochemical-electrohydrodynamic switches. These achievements can open new and promising research activities in the field of catalytic actuators and nanomotors. The thesis work also describes one of the potential applications of these active devices which is related to the autonomous material guiding and self-assembly on particular locations of a sample. That allows fabricating nanostructured surfaces in an autonomous way with potential nanotechnological impact in a wide range of fields.
Chawla, Neha. „The Catalytic Performance of Lithium Oxygen Battery Cathodes“. FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3810.
Der volle Inhalt der QuelleGómez, Sanz Sara. „Exploiting carbon in enhancing the performance of catalytic materials“. Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708360.
Der volle Inhalt der QuelleBerger, Christine, Rainer A. Rakoczy, Roger Gläser und Jens Weitkamp. „Synthesis and catalytic performance of large zeolite Y crystals“. Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196408.
Der volle Inhalt der QuelleBerger, Christine, Rainer A. Rakoczy, Roger Gläser und Jens Weitkamp. „Synthesis and catalytic performance of large zeolite Y crystals“. Diffusion fundamentals 2 (2005) 82, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14418.
Der volle Inhalt der QuelleGomes, Flores Camila. „Synthesis and catalytic performance of metal-zeolite composite catalysts“. Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R010/document.
Der volle Inhalt der QuelleZeolites are microporous crystalline solids with a regular pore system, which have found numerous applications in industrial processes such as oil refining, organic synthesis, adsorption and separation. Very small pore size of zeolites (~1 nm) imposes diffusional limitations for many catalytic reactions. The catalytic performance of metal zeolite bifunctional catalysts can be improved by creating hierarchical zeolites and by controlling localization of metal species within the zeolite crystals. Impregnation is an efficient method for the preparation of bi-functional cobalt-zeolite catalysts for the direct production of liquid fuels from syngas. In the catalysts prepared via impregnation, cobalt occupies the cation exchange positions in the zeolite micropores decreasing the number of acid sites available for hydrocarbon isomerization and cracking. Isolation of cobalt ions in cationic positions reduces catalyst reducibility, makes it difficult to achieve metallic state and decreases the amount available metal active sites for Fischer Tropsch synthesis. We found that the presence of Na+ instead of H+ ions in the exchange positions of the large pore Beta zeolite favored deposition of cobalt on the external surface of the zeolite, while the acid sites in the zeolite micropores were not much affected. The large pore cobalt Beta zeolite catalyst with cobalt species localized on the external surface and high concentration of acid sites in the zeolite crystals has showed enhanced catalytic performance in Fischer-Tropsch synthesis combined with hydrocarbon isomerization. Another approach of this thesis has addressed creating hierarchical zeolites with several levels of meso- and microporosity using sacrificial templates. Hierarchical zeolites synthesized using cobalt containing carbon nanotubes, as sacrificial hard templates exhibited higher catalytic activity, lower methane selectivity and higher selectivity to isomerized hydrocarbons in Fischer-Tropsch synthesis. The synthesis strategy based on metal carbon nanotubes as sacrificial templates has been extended to other metals such as nickel and magnesium. This new approach to the synthesis of metal-zeolite composite increases the mesoporosity and improves the catalytic performance in hydrogenation of aromatics and anisole acylation
Medina, Molano Natalia Stefania. „Contribution of radioactivity to catalytic performance in heterogeneous media“. Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILR025.
Der volle Inhalt der QuelleThis thesis aimed to identify applications of noble metals recovered from spent nuclear fuels such as 107Pd. To study the effect of the radiation three different applications were selected: heterogeneous catalysis, with the hydrogenation of cinnamaldehyde (CNA) as model reaction; photocatalysis, with the decolourisation of methyl orange (MO) as model reaction; and the regeneration of catalysts, deactivated with the synthesis of hydroxymethyl furfural. Protocols were developed for the synthesis of the catalysts and the performance testing in restricted nuclear environment, namely in glove box and for the implementation of the reactions in glove box and extractor column as appropriate.Regarding the results it was found that β-radiation did not show any effect on the hydrogenation of CNA independent of the applied reaction conditions. On the other hand, the decolourisation of MO was successfully activated by the β-radiation of the catalyst. A decrease in absorbance (at the isosbestic point) was observed and was correlated to the amount of the catalyst employed, evidencing the effect of the irradiation doses. Finally, the regeneration of the Pd-based catalyst showed promising results after γ-irradiation, notably with a partial recovery of the initial catalytic performance after -irradiation. Meanwhile, the Ru-based catalyst, although generally not performing well, showed increased activity compared to the fresh catalyst upon -irradiation
Gomes, Flores Camila. „Synthesis and catalytic performance of metal-zeolite composite catalysts“. Electronic Thesis or Diss., Université de Lille (2018-2021), 2019. http://www.theses.fr/2019LILUR010.
Der volle Inhalt der QuelleZeolites are microporous crystalline solids with a regular pore system, which have found numerous applications in industrial processes such as oil refining, organic synthesis, adsorption and separation. Very small pore size of zeolites (~1 nm) imposes diffusional limitations for many catalytic reactions. The catalytic performance of metal zeolite bifunctional catalysts can be improved by creating hierarchical zeolites and by controlling localization of metal species within the zeolite crystals. Impregnation is an efficient method for the preparation of bi-functional cobalt-zeolite catalysts for the direct production of liquid fuels from syngas. In the catalysts prepared via impregnation, cobalt occupies the cation exchange positions in the zeolite micropores decreasing the number of acid sites available for hydrocarbon isomerization and cracking. Isolation of cobalt ions in cationic positions reduces catalyst reducibility, makes it difficult to achieve metallic state and decreases the amount available metal active sites for Fischer Tropsch synthesis. We found that the presence of Na+ instead of H+ ions in the exchange positions of the large pore Beta zeolite favored deposition of cobalt on the external surface of the zeolite, while the acid sites in the zeolite micropores were not much affected. The large pore cobalt Beta zeolite catalyst with cobalt species localized on the external surface and high concentration of acid sites in the zeolite crystals has showed enhanced catalytic performance in Fischer-Tropsch synthesis combined with hydrocarbon isomerization. Another approach of this thesis has addressed creating hierarchical zeolites with several levels of meso- and microporosity using sacrificial templates. Hierarchical zeolites synthesized using cobalt containing carbon nanotubes, as sacrificial hard templates exhibited higher catalytic activity, lower methane selectivity and higher selectivity to isomerized hydrocarbons in Fischer-Tropsch synthesis. The synthesis strategy based on metal carbon nanotubes as sacrificial templates has been extended to other metals such as nickel and magnesium. This new approach to the synthesis of metal-zeolite composite increases the mesoporosity and improves the catalytic performance in hydrogenation of aromatics and anisole acylation
Zhang, Changlin. „RATIONAL DESIGN OF ELECTROCATALYSTS WITH ENHANCED CATALYTIC PERFORMANCE IN ENERGY CONVERSION“. University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1478274856161346.
Der volle Inhalt der QuelleBayraktar, Oguz. „Effect of pretreatment on the performance of metal contaminated commercial FCC catalyst“. Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=2071.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xvi, 214 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 199-208).
Bücher zum Thema "Catalytic performance"
Yan, Mei. Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54931-4.
Der volle Inhalt der QuelleWang, Shuoxun. A Study of Carbon Dioxide Capture and Catalytic Conversion to Methane using a Ruthenium, “Sodium Oxide” Dual Functional Material: Development, Performance and Characterizations. [New York, N.Y.?]: [publisher not identified], 2018.
Den vollen Inhalt der Quelle findenZhang, Jinghua. Perovskite: Crystallography, Chemistry and Catalytic Performance. Nova Science Publishers, Inc., 2013.
Den vollen Inhalt der Quelle findenCatalytic Coaching: The End of the Performance Review. Quorum Books, 2000.
Den vollen Inhalt der Quelle findenCatalytic Coaching: The End of the Performance Review. ABC-CLIO, LLC, 2000.
Den vollen Inhalt der Quelle findenCatalytic Coaching: The End of the Performance Review. Quorum Books, 2000.
Den vollen Inhalt der Quelle findenCatalytic Coaching: The End of the Performance Review. ABC-CLIO, LLC, 2000.
Den vollen Inhalt der Quelle findenPapa, Florica, Anca Vasile und Gianina Dobrescu, Hrsg. Effect of the Modification of Catalysts on the Catalytic Performance. MDPI, 2023. http://dx.doi.org/10.3390/books978-3-0365-6726-6.
Der volle Inhalt der QuelleYan, Mei. Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenDevelopment of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Mei Yan, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Catalytic performance"
Friedman, Avner. „Modeling catalytic converter performance“. In Mathematics in Industrial Problems, 70–77. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4613-9177-7_7.
Der volle Inhalt der QuelleMirzaee, Mahdi, Mahmood Norouzi, Adonis Amoli und Azam Ashrafian. „Catalytic Performance of Metal Alkoxides“. In Advanced Catalytic Materials, 225–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118998939.ch7.
Der volle Inhalt der QuelleThomas, J. M. „Structure and Catalytic Performance of Zeolites“. In Chemistry and Physics of Solid Surfaces VI, 107–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82727-3_6.
Der volle Inhalt der QuelleMandal, Prasenjit, und Hari Shankar Biswas. „Catalytic Performance of Graphene-Based Nanocomposites“. In Recent Advances in Graphene Nanophotonics, 119–43. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-28942-2_6.
Der volle Inhalt der QuelleCant, N. W., B. Sexton, D. L. Trimm und M. S. Wainwright. „Supported Copper Catalysts: Surface Studies and Catalytic Performance“. In Springer Proceedings in Physics, 290–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84933-6_23.
Der volle Inhalt der QuelleDeng, Jiayao, Xiao Hu, Gnauizhi Xu, Zhanfeng Deng, Lan Yang, Ding Chen, Ming Zhou und Boyuan Tian. „The Preparation of Iridium-Based Catalyst with Different Melting Point-Metal Nitrate and Its OER Performance in Acid Media“. In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 61–68. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_6.
Der volle Inhalt der QuelleLam, Sze-Mun, Jin-Chung Sin und Abdul Rahman Mohamed. „Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance“. In Environmental Chemistry for a Sustainable World, 195–215. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12619-3_8.
Der volle Inhalt der QuelleZhang, Shiguo, und Yanlong Gu. „Functionalized Ionic Liquid-based Catalytic Systems with Diversified Performance Enhancements“. In Sustainable Catalysis, 35–58. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527693030.ch2.
Der volle Inhalt der QuelleShi, Z. M. „Cordierite-CeO2 Composite Ceramic: A Novel Catalytic Support Material for Purification of Vehicle Exhausts“. In High-Performance Ceramics III, 1075–78. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-959-8.1075.
Der volle Inhalt der QuelleSaha, Biswajit, Sundaramurthy Vedachalam, Alivia Mukherjee und Ajay K. Dalai. „Performance of Low-Cost Carbon-Based Adsorbent on Desulfurization of Heavy Gas Oil“. In Catalytic and Noncatalytic Upgrading of Oils, 175–87. Washington, DC: American Chemical Society, 2021. http://dx.doi.org/10.1021/bk-2021-1379.ch007.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Catalytic performance"
Van Der Schoot, Marcel V., Suresh K. Bhargava, Deepak B. Akolekar, Karl Föger und Harry C. Watson. „Deterioration of Automotive Catalytic Converters (Part 2): Catalytic Performance Characterisation“. In SAE International Fall Fuels & Lubricants Meeting & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3695.
Der volle Inhalt der QuelleYu, Jia Xin, Tavayogeshwary Thangadurai, Ching Thian Tye und Samah Zaki Naji. „Catalytic performance of alumina supported metal oxides in catalytic cracking of used cooking oil“. In ADVANCES IN FRACTURE AND DAMAGE MECHANICS XX. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0148083.
Der volle Inhalt der QuelleZhao, Haixia, Lina Yan, Qing Ye, Heng Lu und Dao Wang. „Preparation and Catalytic Performance of Cu-supported on Manganese Oxide for Catalytic Oxidation of CO“. In 2014 International Conference on Materials Science and Energy Engineering (CMSEE 2014). WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814678971_0026.
Der volle Inhalt der QuelleShayler, P. J., D. J. Hayden und T. Ma. „Exhaust System Heat Transfer and Catalytic Converter Performance“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-0453.
Der volle Inhalt der QuelleTahara, Mika, Hirohide Oikawa und Kenji Arai. „Numerical Analysis of Catalytic Recombiner Performance Considering a 3-Dimensional Gas Flow“. In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22508.
Der volle Inhalt der QuelleFarrauto, Robert J., und John J. Mooney. „Effects of Sulfur on Performance of Catalytic Aftertreatment Devices“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920557.
Der volle Inhalt der QuellePasini, Angelo, Lucio Torre, Luca Romeo und Luca d'Agostino. „Performance Modeling and Analysis of H2O2 Catalytic Pellet Reactors“. In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5025.
Der volle Inhalt der QuelleAlmithn, Abdulrahman. „Catalytic Performance of Doped Ni2P Surfaces for Ammonia Synthesis †“. In ASEC 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/asec2023-15319.
Der volle Inhalt der QuelleZhu, Huayang, und Greg S. Jackson. „Transient Modeling for Assessing Catalytic Combustor Performance in Small Gas Turbine Applications“. In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0520.
Der volle Inhalt der QuelleBalachandran, Gajalakshmi, Aswini Dhamotharan, Kiruthiga Kaliyamoorthy, Kalaivani Sivaramakrishnan Rajammal, Rajamani Kulandaiya und Anthony Raja. „Synthesis, Characterization, and Catalytic Applications of Schiff-Base Metal Complexes“. In The International Conference on Processing and Performance of Materials (ICPPM 2023). Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/engproc2024061026.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Catalytic performance"
Johnson, Terry Alan, und Michael P. Kanouff. Performance characterization of a hydrogen catalytic heater. Office of Scientific and Technical Information (OSTI), April 2010. http://dx.doi.org/10.2172/992333.
Der volle Inhalt der QuelleNicholas, Jason D. Strain Engineering Defect Concentrations in Reduced Ceria for Improved Electro-Catalytic Performance. Fort Belvoir, VA: Defense Technical Information Center, Juni 2014. http://dx.doi.org/10.21236/ada623219.
Der volle Inhalt der QuellePlyusnin, Pavel, Yury Shubin, Igor Asanov, Roman Kenzhin, Vladimir Stoyanovskii und Aleksey Vedyagin. Effect of ruthenium addition to palladium-rhodium nanoalloys on their catalytic performance in CO oxidation. Peeref, Juli 2023. http://dx.doi.org/10.54985/peeref.2307p1690740.
Der volle Inhalt der QuelleIlyina, Ekaterina, Daria Yurpalova, Dmitriy Shlyapin, Gregory Veselov, Danil Shivtsov, Vladimir Stoyanovskii und Aleksey Vedyagin. Acetylene hydrogenation over Pd/MgO nanocrystalline system: Effect of the synthesis route on catalytic performance. Peeref, Juni 2023. http://dx.doi.org/10.54985/peeref.2306p8263363.
Der volle Inhalt der QuelleOlsen. PR-179-10203-R01 Characterization of Oxidation Catalyst Performance - VOCs and Temperature Variation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2012. http://dx.doi.org/10.55274/r0010753.
Der volle Inhalt der QuelleChapman und Toema. PR-266-09211-R01 Physics-Based Characterization of Lambda Sensor from Natural Gas Fueled Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2012. http://dx.doi.org/10.55274/r0010022.
Der volle Inhalt der QuelleKodupuganti, Swapneel R., Sonu Mathew und Srinivas S. Pulugurtha. Modeling Operational Performance of Urban Roads with Heterogeneous Traffic Conditions. Mineta Transportation Institute, Januar 2021. http://dx.doi.org/10.31979/mti.2021.1802.
Der volle Inhalt der QuelleMello, J. P., D. Bezaire, S. Sriramulu und R. Weber. Performance and Economics of Catalytic Glow Plugs and Shields in Direct Injection Natural Gas Engines for the Next Generation Natural Gas Vehicle Program: Final Report. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/15004468.
Der volle Inhalt der QuelleGinter, David, Chuck Simchick und Jim Schlatter. Variability in natural gas fuel composition and its effects on the performance of catalytic combustion systems. Final report for period September 18, 1998 - September 17, 2000. Office of Scientific and Technical Information (OSTI), März 2002. http://dx.doi.org/10.2172/802093.
Der volle Inhalt der QuelleFrey, H. C. Development of the integrated environmental control model: Performance models of selective catalytic reduction NO{sub x} control systems. Quarterly progress report, [April 1, 1993--June 30, 1993]. Office of Scientific and Technical Information (OSTI), Juli 1993. http://dx.doi.org/10.2172/10103453.
Der volle Inhalt der Quelle